1. For the vectors

$$
\vec{u}=[3,1,5], \quad \vec{v}=[1,1,2],
$$

find $\operatorname{proj}_{\vec{u}} \vec{v}$ and find the cross product $\vec{u} \times \vec{v}$.
2. Find the distance of the point $A(2,-1,0)$ from the plane $P: x-2 y-5 z=0$.
3. Find the equation of the plane containing the points $A(1,1,6), B(-2,2,4), C(0,1,4)$.
4. Find the vector equation for the line that contains the point $(2,-1,2)$ and is parallel to both the planes $P_{1}: x-y+2 z=4$ and $P_{2}: 2 x-3 y+z=4$ (note that a line is parallel to a plane if the direction vector of the line is orthogonal to the normal vector of the plane).
5. Decide whether or not the following lines in \mathbb{R}^{3} intersect, and if they intersect, find the coordinates of the intersection point.

$$
\begin{aligned}
& L_{1}: \vec{r}(t)=[-3,1,5]+t[1,2,-4] \\
& L_{2}: \vec{m}(s)=[8,-1,0]+s[3,-2,1]
\end{aligned}
$$

6. Show that

$$
\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right) \text { is an eigenvector of the matrix }\left(\begin{array}{lll}
4 & 0 & 1 \\
2 & 3 & 2 \\
1 & 0 & 4
\end{array}\right)
$$

and find the corresponding eigenvalue.
7. Find the eigenvalues of the matrix

$$
\left(\begin{array}{rrc}
0 & -3 & 5 \\
-4 & 4 & 10 \\
0 & 0 & 4
\end{array}\right)
$$

and find a non-zero eigenvector for each eigenvalue.

