First Arts Modular Degree
 Mathematical Studies 2004-2005

Combinatorics and Number Theory Problem Sheet 5

1. Prove that $2^{340} \equiv 1 \bmod 341$ (note that 341 is not a prime).
2. Assuming the equality

$$
m\binom{n}{m}=n\binom{n-1}{m-1}
$$

previously proved when $0 \leq m \leq n$, prove that if r is a positive integer, then r divides $\binom{r m}{m}$. Hint: replace n by $r m$ in the given formula.

3 Evaluate $\phi(2310)$ and $\phi\left((15)^{3}\right)$, where ϕ is the phi function.
4. Use Euler's Theorem to find the smallest positive integer b with $3^{404} \equiv b \bmod 1000$. Hence find the last three digits in the decimal expansion of 3^{404}.
5. Find the smallest positive integer x with $3^{25} \equiv x \bmod 25$.
6. Find the smallest positive integer that leaves a remainder of 14 on division by 15 and a remainder of 16 on division by 17 .
7. Find a positive integer less than 60 which is divisible by 7 and leaves a remainder of 1 when divided by 17 .
8. Find an integer solution x to the system of congruences

$$
x \equiv 2 \bmod 5, \quad x \equiv 3 \bmod 7, \quad x \equiv 2 \bmod 12 .
$$

9. Find an integer x so that

$$
x \equiv 3 \bmod 11, \quad x \equiv 6 \bmod 8, \quad x \equiv 14 \bmod 15 .
$$

