First Arts Modular Degree Mathematical Studies 2004–2005

Combinatorics and Number Theory Problem Sheet 5

- 1. Prove that $2^{340} \equiv 1 \mod 341$ (note that 341 is **not** a prime).
- 2. Assuming the equality

$$m\binom{n}{m} = n\binom{n-1}{m-1}$$

previously proved when $0 \le m \le n$, prove that if r is a positive integer, then r divides $\binom{rm}{m}$. Hint: replace n by rm in the given formula.

- **3** Evaluate $\phi(2310)$ and $\phi((15)^3)$, where ϕ is the phi function.
- 4. Use Euler's Theorem to find the smallest positive integer b with $3^{404} \equiv b \mod 1000$. Hence find the last three digits in the decimal expansion of 3^{404} .
- 5. Find the smallest positive integer x with $3^{25} \equiv x \mod 25$.
- 6. Find the smallest positive integer that leaves a remainder of 14 on division by 15 and a remainder of 16 on division by 17.
- **7.** Find a positive integer less than 60 which is divisible by 7 and leaves a remainder of 1 when divided by 17.
- 8. Find an integer solution x to the system of congruences

 $x \equiv 2 \mod 5$, $x \equiv 3 \mod 7$, $x \equiv 2 \mod 12$.

9. Find an integer x so that

 $x \equiv 3 \mod 11$, $x \equiv 6 \mod 8$, $x \equiv 14 \mod 15$.