First Arts Modular Degree
 Mathematical Studies 2004-2005

Combinatorics and Number Theory Solution Sheet 4

1. As

$$
n\binom{n-1}{m-1}=m\binom{n}{m},
$$

n divides $m\binom{n}{m}$. Now we are assuming that m and n are relatively prime and so it follows that n must divide $\binom{n}{m}$. Note that what we have proved may not be true if $\operatorname{gcd}(m, n)>1$.
2. Using the Euclidian algorithm for 31 and 41 , we have $1=4 \times 31-3 \times 41$. This means that

$$
31 \times 4 \equiv 1 \bmod 41 .
$$

Multiplying by 3 ,

$$
31 \times 12 \equiv 3 \bmod 41
$$

and we therefore take $x=12$.
3. Using the Euclidian algorithm for 317 and 409 , we have $1=40 \times 317-31 \times 409$. This means that

$$
317 \times 40 \equiv 1 \bmod 409 .
$$

Multiplying by 3 ,

$$
317 \times 120 \equiv 3 \bmod 409
$$

and we therefore take $x=120$.
4. Suppose that $\operatorname{gcd}(b, c)=1$ and let $d=\operatorname{gcd}\left(b^{m}, c^{n}\right)$. Suppose that $d>1$. Then there is a prime p dividing d which divides both b^{m} and c^{n}. However, as p is a prime, if p divides b^{m}, p divides b. Likewise, if p divides c^{n}, p divides c. But then p is a common divisor of b and c, contradicting $\operatorname{gcd}(b, c)=1$. Therefore, $d=1$.
5. As

$$
\binom{n+1}{r}=\binom{n}{r-1}+\binom{n}{r},
$$

all three binomial coefficients cannot be odd, for the sum of two odd numbers is even.
6. There does not seem to be a quick way to do this question. We calculate as follows:

$$
\begin{aligned}
& 2^{6}=64 \equiv 17 \bmod 47, \quad 2^{12} \equiv 17^{2} \equiv 289 \equiv 7 \bmod 47 \\
& 2^{18} \equiv 17 \times 7 \equiv 119 \equiv 25 \bmod 47,2^{20} \equiv 100 \equiv 6 \bmod 47
\end{aligned}
$$

We therefore take $x=6$.
7. The order is a divisor of 30 . Note that

$$
3^{5}=243 \equiv-5 \bmod 31, \quad 3^{10} \equiv 25 \bmod 32, \quad 3^{15} \equiv-125 \equiv-1 \bmod 31 .
$$

As the order of 3 modulo 31 is not 2 or 3 , these calculations show that 3 must have order 30 modulo 31.
8. We have

$$
a^{p-1} \equiv 1 \bmod p
$$

or equivalently,

$$
a^{p-1}-1 \equiv 0 \bmod p
$$

Thus p divides $a^{p-1}-1$. But $a^{p-1}-1$ factorizes as

$$
a^{p-1}-1=(a-1)\left(a^{p-2}+a^{p-3}+\cdots+a+1\right.
$$

and hence p divides this product. But as p is a prime, p must divide one of the two factors above. However, p cannot divide $a-1$, as we have excluded the possibility $a \equiv 1 \bmod p$. Hence the other possibility holds, meaning that

$$
a^{p-2}+a^{p-3}+\cdots+a+1 \equiv 0 \bmod p
$$

9. We have

$$
2^{p-1} \equiv 1 \bmod p
$$

and since $p-1$ is even,

$$
2^{2(p-1) / 2}=4^{(p-1) / 2} \equiv 1 \bmod p
$$

This implies that the order of 4 modulo p is a divisor of $(p-1) / 2$.
10. As n has order 2 modulo $p, n^{2} \equiv 1 \bmod p$. This means p divides $n^{2}-1=(n-1)(n+1)$. As p is a prime, p divides either $n-1$ or $n+1$. Now if p divides $n-1, n \equiv 1 \bmod p$ and this means that n has order 1 modulo p. Since n has order 2 , we must have the other case, namely, p divides $n+1$, or equivalently, $n \equiv-1 \bmod p$.

