First Arts Modular Degree
 Mathematical Studies 2004-2005

Combinatorics and Number Theory Problem Sheet 4

1. In problem sheet 2 , you were asked to prove that

$$
m\binom{n}{m}=n\binom{n-1}{m-1}
$$

when m and n are integers with $0 \leq m \leq n$. Use this result to prove that under these circumstances, if m and n are relatively prime, then n divides $\binom{n}{m}$.
2. Find the smallest positive integer x that satisfies $31 x \equiv 3 \bmod 41$.
3. Find the smallest positive integer x that satisfies $317 x \equiv 3 \bmod 409$.
4. Let b and c be relatively prime integers. Prove that for any positive integers m and n, b^{m} and c^{n} are also relatively prime.
5. Prove that the three binomial coefficients $\binom{n}{r-1},\binom{n}{r}$ and $\binom{n+1}{r}$ cannot all be odd integers.
6. Find the smallest positive integer x that satisfies $2^{20} \equiv x \bmod 47$.
7. Find the order of 3 modulo 31 .
8. Let p be a prime and let a be an integer not divisible by p satisfying $a \not \equiv 1 \bmod p$. Use Fermat's Little Theorem to show that

$$
1+a+a^{2}+\cdots+a^{p-2} \equiv 0 \bmod p
$$

9. Let p be an odd prime. Show that the order of 4 modulo p is a divisor of $(p-1) / 2$. Hint: $4=2^{2}$.
10. Let p be an odd prime and let n be an integer not divisible by p. Suppose that n has order 2 modulo p. Prove that p divides $n+1$.
