First Arts Modular Degree
 Mathematical Studies 2004-2005

Combinatorics and Number Theory Solution Sheet 3

1. The general term in the expansion of

$$
\left(x^{2}-\frac{3}{x}\right)^{10}
$$

is

$$
\binom{10}{r}\left(x^{2}\right)^{10-r}\left(\frac{-3}{x}\right)^{r}=(-3)^{r}\binom{10}{r} x^{20-3 r}
$$

The power of x that appears here is $20-3 r$. This equals 11 when $r=3$. Thus the coefficient of x^{11} is

$$
(-3)^{3}\binom{10}{3}=-27 \times 120=-3240
$$

2. Note that

$$
(x+2)^{3}(x-2)^{5}=(x+2)^{3}(x-2)^{3}(x-2)^{2}=\left(x^{2}-4\right)^{3}(x-2)^{2} .
$$

We then have

$$
\left(x^{2}-4\right)^{3}(x-2)^{2}=\left(x^{6}-12 x^{4}+48 x^{2}-64\right)\left(x^{2}-4 x+4\right)
$$

and this tells us that the coefficient of x^{3} is $48 \times-4=-192$.
3.

$$
(1+2 x(1+x))^{5}=1+5 \times 2 x(1+x)+10 \times 4 x^{2}(1+x)^{2}+\cdots
$$

The expansion above tells us that we obtain x^{2} in two ways in this expansion, with coefficient $10+40=50$.
4. The sum of the geometric series is given by

$$
1+z+z^{2}+\cdots+z^{n}=\frac{z^{n+1}-1}{z-1}
$$

Setting $z=1+x$, our series sums to

$$
\begin{aligned}
\frac{(1+x)^{n+1}-1}{x} & =\frac{1+(n+1) x+\binom{n+1}{2} x^{2}+\cdots}{x} \\
& =n+1+\binom{n+1}{2} x+\cdots
\end{aligned}
$$

The coefficient of x is thus

$$
\binom{n+1}{2}=\frac{n(n+1)}{2} .
$$

5. The gcd of 69 and 117 is 3 . For working out s and t, we summarize the calculations as follows:

$$
3=21-3 \times 6, \quad, \quad 6=48-2 \times 21, \quad 21=69-48, \quad 48=117-69
$$

Substituting back,

$$
3=7 \times 21-3 \times 48, \quad 3=7 \times 69-10 \times 48, \quad 3=17 \times 69-10 \times 117
$$

Thus we can take $s=17$ and $t=-10$.
6. The gcd of 312 and 1084 is 4 . For working out s and t, we summarize the calculations as follows:

$$
4=148-9 \times 16, \quad 16=312-2 \times 148, \quad 148=1084-3 \times 312
$$

Putting this together, we get

$$
4=19 \times 148-9 \times 312, \quad 4=19 \times 1084-66 \times 312
$$

so that $s=-66$ and $t=19$ here.
7. The gcd of 594 and 781 is 11 . Omitting the details of the calculation, we obtain

$$
11=25 \times 594-19 \times 781
$$

8. 111,111 is not a prime, as it is divisible by 11. In fact,

$$
111,111=11 \times 10,101
$$

The number 11,111 is a prime but it is quite slow check this.
9. Suppose that 3 divides $c-1$. Then we can write $c=1+3 d$ for some integer d and hence

$$
\begin{aligned}
c^{2}+c+1 & =1+6 d+9 d^{2}+1+3 d+1 \\
& =3+9\left(d+d^{2}\right)
\end{aligned}
$$

This means that $c^{2}+c+1 \equiv 3 \bmod 9$, so that 3 divides $c^{2}+c+1$ but 9 does not.
10. Let $d=\operatorname{gcd}\left(c+1, c^{2}+1\right)$. Note that

$$
c^{2}+1=(c+1)(c-1)+2
$$

Since d divides $c^{2}+1$ and $c+1$, it divides 2. Thus $d=1$ or $d=2$. However, as c is assumed to be even, $c+1$ is odd, and hence d must be odd. Thus $d=1$.

