
First Arts Modular Degree

Mathematical Studies 2004–2005

Combinatorics and Number Theory Solution Sheet 1

1. The formula is true when n = 1, since

12 = 1 =
1× 2× 3

6
.

Assume now that the sum formula is true when n = r and then try to prove that

12 + 22 + · · ·+ (r + 1)2 =
(r + 1)(r + 1 + 1)(2(r + 1) + 1)

6
=

(r + 1)(r + 2)(2r + 3)
6

Now by induction, the left hand side above is

r(r + 1)(2r + 1)
6

+ (r + 1)2 = (r + 1)
(2r2 + r + 6r + 6)

6
=

(r + 1)(r + 2)(2r + 3)
6

,

as required.

2. We wish to prove that

1 + x + x2 + · · ·+ xn =
xn+1 − 1

x− 1
.

First check that the formula holds for n = 1. In this case, the left hand side is 1 + x and

the right hand side is (x2−1)/x−1, which also equals 1+x, as required. Assume now that

the sum formula is true when n = r and then try to prove that

1 + x + x2 + · · ·+ xr+1 =
xr+2 − 1

x− 1
.

Now by induction, the left hand side above is

xr+1 − 1
x− 1

+ xr+1 =
xr+1 − 1 + xr+2 − xr+1

x− 1
=

xr+2 − 1
x− 1

,

which equals the required expression on the right hand side. Thus the formula is true for

all n ≥ 1.

3. Note that a1 = 1 is an odd integer. Assume by induction that ar is an odd integer. Now

ar+1

ar
=

(2r + 2)!
2r+1(r + 1)!

× 2rr!
(2r)!

= 2r + 1.

Therefore, ar+1 = (2r + 1)ar is an odd positive integer, as it is the product of two odd

positive integers.

4. Write

an =
(

1− 1
4

)
×

(
1− 1

9

)
× · · · ×

(
1− 1

n2

)
for n ≥ 2. Now the formula for an is correct when n = 2, since

a2 =
3
4

=
2 + 1
2× 2



Now assume that ar = r+1
2r and try to prove that ar+1 = r+2

2(r+1) . But it is clear that

ar+1 = ar ×
(

1− 1
(r + 1)2

)
=

r + 1
2r

× (r + 1)2 − 1
(r + 1)2

=
r + 2

2(r + 1)
,

as required.

5. The proposition is true when n = 1, since a1 = 1 = 1
2 (31−1 + 1). Assume now that

ar = 1
2 (3r−1 + 1) and try then to prove that ar+1 = 1

2 (3r + 1). But

ar+1 = 3ar − 1 =
3
2
(3r−1 + 1)− 1 =

1
2
(3r + 1),

as required.

6. Let us set an = 22n − 3n − 1. We want to prove that 9 exactly divides an. When n = 1,

a1 = 0 and 9 certainly exactly divides 0. Assume by induction that 9 exactly divides ar

and then try to prove that 9 exactly divides ar+1. Now

ar+1 − 4ar = 2r+2 − 3(r + 1)− 1− 2r+2 + 12r + 4 = 9r.

Hence ar+1 = 4ar + 9r. Since 9 divides ar exactly, it also divides 4ar, and 9 clearly divides

9r exactly. Hence we see that 9 also divides 4ar + 9r = ar+1, as required.

7. We can form 7! = 5040 integers by permuting the 7 digits. To do the second part, we

proceed more slowly. If we make the first digit 5, we can form 6! integers. The same is true

if the first digit is 6 or 7. This gives us 3 × 6! integers between 5,000,000 and 7,999,999.

Now we want to count those integers with first digit 8 that are less than 8,700,000. This

can be done as follows. We can form 6! integers whose first digit is 8. Of these, the integers

greater than 8,700,000 have second digit equal to 7 or to 9. With first digit 8 and second 7,

we can form 5! integers, and the same is true for those integers with first digit 8 and second

digit 9. Excluding these 2 × 5! integers, we have 6! − 2 × 5! integers in the correct range.

The total number is

3× 6! + 6!− 2× 5! = 2, 640.

8. We treat a, b, c, and d as a single letter. Then we are effectively permuting four letters and

we have 4! = 24 permutations in which the four letters are in the given order. If we allow a,

b, c and d to be in a group but not in any prescribed order in that group, we obtain 4! = 24

rearrangements of the letters in the group and hence 24×24 = 576 possible rearrangements.

9. There are 24 different integers which we can form. Let’s look at the last digit of each of the

numbers. It’s fairly clear that each digit occurs 6 times as last digit of these 24 integers.

The sum of the last digits is

6× (1 + 2 + 3 + 4) = 60.

The same holds for the second last digit, second digit and first digit. So, taking into account

units, tens, hundreds and thousands, the sum of all the 24 integers is

60 + 10× 60 + 100× 60 + 1000× 60 = 66, 660.


