First Arts Modular Degree
 Mathematical Studies 2004-2005

Combinatorics and Number Theory Problem Sheet 1

1. Prove by induction on n that for all integers $n \geq 1$,

$$
1^{2}+2^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

2. Prove by induction on n that for all integers $n \geq 1$,

$$
1+x+x^{2}+\cdots+x^{n}=\frac{x^{n+1}-1}{x-1}
$$

provided $x \neq 1$.
3. The sequence $a_{1}, a_{2}, \ldots, a_{n}$ is defined by

$$
a_{n}=\frac{(2 n)!}{2^{n} n!}
$$

Show that

$$
\frac{a_{r+1}}{a_{r}}=2 r+1 .
$$

Hence show by induction on n that a_{n} is an odd positive integer.
4. Prove by induction on n that

$$
\left(1-\frac{1}{4}\right) \times\left(1-\frac{1}{9}\right) \times \cdots \times\left(1-\frac{1}{n^{2}}\right)=\frac{n+1}{2 n}
$$

for all integers $n \geq 2$.
5. If $a_{1}, a_{2}, \ldots, a_{n}$ is a sequence of numbers, with $a_{1}=1$, and if the relation $a_{n+1}=3 a_{n}-1$ holds for all $n \geq 1$, then $a_{n}=\frac{1}{2}\left(3^{n-1}+1\right)$.
6. Prove by induction on n that 9 divides $2^{2 n}-3 n-1$ for all integers $n \geq 1$.
7. How many different integers can be formed by permuting the 7 digits $3,4,5,6,7,8,9$? How many of the integers thus formed lie between $5,000,000$ and $8,700,000$?
8. In how many permutations of the letters a, b, c, d, e, f and g do the letters a, b, c, d occur in a single group in this order? In how many of these permutations do the letters $a b c d$ occur in a single group but in any order within this group?
9. How many different integers can be formed by permuting the digits 1234 . What is the sum of all the integers thus formed (try to work this out theoretically rather than by adding together several numbers).

