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ROD GOW AND RACHEL QUINLAN

Abstract. In this note, we define the class of finite groups of Suzuki type,

which are non–abelian groups of exponent 4 and class 2 with special proper-
ties. A group G of Suzuki type with |G| = 22s always possesses a non–trivial

difference set. We show that if s is odd, G possesses a central difference set,

whereas if s is even, G has no non–trivial central difference set.

1. Introduction

Let G be a finite multiplicatively–written group of order v and let D be a k–
subset of G, where 1 < k < v. Let λ be a positive integer. We say that D is a
(v, k, λ)–difference set in G if for each non–identity element g in G, there are exactly
λ ordered pairs (a, b) in D ×D with

g = ab−1.

We say that D is a central difference set in G if it is a union of conjugacy classes
in G. The purpose of this note is to provide, for each odd integer s, an example of
a (22s, 22s−1 − 2s−1, 22s−2 − 2s−1) central difference set in a non–abelian 2–group
of exponent 4. We remark that, up to complementation, a non-trivial difference
set in a 2–group always has parameters of this form, by a theorem of H.B. Mann,
[4], Theorem 1. The group which we use is a Suzuki 2–group, although we show
more generally that a group of so–called Suzuki type also possesses such a central
difference set. While other examples of non–trivial central difference sets in non–
abelian groups may be known, we note that the 1999 survey article of R. Liebler
suggested that such difference sets might not exist, [3], Conjectures, p.351.

2. Groups of Suzuki type

Let G be a group of order 22s, where s ≥ 2 is an integer. Let Z(G) denote the
centre of G. We say that G is of Suzuki type if the following hold.

• Z(G) and G/Z(G) are both elementary abelian groups of order 2s.
• if x is any element of G−Z(G) and CG(x) is the centralizer of x in G, then
|CG(x)| = 2s+1.

Our main example of a group of Suzuki type is provided by the well–known
Suzuki 2–groups, which we construct in the following way. Let F be a finite field
of order 2s, where s ≥ 2. Define a multiplication on the set F × F by putting

(a, b)(c, d) = (a+ c, a2c+ b+ d)
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for all ordered pairs (a, b) and (c, d) in F × F . It is straightforward to see that
F ×F is a finite group of order 22s, which we shall denote by Gs and call a Suzuki
2–group. The identity element is (0, 0) and the inverse of (a, b) is (a, a3 + b). The
centre Z(Gs) of Gs consists of all elements (0, v) and is elementary abelian of order
2s. The quotient Gs/Z(Gs) is also elementary abelian of order 2s.

Let x be any element of Gs − Z(Gs). We may write x = (a, b), where a 6= 0. It
is easy to check that CGs(x) consists of all elements (c, d), where d is an arbitary
element of F and c = 0 or c = a. Thus |CGs(x)| = 2s+1 and we see that Gs is
a group of Suzuki type according to the definition above. There do however exist
groups of Suzuki type that are not isomorphic to a Suzuki 2–group. For example, a
covering group (or stem cover) of an elementary abelian group of order 8 is a group
of Suzuki type of order 64. There are several non–isomorphic such covering groups,
including the Suzuki 2–group G3.

Let G be a group of Suzuki type with |G| = 22s. We will consider Z(G) to be a
vector space of dimension s over F2. Given elements x and y in G, let [x, y] denote
the commutator x−1y−1xy. Since G is nilpotent of class 2, [x, y] ∈ Z(G) and the
relation

[x, yz] = [x, y][x, z]
holds for all z in G. Thus, if we fix x to be an element of G− Z(G) and let y run
over G, the commutators [x, y] form a subgroup of Z(G). Moreover, since [x, y] = 1
if and only if y ∈ CG(x), and |CG(x)| = 2s+1, we see that there are 2s−1 different
elements of the form [x, y] and they therefore constitute a hyperplane, Hx say, of
Z(G). The conjugacy class of x in G is the coset xHx.

The key point for the existence of a central difference set in G is the parity of s.
The next lemma holds only when s is odd.

Lemma 1. Let G be a group of Suzuki type with |G| = 22s, where s is odd. Then
each hyperplane of Z(G) is equal to some Hx.

Proof. We give a character–theoretic proof. Suppose that there is a hyperplane
H of Z(G) not equal to any Hz, where z runs over the elements of G. Let λ be
a complex linear character of Z(G) whose kernel is H. Let x be any element of
G − Z(G). Since Hx 6= H, there is some y in G with λ([x, y]) = −1. Let χ be an
irreducible complex character of G lying over λ and let R be a representation of G
with character χ. Since [x, y] ∈ Z(G), we have

R([x, y]) = λ([x, y])I = −I.
It follows then that

R(y)−1R(x)R(y) = −R(x).
Taking traces, we obtain

χ(x) = traceR(x) = −traceR(x) = −χ(x).

We deduce that χ(x) = 0 for all x ∈ G− Z(G). On the other hand, since Z(G) is
an elementary abelian 2–group, Schur’s Lemma implies that χ(z) = ±χ(1) for all
z ∈ Z(G). The orthogonality relations give

|G| =
∑
x∈G

|χ(x)|2 =
∑

z∈Z(G)

|χ(z)|2 = |Z(G)|χ(1)2

and this implies that
2s = |G : Z(G)| = χ(1)2.
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This is a contradiction, since it implies that s is even. Thus H equals some Hz, as
required. �

3. Construction of a central difference set for odd s

Here we show the existence of a central difference set in a group G of Suzuki type
and order 22s whenever s ≥ 3 is an odd integer. We make use of a very flexible
construction due to J.F. Dillon. Let G be a group of order 22s, where s ≥ 1.
Suppose that G contains a central elementary abelian subgroup H of order 2s. Let
x0, . . . , x2s−1 be a set of coset representatives for H in G, with x0 ∈ H. Let

H1, . . . ,H2s−1

denote the 2s − 1 different hyperplanes in H. Then the subset D of G defined by

D =
2s−1⋃
i=1

xiHi

is a difference set in G, [1], p.14.

Theorem 1. Let s ≥ 3 be an odd integer. Let G be a group of Suzuki type with
|G| = 22s. Then G contains a central difference set.

Proof. Let
x1, . . . , x2s−1

be a system of representatives for those cosets of Z(G) different from Z(G), as
defined above. Let Hi denote the hyperplane Hxi

. Since any element of G− Z(G)
has the form xiz for some index i and some z ∈ Z(G), it follows from Lemma 1
that the hyperplanes Hi, where 1 ≤ i ≤ 2s − 1, constitute all the hyperplanes of
Z(G). Thus, following Dillon’s construction,

D =
2s−1⋃
i=1

xiHi

is a difference set in G, and it is a union of conjugacy classes, since xiHi is the
conjugacy class of xi. We have thus constructed a central difference set in G. �

4. Non–existence of a central difference set for even s

We intend to show in this section that, although Dillon’s construction gives
many difference sets in a group G of Suzuki type, there is no central difference set
when |G| = 22s and s is even. Thus Lemma 1 is false when s is even. We again
employ a character–theoretic argument that we think may be capable of proving
the non–existence of central difference sets in other situations.

Lemma 2. Let G be a group of Suzuki type with |G| = 22s and suppose that s = 2t
is a positive even integer. Then G has at least 2(22t − 1)/3 irreducible complex
characters χ of degree 2t which vanish on all elements outside Z(G). The kernel of
each such χ is a hyperplane of Z(G) and different χ have different kernels.

Proof. Let χ be an irreducible complex character of G. We note that χ(1)2 divides
|G : Z(G)|. See, for example, Problem 3.6 of [2]. It follows that χ(1) is a divisor
of 2t. Now as G is of Suzuki type it is straightforward to see that G has 22t

central conjugacy classes and 22t+1 − 2 non–central conjugacy classes, each of size
22t−1. Moreover, as G/Z(G) is elementary abelian of order 22t, G has at least
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22t irreducible characters of degree 1. Excluding these linear characters, suppose
that G has exactly u irreducible characters of degree dividing 2t−1 and exactly v
irreducible characters of degree 2t. Then since the number of irreducible characters
of G equals the number of conjugacy classes of G, it follows that u+ v = 22t+1− 2.

Recalling that

|G| = 24t =
∑
χ

χ(1)2,

where the sum extends over all irreducible characters χ of G, we obtain the inequal-
ity

24t ≤ 22t + u22t−2 + v22t

and hence
22t+2 ≤ 4 + u+ 4v = 22t+1 + 2 + 3v.

This implies that v ≥ 2(22t − 1)/3, as claimed.
Finally, let χ be an irreducible character of G of degree 2t. We noted in the

proof of Lemma 1 that χ(z) = ±χ(1) = ±2t for all z ∈ Z(G). The orthogonality
relations give

|G| = 24t =
∑

z∈Z(G)

|χ(z)|2 +
∑

x6∈Z(G)

|χ(x)|2 = 24t +
∑

x6∈Z(G)

|χ(x)|2

and this equality clearly implies that χ(x) = 0 if x ∈ G − Z(G). It follows that
χ is determined by its restriction to Z(G). We may write χZ(G) = 2tλ where λ
is a non–trivial linear character of Z(G). The kernel of χ is then the kernel of λ,
which is a hyperplane of Z(G). Since λ is determined by its kernel, it is clear that
different such χ have different kernels. �

We return briefly to a finite multiplicatively–written group G of order v and
suppose that D is a (v, k, λ)–difference set in G. Given a non-empty subset S of G,
we let Ŝ denote the sum ∑

s∈S
s

in CG. The fact that D is a (v, k, λ)–difference set is expressible by the equation

D̂D̂(−1) = λĜ+ n1G,

where n = k − λ is the order of D, and D̂(−1) is the sum of the inverses of the
elements in D.

Suppose now that D is central in G. Let R be a non–trivial irreducible complex
representation of G with character χ. We may extend R to a representation of CG,
also denoted by R, and in this extended representation, R(D̂) clearly commutes
with the elements R(g) for all g ∈ G. Schur’s Lemma implies that R(D̂) = µI for
some scalar µ. Since R(Ĝ) = 0, we obtain

R(D̂)R(D̂(−1)) = µµI = λR(Ĝ) + nI = nI,

so that the scalar µ satisfies |µ|2 = n. As D is central, it is the union of r, say,
conjugacy classes K1, . . . , Kr. Each element R(K̂i) is a scalar multiple of the
identity, say µiI, and

µ1 + · · ·+ µr = µ.
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By a well known theorem of Frobenius,

µi =
|Ki|χ(gi)
χ(1)

,

where gi is a representative of Ki. Moreover, each µi is an algebraic integer. Let
Z(CG) denote the centre of CG. The character χ determines a so–called central
character ωχ, which is a homomorphism Z(CG) → C given by

ωχ(K̂i) =
|Ki|χ(gi)
χ(1)

.

Thus the scalar µi equals ωχ(K̂i) and

|ωχ(K̂1) + · · ·+ ωχ(K̂r)|2 = n

for all non–principal irreducible characters χ.
We note also the following elementary property of the central characters.

Lemma 3. Let G be a finite group and let N be a normal subgroup of G. Let ψ be
an irreducible complex character of G that does not contain N in its kernel. Then
ωψ(N̂) = 0.

Proof. We first note that N is a union of conjugacy classes of G, so N̂ ∈ Z(CG).
Suppose that ωψ(N̂) 6= 0. It follows that∑

g∈N
ψ(g) 6= 0.

This implies that the restriction of ψ to N contains the principal character 1N of N .
The irreducibility of ψ, together with Clifford’s theorem, imply that N is contained
in the kernel of ψ, contrary to assumption. Thus ωψ(N̂) = 0. �

We can now prove our non–existence theorem for central difference sets in groups
of Suzuki type when s is even.

Theorem 2. Let s ≥ 2 be an even integer. Then a group G of Suzuki type with
|G| = 22s contains no non–trivial central difference set.

Proof. Suppose on the contrary that G contains a non–trivial central difference set
D. Since the complement of D is also central, we may assume that |D| < |G|/2.
Thus Mann’s theorem implies that |D| = 22s−1− 2s−1 and the order of D is 22s−2.
Let s = 2t, where t is a positive integer and let χ be an irreducible character of G
of degree 2t, whose existence is guaranteed by Lemma 2. Let c = |D ∩ Z(G)| and
let D be the union of r conjugacy classes K1, . . . , Kr of G. We may assume that
the classes K1, . . . , Kc are central and the remaining classes are non–central. Since
χ vanishes outside Z(G), we have

ωχ(K̂i) =

{
εi = ±1, if 1 ≤ i ≤ c;
0, if i > c.

It follows that
ωχ(D̂) = ε1 + · · ·+ εc = ±2s−1,

since ωχ(D̂) is clearly an integer. We note also that |Ki| = 2s−1 for i > c. Since D
is a union of conjugacy classes, it follows that c is divisible by 2s−1. However, since
|Z(G)| = 2s, we see that c is either 2s−1 or 2s. Now the equality c = 2s implies
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that Z(G) is contained in D. We claim that this is impossible. For suppose that
Z(G) is contained in D. Then we have

ωχ(D̂) = ωχ(Ẑ(G)) = 0

by Lemma 3, since Z(G) is not contained in the kernel of χ. This is a contradiction.
Thus c = 2s−1 and we deduce that |D ∩ Z(G)| = 2s−1.

Let z be any element of D∩Z(G). It is clear that z−1D is also a central difference
set containing the identity. Replacing D by z−1D if necessary, we may assume that
the identity of G is in D and we may set K1 to be the identity class. We now have

ωχ(D̂) = ε1 + · · ·+ ε2s−1 = ±2s−1,

where each εi = ±1 and ε1 = 1. It must be the case that each εi = 1 and hence
D∩Z(G) is contained in the kernel of χ. However, Lemma 2 shows that the kernel
of each character χ is a hyperplane in Z(G). Comparing orders, we deduce that
D ∩ Z(G) = ker χ. Since different characters χ have different kernels, and there
are at least two different χ, by Lemma 2, we have a contradiction. Thus G has no
central difference set when s is even.

�

5. Construction of central difference sets in direct products

We end this note by making a simple observation that shows how to construct
further examples of central difference sets in non–abelian 2–groups. Let G1 and G2

be finite groups which contain Hadamard difference sets D1 and D2, respectively.
Then

D = D1(G2 −D2) ∪ (G1 −D1)D2

is a Hadamard difference set in G1 × G2. See, for example, [1], p.13. It is easy to
see that D is central if D1 and D2 are central. Now any non–trivial difference set
in a finite 2–group is Hadamard by Mann’s theorem. Thus we see that the class of
2–groups possessing a central difference set is closed under direct products and we
may therefore construct further examples of central difference sets in non–abelian
2–groups using the examples described in Theorem 1.
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