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Abstract. Given a field F and integer n ≥ 3, we introduce an invariant

sn(F ) which is defined by examining the vanishing of subspaces of alternating
bilinear forms on 2–dimensional subspaces of vector spaces. This invariant

arises when we calculate the largest dimension of a subspace of n × n skew-

symmetric matrices over F which contains no elements of rank 2. We show
how to calculate sn(F ) for various families of field F , including finite fields.

We also prove the existence of large subgroups of the commutator subgroup of

certain p–groups of class 2 which contain no non–identity commutators.

1. Introduction

Let F be a field and let n and k be integers, with n ≥ 3 and k ≥ 2. Let V be a
vector space of dimension n over F and let α be a subset of k alternating bilinear
forms defined on V × V . Following Buhler, Gupta and Harris, [5], we let m(α) be
the maximum of the dimensions of those subspaces of V that are totally isotropic
with respect to all the forms in α. We then set

d(F, n, k) = minm(α),

where α ranges over all subsets of k alternating bilinear forms defined on V × V .
The results of [5] show that evaluation of d(F, n, k) is difficult, but the main theorem
of that paper may be stated as follows.

Theorem 1. Suppose that F has characteristic different from 2 and k ≥ 2. Then

d(F, n, k) ≤
[
2n + k

k + 2

]
,

where [x] denotes the greatest integer ≤ x. If F is algebraically closed, equality
holds above.

We now introduce a numerical invariant of the field F , based on the definition
of d(F, n, k) just given.

Definition 1. Let n ≥ 3 be an integer. We set sn(F ) to be that positive integer r
satisfying

d(F, n, r) = 1

d(F, n, r − 1) ≥ 2.

In the next section of this paper, we show how sn(F ) is related to the study
of certain special subspaces of V ∧ V , namely, those that contain no non–zero
decomposable elements (in other words, elements of the form x∧ y). The existence
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of such subspaces is equivalent to the existence of subgroups of the commutator
subgroup of certain nilpotent groups of class 2 that contain no non–identity pure
commutators. Furthermore, given the identification of V ∧V with the space An(F )
of n×n skew–symmetric matrices over F , we see that subspaces of V ∧V that contain
no non–zero decomposable elements correspond to subspaces of An(F ) that contain
no elements of rank 2.

The final section of this paper is devoted to the evaluation of sn(F ) for certain
fields F , including finite fields. Theorem 1 implies that, if F has characteristic
different from 2,

sn(F ) ≤ 2n− 3
and equality holds in this case if F is algebraically closed. Buhler, Gupta and
Harris, [5], Section 3, also showed that

sn(R) = 2n− 3 = 2k+1 − 1

when n = 2k + 1. Now it is straightforward to see that sn(F ) ≥ n− 1 if n is even
and sn(F ) ≥ n if n is odd. We show that sn(F ) = n − 1 if and only if there is an
(n− 1)–dimensional subspace of alternating bilinear forms defined on V × V with
the property that each non–zero form in the subspace has rank n. We are then able
to use properties of the quaternions and octonions to deduce that

s4(F ) = 3, s8(F ) = 7

for any real field F . Since it is trivial to see that sn(F ) ≤ sn+1(F ), the theorem of
[5] previously cited implies that

sn(R) ≥ n,

except possibly when n is a power of 2. A famous result of Adams, [1], implies that
we indeed have

sn(R) ≥ n,

for all n, except when n = 4 or n = 8. We feel that the calculation of sn(R) when
n is a power of 2 is a problem worth investigating.

We also introduce the concept of a subspace of alternating bilinear forms realizing
the value of sn(F ). Such a subspace has dimension sn(F ) and vanishes on no 2–
dimensional subspace of V . When F is a finite field and n is odd, we characterize
the subspaces realizing the value of sn(F ) as those n–dimensional subspaces of
forms in which each non–zero element has rank n− 1.

Throughout this paper, we adopt the following notation. Mn(F ) denotes the
algebra of n× n matrices over F , An(F ) denotes the subspace of skew–symmetric
matrices in Mn(F ), and char(F ) denotes the characteristic of F . When char(F ) =
2, we take An(F ) to consist of those symmetric matrices whose diagonal entries are
all 0. We will often identify An(F ) with the vector space Alt(V ) consisting of all
alternating bilinear forms defined on V ×V . We say that a subspace of Mn(F ) is a
k–subspace if all its non–zero elements have rank k. We let V × denote the subset
of non–zero elements of V and adopt similar notation for the non–zero elements of
subspaces of Alt(V ).

2. Subspaces of V ∧ V containing no decomposable elements

We assume as before that V is a vector space of dimension n over F . Let V ∧ V
denote the exterior square of V . We say that an element z of V ∧V is decomposable
if we have z = x ∧ y for suitable x and y in V .
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Let f be an element of Alt(V ) and let {v1, . . . , vn} be a basis of V . We may
define a linear form f∗ on V ∧ V by setting

f∗(vi ∧ vj) = f(vi, vj)

and extending to all of V ∧ V by linearity. We note then that

f∗(x ∧ y) = f(x, y)

for any x and y.
Let k = sn(F ) and let f1, . . . , fk be k elements of Alt(V ) with the property that

there is no 2–dimensional subspace of V on which all the fi vanish. We define a
linear transformation

ω : V ∧ V → F k

by
ω(z) = (f∗1 (z), . . . , f∗k (z))

for all z ∈ V ∧ V .

Theorem 2. With the notation previously introduced, ω is surjective and the kernel
of ω is a subspace of codimension sn(F ) in V ∧ V which contains no non–zero
decomposable elements. Moreover, any subspace of V ∧ V containing no non–zero
decomposable elements has codimension at least sn(F ).

Proof. We first show that ω is surjective. Let ei be the standard basis vector of
F k whose single non–zero component is 1 occurring in the i–th position. We show
that ei is in the image of ω. Now as sn(F ) = k, there is a 2–dimensional subspace
Ui, say, of V that is isotropic for the k − 1 forms f1, . . . , fi−1, fi+1, . . . , fk but is
not isotropic for fi. Let xi, yi be basis vectors for Ui with fi(xi, yi) = 1. Then we
have

ω(xi ∧ yi) = ei,

as required.
We next show that the kernel of ω contains no non–zero decomposable element.

For suppose that
ω(x ∧ y) = 0.

Then we have
f1(x, y) = . . . = fk(x, y) = 0.

Since the fi do not simultaneously vanish on any 2–dimensional subspace of V , x
and y must be linearly dependent and hence x ∧ y = 0.

Finally, let U be a subspace of V ∧ V that contains no non-zero decomposable
elements and let t be the codimension of U in V ∧ V . Let {u1, . . . , ut} be a basis
of any complementary subspace of U in V ∧ V . For all x and y in V , we can write

x ∧ y + U =
t∑

i=1

gi(x, y)ui + U,

where gi(x, y) ∈ F . We may easily verify that each gi is in Alt(V ). Since U contains
no non–zero decomposable elements, we can not have

gi(x, y) = 0

for all i when x and y are linearly independent. Thus we have a subset of t alter-
nating bilinear forms that do not vanish on any 2–dimensional subspace of V . It
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follows that d(F, n, t) = 1, and since d(F, n, k−1) = 2, we must have t ≥ k = sn(F ),
as required. �

We would like next to show how to construct some nilpotent groups of class 2
using V ∧ V . We shall assume that char(F ) 6= 2 in the ensuing discussion. Let
Gn(F ) denote the set of all ordered pairs (u, x), where u ∈ V and x ∈ V ∧ V . We
define a multiplication on such pairs by setting

(u, x)(v, y) = (u + v, x + y + x ∧ y).

It is straightforward to check that the multiplication is associative, (0, 0) is an
identity element, and

(u, x)−1 = (−u,−x).

Thus Gn(F ) is a group under the given multiplication. We may easily check that
(0, V ∧ V ) is the centre Z(Gn(F )) of Gn(F ).

Let g and h be elements of Gn(F ) with

g = (u, x), h = (v, y)

and let [g, h] denote the commutator g−1h−1gh. A simple calculation reveals that

[g, h] = (0, 2u ∧ v).

Thus commutators in the group correspond to decomposable elements of V ∧ V .
Now it is a routine matter to check that the commutator subgroup Gn(F )′, which
is generated by the commutators, coincides with Z(Gn(F )). We see in particular
that Gn(F ) is nilpotent of class 2.

Let U be a subspace of V ∧V which contains no non–zero decomposable elements
and has codimension sn(F ). Then (0, U) is a subgroup of Gn(F )′ that contains
no non–identity commutators and is in some sense as large as possible with this
property. We can quantify this statement more exactly if we restrict attention to
the prime field Fp, where p is an odd prime.

Let Gn(p) denote the finite group Gn(Fp). We have Gn(p) = pn(n+1)/2 and

|Z(Gn(p))| = |Gn(p)′| = pn(n−1)/2.

Gn(p) is the unique (Schur) covering group of exponent p of an elementary abelian
p–group of order pn. If we refer ahead to Corollary 8 we find that

sn(Fp) = n,

and thus we have the following result.

Theorem 3. Let Gn(p) denote the covering group of exponent p of an elementary
abelian group of order pn, where n ≥ 3. Then Gn(p)′ = Z(Gn(p)) and |Gn(p)′| =
pn(n−1)/2. There is a subgroup of order pn(n−3)/2 in Gn(p)′ which contains no non–
identity commutators. No subgroup of Gn(p)′ with this property has larger order.

The group Gn(F ) appears in [4], Exercise 16, p.151, where the reader is required
to prove that, for n ≥ 4, there are elements in the commutator subgroup which
are not commutators. As far as we know, however, a note of the existence of large
subgroups of non–commutators has not appeared in the research literature before
now. We remark that covering groups of exponent p2 of an elementary abelian
p–group also exist and they have the same property as that described in Theorem
3. The same is true for p = 2, where all the covering groups have exponent 4.
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We conclude this section by considering an application of the theory we have
developed to the study of subspaces of An(F ). It is well known that there is a
linear isomorphism between V ∧ V and Alt(V ∗), where V ∗ is the dual space of V .
The isomorphism is defined in the following way. Let {v1, . . . , vn} be a basis of V
and let

z =
∑

1≤i<j≤n

aijvi ∧ vj

be any element of V ∧ V . Define

εz : V ∗ × V ∗ −→ K

by

εz(θ, φ) =
∑

aij (θ(vi)φ(vj)− θ(vj)φ(vi)) .

for all θ and φ in V ∗. It is straightforward to verify that εz is in Alt(V ∗) and the
mapping z → εz is an isomorphism between V ∧ V and Alt(V ∗). The rank of εz is
the dimension of the subspace of V associated with z. (We recall that the subspace
Vz associated to z is the smallest subspace U of V such that z ∈ U ∧ U .) Thus εz

has rank 2 precisely when z is non–zero and decomposable. More informally, the
isomorphism above associates with z the n× n skew–symmetric matrix A = (aij),
where aji = −aij for j > i, and aii = 0 for all i.

Our discussion concerning the isomorphism between V ∧ V and Alt(V ∗) implies
that Theorem 2 is equivalent to the following statement about subspaces of An(F ).

Theorem 4. There is a subspace of An(F ) that has dimension n(n− 1)/2− sn(F )
and contains no elements of rank 2. Any subspace of An(F ) that contains no
elements of rank 2 has dimension at most n(n− 1)/2− sn(F ).

We recall that the rank of a skew–symmetric matrix is even. Thus a non–zero
matrix in the subspace described in Theorem 4 has rank equal to one of the integers

4, 6, . . . , 2[n/2].

We now consider a simple application of Theorem 4, where we use the results of
[5] to determine s5(F ) in some special cases. We recall here that a k–subspace of
Mn(F ) is a subspace all of whose non–zero elements have rank k.

Corollary 1. Let F be either an algebraically closed field with char(F ) 6= 2 or the
field of real numbers. Then there is a 4–subspace of A5(F ) of dimension 3, and this
is the largest dimension of such a 4–subspace of A5(F ).

We would like to make some further comments about Corollary 1. Atkinson
proved in [3], Theorem A, that when F is algebraically closed, the largest dimen-
sion of a 4–subspace of M5(F ) is 3, so that part of Corollary 1 is anticipated by
Atkinson’s theorem. On the other hand, it is straightforward to find a 4–subspace
of M5(R) of dimension 4, and this is the largest dimension of such a subspace, as
implied by a theorem of Meshulam, [9], Theorem 2.

Following earlier work on k–subspaces, we say that two subspaces M and N of
Mn(F ) are equivalent if there exist invertible matrices A and B in Mn(F ) with

AMB = N.

We make a similar definition for subspaces of An(F ).
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Definition 2. Let M and N be subspaces of An(F ). We say that M and N are
equivalent (as subspaces of An(F )) if there is an invertible matrix A in Mn(F ) with

AMAT = N,

where AT denotes the transpose of A.

Equivalent subspaces lie in the same orbit under the natural action of the gen-
eral linear group GLn(F ) on subspaces of skew–symmetric matrices. The following
result shows that, for an algebraically closed field F with char(F ) 6= 2, the equiva-
lence of subspaces of An(F ) under the original definition implies equivalence in the
sense of Definition 2.

Lemma 1. Suppose that F is an algebraically closed field with char(F ) 6= 2. Let
M and N be subspaces of An(F ). Suppose that there are invertible matrices A
and B in Mn(F ) with AMB = N . Then there exists an invertible matrix D with
DMDT = N .

Proof. Let {X1, . . . , Xm} be a basis of M . Then the subset {Y1, . . . , Ym} of N ,
where

Yi = AXiB

for 1 ≤ i ≤ m, is a basis of N . Taking transposes, we obtain

BT XiA
T = Yi = AXiB.

Thus
CXi = XiC

T , 1 ≤ i ≤ m,

where C = A−1BT . It follows easily that for any polynomial f in F [x],

f(C)Xi = Xif(C)T

for all i.
Now as F is algebraically closed and char(F ) 6= 2, there is a polynomial p in

F [x] with
p(C)2 = C.

See, for example, [7], Theorem 68. We set D = Ap(C) and consider DXiD
T . We

calculate that

DXiD
T = Ap(C)Xip(C)T AT

= AXi(p(C)2)T AT

= AXiC
T AT

= AXiB = Yi.

It follows that
DMDT = N,

as required. �

We note that the same proof holds if we consider subspaces of symmetric matri-
ces.

Corollary 2. Let F be an algebraically closed field with char(F ) 6= 2. Let M and
N be 4–subspaces of A5(F ), each of dimension 3. Then M and N are equivalent
in the sense of Definition 2.
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Proof. By a theorem of Atkinson, [3], Theorem A, there exist invertible matrices
A and B in M5(F ) with AMB = N . The result follows from Lemma 1. �

3. On the calculation of sn(F ) and properties of related subspaces

We begin by setting up some general machinery relating to bilinear forms.

Definition 3. Let M be a subspace of Alt(V ) and u an element of V ×. We set

Mu = {f ∈ M : u ∈ rad f}
and

V M
u = {v ∈ V : f(u, v) = 0 for all f ∈ M}.

It is straightforward to see that Mu, V M
u are subspaces of M , V , respectively.

Moreover, since for any u ∈ V × and f ∈ M , f(u, u) = 0, it follows that u ∈ V M
u

and hence dim V M
u ≥ 1. An important fact for the subsequent development is that

dim V M
u = 1 precisely when M does not vanish on any 2–dimensional subspace

containing u. We note also that Mu = 0 for all u ∈ V × if and only each element of
M× has maximal rank n (and is thus non–degenerate).

We can now reinterpret the previous definition of sn(F ) by making the following
observation. A finite set α of elements of Alt(V ) vanishes on a subspace of V pre-
cisely when all the elements of the subspace spanned by α vanish on this subspace.
Hence

sn(F ) = min dim N,

where N runs over those subspaces N of Alt(V ) that satisfy dim V N
u = 1 for all

u ∈ V ×.
To save time in enunciating our various results, we make the following definition.

Definition 4. We say that a subspace M of Alt(V ) realizes the value of sn(F ) if
dim M = sn(F ) and dim V M

u = 1 for all u ∈ V ×.

The point then to notice is that the subspaces which realize the value of sn(F )
are the minimal subspaces of Alt(V ) which vanish on no 2–dimensional subspace
of V . Our purpose in this section is to calculate sn(F ) for various fields F and
to investigate whether subspaces realizing the value of sn(F ) have distinguishing
properties.

Our next theorem is a useful result linking the dimensions of Mu and V M
u .

Theorem 5. Given a subspace M of Alt(V ) and an element u of V ×, we have

dim M − dim Mu = dim V − dim V M
u .

Proof. Fixing u ∈ V ×, we define a bilinear pairing ε : M × V → F by

ε(f, v) = f(u, v)

for f ∈ M and v ∈ V . Following the notation of [2], the left kernel of the pairing is
Mu and the right kernel is V M

u . The result follows from [2], Theorem 1.11. �

The following lemma is an immediate consequence of this theorem.

Lemma 2. Let M be a subspace of Alt(V ) that realizes the value of sn(F ). Then

dim Mu = sn(F )− (n− 1)

for all u ∈ V ×.
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Corollary 3. We have sn(F ) ≥ n− 1 if n is even and sn(F ) ≥ n if n is odd.

Proof. Let M be a subspace of Alt(V ) that realizes the value of sn(F ). Then the
previous lemma yields that

0 ≤ dim Mu = sn(F )− (n− 1)

for all u ∈ V ×. This clearly implies that sn(F ) ≥ n − 1. Suppose now that n is
odd. We can improve the estimate for sn(F ) in the following way. Each element in
M is degenerate when n is odd and hence there is some u ∈ V × with dim Mu ≥ 1.
The inequality above becomes

1 ≤ dim Mu = sn(F )− (n− 1)

and the fact that sn(F ) ≥ n is immediate. �

We note that the inequalities for sn(F ) are implied by [6], Satz 1.

Corollary 4. We have sn(F ) = n−1 if and only if there is an (n−1)–dimensional
subspace of Alt(V ) all of whose non–zero elements have rank n.

Proof. Suppose that sn(F ) = n−1 and let M be a subspace of Alt(V ) that realizes
the value of sn(F ). Then Lemma 2 yields that

dim Mu = sn(F )− (n− 1) = 0

for all u ∈ V ×. This implies that each element of M× has rank n, and since
dim M = sn(F ) = n− 1, M will serve as the required subspace.

Conversely, let N be an (n−1)–dimensional subspace of Alt(V ) with the property
that each element of N× has rank n. Then we have Nu = 0 for each u ∈ V × and
hence we obtain

dim V N
u = dim V − dim N + dim Nu = 1.

It follows that sn(F ) ≤ n − 1 and, since we already know that sn(F ) ≥ n − 1, we
deduce that sn(F ) = n− 1.

�

We may reinterpret Corollary 4 by saying that sn(F ) = n − 1 if and only if
there is an n–subspace of An(F ) of dimension n − 1. Such subspaces seem to be
uncommon, and they do not exist when F is finite. This fact seems to be well
known, but we include a proof here following the ideas of Heineken, [6], Satz 1.
Note that there is no need to exclude the characteristic 2 case, as Heineken appears
to do in his proof.

Lemma 3. Let n = 2m be an even positive integer and let F be a finite field.
Suppose that M is an n–subspace of An(F ) of dimension r. Then we have r ≤ m.

Proof. Let S be any element of An(F ) and let sij be the (i, j)–entry of S, where
i < j. The theory of the Pfaffian, [8], p.588, shows that there is a homogeneous
polynomial Pf of degree m in m(2m − 1) variables, whose coefficients lie in the
prime field, such that

det S = Pf(s12, . . . , s2m−1,2m)2.

Now let {X1, . . . , Xr} be a basis for M . We may then express any element S of M
in the form

S = λ1X1 + · · ·+ λrXr,
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where the λi ∈ F . The properties of the Pfaffian previously outlined imply that
there is a homogeneous polynomial Q in F [z1, . . . , zr] of degree m in r variables
such that

detS = Q(λ1, . . . , λr)2.
By the Chevalley–Warning theorem, Q has a non–trivial zero in F if r > m. See,
for example, [10], Chapter 1, Corollary 1. Since all non–zero elements of M have
non–zero determinant, we deduce that r ≤ m. �

We remark that it is easy to construct examples of n–subspaces of An(F ) of
dimension n/2 when n is even and F is finite.

Corollary 5. Let F be a finite field. Then we have sn(F ) ≥ n for n ≥ 3.

We continue with the theme that n–subspaces of An(F ) of dimension n− 1 are
uncommon by showing that when F = R, they can only exist when n is one of 2,
4, or 8.

Theorem 6. Suppose that n ≥ 3. Then sn(R) ≥ n except when n = 4 or n = 8.

Proof. We know that sn(F ) ≥ n− 1 for any field F and that sn(F ) = n− 1 if and
only if there is an n–subspace of An(F ) of dimension n− 1. Suppose then that M
is an n–subspace of An(R) of dimension n − 1. Let N be the subspace of Mn(R)
consisting of all elements X + λIn, where X runs over the elements of M and λ
runs over R. Clearly, dim N = n and each non-zero element of N is invertible,
since a real skew–symmetric matrix has no real non–zero eigenvalues. Thus N is
an n–subspace of Mn(R) of dimension n. By [1], Theorem 1.1, such a subspace
exists if and only if n = ρ(n), where ρ is the Radon–Hurwitz function. Given the
definition of ρ, it is easy to check that ρ(n) = n only when n = 2, 4, or 8. (We will
show that the cases n = 4 and n = 8 are exceptional after this proof.) �

As we remarked in the introduction, the work of [5] implies that better inequal-
ities than sn(R) ≥ n are available, except possibly when n is a power of 2.

We proceed next to show why there are two exceptional cases s4(R) = 3 and
s8(R) = 7, and begin by considering the real octonions O. Let e0 = 1, e1, . . . , e7

denote a standard basis of unit octonions. We say that an octonion is pure if it is
a linear combination of e1, . . . , e7. We have the relations

e2
i = −1, eiej = −ejei

for 1 ≤ i 6= j ≤ 7. Moreover, if e is any of the ei different from e0,

eej = ±ek

for 0 ≤ j ≤ 7, where k and the relevant sign are determined by a definite rule.
Since the equality

eej = εek,

where ε = ±1, implies that
eek = −εej ,

we see that in the regular representation of O on itself, e is represented by a skew–
symmetric matrix with a single non–zero entry in each row and column, the non–
zero entry being ±1. It follows that each non–zero pure octonion is also represented
by a skew–symmetric matrix, and this matrix is invertible, since the octonion has
an inverse. Thus the pure octonions provide us with an 8–subspace of A8(R) of
dimension 7. We may likewise use the pure quaternions to construct a 4–subspace
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of A4(R) of dimension 3. Since we may define division algebras of quaternions and
octonions over any subfield F of R, using F–linear combinations of the standard
basis elements, we have proved the following result.

Theorem 7. Let F be a subfield of R. Then

s4(F ) = 3, s8(F ) = 7.

We note in passing that the example given at the end of [5] to show that
d(R, 4, 3) = 1 is incorrect, since the three alternating bilinear forms presented there
have a common isotropic subspace. In the notation of [5], α1 + α2 has rank 2,
whereas it must have rank 4 if the three forms are to have the desired property.

The following data represent our current knowledge of sn(R) for small values of
n.

Theorem 8. We have s4(R) = 3, sn(R) = 7 for 5 ≤ n ≤ 8, and s9(R) = 15.

Proof. We have already proved that s4(R) = 3, and the values of s5(R) and s9(R)
are special cases of a theorem proved in [5]. Since sn(F ) ≤ sn+1(F ) is trivially
true for any field F , the fact that s5(R) = s8(R) implies that s6(R) = s7(R) = 7
also. �

Theorem 8 implies the following unusual property of A8(F ) when F is real.
Analogous results hold for An(F ) when F is a field satisfying sn(F ) = n− 1.

Corollary 6. Let F be a subfield of R. Then there exist subspaces M and N of
A8(F ) with dim M = 21, dim N = 7 and A8(F ) = M⊕N . M contains no elements
of rank 2, whereas all non–zero elements of N have rank 2. Similarly, there exist
subspaces P and Q of A8(F ) with dim P = 21, dim Q = 7 and A8(F ) = P ⊕Q. P
contains no elements of rank 8, whereas all non–zero elements of Q have rank 8.

Proof. Since we know that s8(F ) = 7, the existence of the subspace M is guaranteed
by Theorem 4. We may take N to be any 2–subspace of dimension 7 (such subspaces
certainly exist). Similarly, we may take P to consist of those matrices in A8(F )
whose top row is a zero row, and Q to be the subspace of A8(F ) obtained from the
regular representation of the octonions over F . �

We next use an observation of [5] to calculate sn(F ) for many fields F whenever
n is odd.

Theorem 9. Suppose that F has a cyclic Galois extension of degree n. Then if n
is odd, sn(F ) = n, and if n is even, sn(F ) = n or n− 1.

Proof. It is shown in [5], p.277, that d(F, n, n) = 1 under the given hypothesis on
F . The result then follows from Corollary 3. �

Theorem 9 is a result of broad applicability, since many important fields satisfy
its hypothesis for all n ≥ 2. We include here a brief proof of a well known result
which shows that Theorem 9 applies to all algebraic number fields.

Lemma 4. Let F be an algebraic number field and let n ≥ 2 be an integer. Then
F has a cyclic Galois extension of degree n.

Proof. Let p be a prime number and let Qp be the field obtained by adjoining
a primitive p–th root of unity to Q. We claim that for all but finitely many p,
F ∩ Qp = Q. To prove this, we note that as F is an extension of Q of finite
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degree, F has only finitely many subfields. If therefore there were infinitely many
primes p for which F ∩Qp 6= Q, there would be different primes r and s for which
Qr ∩ Qs 6= Q. But it is a familiar result of the theory of cyclotomic fields that
Qr ∩Qs = Q if r 6= s. Thus our claim follows.

Now there are infinitely many primes p satisfying p ≡ 1 (mod n). Let p be such
a prime with F ∩Qp = Q. Then the compositum FQp is a cyclic Galois extension
of F of degree p− 1, [8], Chapter 6, Theorem 1.12. It follows that FQp contains a
cyclic Galois extension of F of degree n. �

Corollary 7. Let F be an algebraic number field. Then sn(F ) = n if n is odd and
sn(F ) = n− 1 or n if n is even.

We may obviously ask whether we can have sn(F ) = n− 1 for suitable algebraic
number field F and values of n. Theorem 7 has provided examples for n = 4 and
n = 8 when F is a real algebraic number field. We speculate that the general
problem may be related to properties of skew fields over F .

The following corollary of Theorem 9 is required for the proof of Theorem 3 and
is used in our final investigation of subspaces realizing the value of sn(F ).

Corollary 8. Let F be a finite field. Then for n ≥ 3, sn(F ) = n.

Knowing now that sn(F ) = n for a finite field F , it is of interest to study those
subspaces of Alt(V ) which realize this value. For odd n, we proceed to characterize
these subspaces as precisely the subspaces of dimension n in which each non–zero
element has rank n− 1.

Theorem 10. Let F be a finite field and let n ≥ 3 be an odd integer. Let M be an
n–dimensional subspace of Alt(V ). Then M realizes the value of sn(F ) if and only
if each element of M× has rank n− 1.

Proof. Let |F | = q. Since dim M = dim V , it follows from Theorem 5 that M
realizes the value of sn(F ) if and only if dim Mu = 1 for all u ∈ V ×.

Suppose then that dim Mu = 1 for all u ∈ V ×. Let Ω denote the set of all
ordered pairs (f, u), where f ∈ M× and u ∈ rad f×. We note that if (f, u) ∈ Ω,
then f ∈ M×

u . Thus for fixed u ∈ V ×, there are exactly q − 1 elements (f, u) in Ω
and hence

|Ω| = (q − 1)(qn − 1).
Now since n is odd, dim rad f ≥ 1 for each f ∈ M . Thus, setting dim rad f = n(f),
we have

|Ω| =
∑

f∈M×

(qn(f) − 1) ≥ (q − 1)(qn − 1),

with equality only if n(f) = 1 for all f ∈ M×. Since equality holds in this inequality,
we deduce that n(f) = 1 for all f ∈ M× and hence each element of M× has rank
n− 1.

Conversely, if n(f) = 1 for all f ∈ M×, we also obtain |Ω| = (q − 1)(qn − 1)
and then an identical argument as that above implies that dim Mu = 1 for all
u ∈ M×. �

The proof just given shows that if M is an n–dimensional subspace of Alt(V ) in
which all non–zero elements have rank n− 1, there is a one–to–one correspondence
between the one–dimensional subspaces of M and the one–dimensional subspaces
of V , given by 〈f〉 ↔ rad f for f ∈ M×.
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We use the argument above to show that n is the largest dimension of a subspace
of Alt(V ) in which all non–zero elements have rank n− 1.

Corollary 9. Let F be a finite field and n ≥ 3 be an odd integer. Let M be a
subspace of Alt(V ) with the property that each element of M× has rank n − 1.
Then dim M ≤ n.

Proof. It suffices to show that we cannot have dim M = n+1. Now if dim M = n+1,
the equality

dim Mu = dim M − dim V + dim V M
u ,

implies that dim Mu ≥ 2 for all u ∈ V ×, and since dim rad f = 1 for each f ∈ M×,
the counting argument used in the proof above yields the inequality

(q − 1)(qn+1 − 1) ≥ (q2 − 1)(qn − 1).

This is a contradiction and hence dim M ≤ n, as claimed. �

We conclude by considering an analogue of Theorem 10 for even n

Theorem 11. Let F be a finite field with |F | = q and let n ≥ 4 be an even integer.
Let M be an n–dimensional subspace of Alt(V ) that realizes the value of sn(F ) and
let S be the number of elements of rank n in M . Then

q(qn − 1)
q + 1

≤ S < qn − 1.

Proof. Our supposition on M implies that dimMu = 1 for all u ∈ V ×. Let Ω
denote the set of all ordered pairs (f, u), where f ∈ M× has rank less than n and
u ∈ rad f×. Then since dim Mu = 1, we have |Ω| = (q − 1)(qn − 1). On the other
hand, if f has rank less than n, dim rad f ≥ 2, since n is even. Thus if R is the
number of elements in M of rank less than n,

R(q2 − 1) ≤ |Ω| = (q − 1)(qn − 1).

This gives a upper bound for R and since R + S = qn − 1, we obtain the lower
bound for S. That S < qn − 1 follows because dim Mu > 0 for all u ∈ V ×. �

The lower bound for S would be precise if we knew that M× contains no elements
of rank less than n− 2. Thus the lower bound is achieved when n = 4,
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