ON THE VANISHING OF SUBSPACES OF ALTERNATING BILINEAR FORMS

ROD GOW AND RACHEL QUINLAN

Abstract

Given a field F and integer $n \geq 3$, we introduce an invariant $s_{n}(F)$ which is defined by examining the vanishing of subspaces of alternating bilinear forms on 2-dimensional subspaces of vector spaces. This invariant arises when we calculate the largest dimension of a subspace of $n \times n$ skewsymmetric matrices over F which contains no elements of rank 2. We show how to calculate $s_{n}(F)$ for various families of field F, including finite fields. We also prove the existence of large subgroups of the commutator subgroup of certain p-groups of class 2 which contain no non-identity commutators.

1. Introduction

Let F be a field and let n and k be integers, with $n \geq 3$ and $k \geq 2$. Let V be a vector space of dimension n over F and let α be a subset of k alternating bilinear forms defined on $V \times V$. Following Buhler, Gupta and Harris, [5], we let $m(\alpha)$ be the maximum of the dimensions of those subspaces of V that are totally isotropic with respect to all the forms in α. We then set

$$
d(F, n, k)=\min m(\alpha)
$$

where α ranges over all subsets of k alternating bilinear forms defined on $V \times V$. The results of [5] show that evaluation of $d(F, n, k)$ is difficult, but the main theorem of that paper may be stated as follows.
Theorem 1. Suppose that F has characteristic different from 2 and $k \geq 2$. Then

$$
d(F, n, k) \leq\left[\frac{2 n+k}{k+2}\right]
$$

where $[x]$ denotes the greatest integer $\leq x$. If F is algebraically closed, equality holds above.

We now introduce a numerical invariant of the field F, based on the definition of $d(F, n, k)$ just given.

Definition 1. Let $n \geq 3$ be an integer. We set $s_{n}(F)$ to be that positive integer r satisfying

$$
\begin{aligned}
d(F, n, r) & =1 \\
d(F, n, r-1) & \geq 2
\end{aligned}
$$

In the next section of this paper, we show how $s_{n}(F)$ is related to the study of certain special subspaces of $V \wedge V$, namely, those that contain no non-zero decomposable elements (in other words, elements of the form $x \wedge y$). The existence
of such subspaces is equivalent to the existence of subgroups of the commutator subgroup of certain nilpotent groups of class 2 that contain no non-identity pure commutators. Furthermore, given the identification of $V \wedge V$ with the space $A_{n}(F)$ of $n \times n$ skew-symmetric matrices over F, we see that subspaces of $V \wedge V$ that contain no non-zero decomposable elements correspond to subspaces of $A_{n}(F)$ that contain no elements of rank 2 .

The final section of this paper is devoted to the evaluation of $s_{n}(F)$ for certain fields F, including finite fields. Theorem 1 implies that, if F has characteristic different from 2 ,

$$
s_{n}(F) \leq 2 n-3
$$

and equality holds in this case if F is algebraically closed. Buhler, Gupta and Harris, [5], Section 3, also showed that

$$
s_{n}(\mathbb{R})=2 n-3=2^{k+1}-1
$$

when $n=2^{k}+1$. Now it is straightforward to see that $s_{n}(F) \geq n-1$ if n is even and $s_{n}(F) \geq n$ if n is odd. We show that $s_{n}(F)=n-1$ if and only if there is an ($n-1$)-dimensional subspace of alternating bilinear forms defined on $V \times V$ with the property that each non-zero form in the subspace has rank n. We are then able to use properties of the quaternions and octonions to deduce that

$$
s_{4}(F)=3, \quad s_{8}(F)=7
$$

for any real field F. Since it is trivial to see that $s_{n}(F) \leq s_{n+1}(F)$, the theorem of [5] previously cited implies that

$$
s_{n}(\mathbb{R}) \geq n
$$

except possibly when n is a power of 2. A famous result of Adams, [1], implies that we indeed have

$$
s_{n}(\mathbb{R}) \geq n
$$

for all n, except when $n=4$ or $n=8$. We feel that the calculation of $s_{n}(\mathbb{R})$ when n is a power of 2 is a problem worth investigating.

We also introduce the concept of a subspace of alternating bilinear forms realizing the value of $s_{n}(F)$. Such a subspace has dimension $s_{n}(F)$ and vanishes on no 2^{-} dimensional subspace of V. When F is a finite field and n is odd, we characterize the subspaces realizing the value of $s_{n}(F)$ as those n-dimensional subspaces of forms in which each non-zero element has rank $n-1$.

Throughout this paper, we adopt the following notation. $M_{n}(F)$ denotes the algebra of $n \times n$ matrices over $F, A_{n}(F)$ denotes the subspace of skew-symmetric matrices in $M_{n}(F)$, and $\operatorname{char}(F)$ denotes the characteristic of F. When $\operatorname{char}(F)=$ 2, we take $A_{n}(F)$ to consist of those symmetric matrices whose diagonal entries are all 0 . We will often identify $A_{n}(F)$ with the vector space Alt (V) consisting of all alternating bilinear forms defined on $V \times V$. We say that a subspace of $M_{n}(F)$ is a k-subspace if all its non-zero elements have rank k. We let V^{\times}denote the subset of non-zero elements of V and adopt similar notation for the non-zero elements of subspaces of Alt (V).

2. Subspaces of $V \wedge V$ CONTAINING No DECOMPOSABLE ELEMENTS

We assume as before that V is a vector space of dimension n over F. Let $V \wedge V$ denote the exterior square of V. We say that an element z of $V \wedge V$ is decomposable if we have $z=x \wedge y$ for suitable x and y in V.

Let f be an element of $\operatorname{Alt}(V)$ and let $\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis of V. We may define a linear form f^{*} on $V \wedge V$ by setting

$$
f^{*}\left(v_{i} \wedge v_{j}\right)=f\left(v_{i}, v_{j}\right)
$$

and extending to all of $V \wedge V$ by linearity. We note then that

$$
f^{*}(x \wedge y)=f(x, y)
$$

for any x and y.
Let $k=s_{n}(F)$ and let f_{1}, \ldots, f_{k} be k elements of $\operatorname{Alt}(V)$ with the property that there is no 2 -dimensional subspace of V on which all the f_{i} vanish. We define a linear transformation

$$
\omega: V \wedge V \rightarrow F^{k}
$$

by

$$
\omega(z)=\left(f_{1}^{*}(z), \ldots, f_{k}^{*}(z)\right)
$$

for all $z \in V \wedge V$.
Theorem 2. With the notation previously introduced, ω is surjective and the kernel of ω is a subspace of codimension $s_{n}(F)$ in $V \wedge V$ which contains no non-zero decomposable elements. Moreover, any subspace of $V \wedge V$ containing no non-zero decomposable elements has codimension at least $s_{n}(F)$.

Proof. We first show that ω is surjective. Let e_{i} be the standard basis vector of F^{k} whose single non-zero component is 1 occurring in the i-th position. We show that e_{i} is in the image of ω. Now as $s_{n}(F)=k$, there is a 2-dimensional subspace U_{i}, say, of V that is isotropic for the $k-1$ forms $f_{1}, \ldots, f_{i-1}, f_{i+1}, \ldots, f_{k}$ but is not isotropic for f_{i}. Let x_{i}, y_{i} be basis vectors for U_{i} with $f_{i}\left(x_{i}, y_{i}\right)=1$. Then we have

$$
\omega\left(x_{i} \wedge y_{i}\right)=e_{i}
$$

as required.
We next show that the kernel of ω contains no non-zero decomposable element. For suppose that

$$
\omega(x \wedge y)=0
$$

Then we have

$$
f_{1}(x, y)=\ldots=f_{k}(x, y)=0
$$

Since the f_{i} do not simultaneously vanish on any 2 -dimensional subspace of V, x and y must be linearly dependent and hence $x \wedge y=0$.

Finally, let U be a subspace of $V \wedge V$ that contains no non-zero decomposable elements and let t be the codimension of U in $V \wedge V$. Let $\left\{u_{1}, \ldots, u_{t}\right\}$ be a basis of any complementary subspace of U in $V \wedge V$. For all x and y in V, we can write

$$
x \wedge y+U=\sum_{i=1}^{t} g_{i}(x, y) u_{i}+U
$$

where $g_{i}(x, y) \in F$. We may easily verify that each g_{i} is in Alt (V). Since U contains no non-zero decomposable elements, we can not have

$$
g_{i}(x, y)=0
$$

for all i when x and y are linearly independent. Thus we have a subset of t alternating bilinear forms that do not vanish on any 2-dimensional subspace of V. It
follows that $d(F, n, t)=1$, and since $d(F, n, k-1)=2$, we must have $t \geq k=s_{n}(F)$, as required.

We would like next to show how to construct some nilpotent groups of class 2 using $V \wedge V$. We shall assume that $\operatorname{char}(F) \neq 2$ in the ensuing discussion. Let $G_{n}(F)$ denote the set of all ordered pairs (u, x), where $u \in V$ and $x \in V \wedge V$. We define a multiplication on such pairs by setting

$$
(u, x)(v, y)=(u+v, x+y+x \wedge y)
$$

It is straightforward to check that the multiplication is associative, $(0,0)$ is an identity element, and

$$
(u, x)^{-1}=(-u,-x)
$$

Thus $G_{n}(F)$ is a group under the given multiplication. We may easily check that $(0, V \wedge V)$ is the centre $Z\left(G_{n}(F)\right)$ of $G_{n}(F)$.

Let g and h be elements of $G_{n}(F)$ with

$$
g=(u, x), \quad h=(v, y)
$$

and let $[g, h]$ denote the commutator $g^{-1} h^{-1} g h$. A simple calculation reveals that

$$
[g, h]=(0,2 u \wedge v)
$$

Thus commutators in the group correspond to decomposable elements of $V \wedge V$. Now it is a routine matter to check that the commutator subgroup $G_{n}(F)^{\prime}$, which is generated by the commutators, coincides with $Z\left(G_{n}(F)\right)$. We see in particular that $G_{n}(F)$ is nilpotent of class 2.

Let U be a subspace of $V \wedge V$ which contains no non-zero decomposable elements and has codimension $s_{n}(F)$. Then $(0, U)$ is a subgroup of $G_{n}(F)^{\prime}$ that contains no non-identity commutators and is in some sense as large as possible with this property. We can quantify this statement more exactly if we restrict attention to the prime field \mathbb{F}_{p}, where p is an odd prime.

Let $G_{n}(p)$ denote the finite group $G_{n}\left(\mathbb{F}_{p}\right)$. We have $G_{n}(p)=p^{n(n+1) / 2}$ and

$$
\left|Z\left(G_{n}(p)\right)\right|=\left|G_{n}(p)^{\prime}\right|=p^{n(n-1) / 2}
$$

$G_{n}(p)$ is the unique (Schur) covering group of exponent p of an elementary abelian p-group of order p^{n}. If we refer ahead to Corollary 8 we find that

$$
s_{n}\left(\mathbb{F}_{p}\right)=n,
$$

and thus we have the following result.
Theorem 3. Let $G_{n}(p)$ denote the covering group of exponent p of an elementary abelian group of order p^{n}, where $n \geq 3$. Then $G_{n}(p)^{\prime}=Z\left(G_{n}(p)\right)$ and $\left|G_{n}(p)^{\prime}\right|=$ $p^{n(n-1) / 2}$. There is a subgroup of order $p^{n(n-3) / 2}$ in $G_{n}(p)^{\prime}$ which contains no nonidentity commutators. No subgroup of $G_{n}(p)^{\prime}$ with this property has larger order.

The group $G_{n}(F)$ appears in [4], Exercise 16, p.151, where the reader is required to prove that, for $n \geq 4$, there are elements in the commutator subgroup which are not commutators. As far as we know, however, a note of the existence of large subgroups of non-commutators has not appeared in the research literature before now. We remark that covering groups of exponent p^{2} of an elementary abelian p-group also exist and they have the same property as that described in Theorem 3 . The same is true for $p=2$, where all the covering groups have exponent 4 .

We conclude this section by considering an application of the theory we have developed to the study of subspaces of $A_{n}(F)$. It is well known that there is a linear isomorphism between $V \wedge V$ and $\operatorname{Alt}\left(V^{*}\right)$, where V^{*} is the dual space of V. The isomorphism is defined in the following way. Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis of V and let

$$
z=\sum_{1 \leq i<j \leq n} a_{i j} v_{i} \wedge v_{j}
$$

be any element of $V \wedge V$. Define

$$
\varepsilon_{z}: V^{*} \times V^{*} \longrightarrow K
$$

by

$$
\varepsilon_{z}(\theta, \phi)=\sum a_{i j}\left(\theta\left(v_{i}\right) \phi\left(v_{j}\right)-\theta\left(v_{j}\right) \phi\left(v_{i}\right)\right)
$$

for all θ and ϕ in V^{*}. It is straightforward to verify that ε_{z} is in $\operatorname{Alt}\left(V^{*}\right)$ and the mapping $z \rightarrow \varepsilon_{z}$ is an isomorphism between $V \wedge V$ and $\operatorname{Alt}\left(V^{*}\right)$. The rank of ε_{z} is the dimension of the subspace of V associated with z. (We recall that the subspace V_{z} associated to z is the smallest subspace U of V such that $z \in U \wedge U$.) Thus ε_{z} has rank 2 precisely when z is non-zero and decomposable. More informally, the isomorphism above associates with z the $n \times n$ skew-symmetric matrix $A=\left(a_{i j}\right)$, where $a_{j i}=-a_{i j}$ for $j>i$, and $a_{i i}=0$ for all i.

Our discussion concerning the isomorphism between $V \wedge V$ and $\operatorname{Alt}\left(V^{*}\right)$ implies that Theorem 2 is equivalent to the following statement about subspaces of $A_{n}(F)$.
Theorem 4. There is a subspace of $A_{n}(F)$ that has dimension $n(n-1) / 2-s_{n}(F)$ and contains no elements of rank 2. Any subspace of $A_{n}(F)$ that contains no elements of rank 2 has dimension at most $n(n-1) / 2-s_{n}(F)$.

We recall that the rank of a skew-symmetric matrix is even. Thus a non-zero matrix in the subspace described in Theorem 4 has rank equal to one of the integers

$$
4,6, \ldots, 2[n / 2]
$$

We now consider a simple application of Theorem 4, where we use the results of [5] to determine $s_{5}(F)$ in some special cases. We recall here that a k-subspace of $M_{n}(F)$ is a subspace all of whose non-zero elements have rank k.

Corollary 1. Let F be either an algebraically closed field with $\operatorname{char}(F) \neq 2$ or the field of real numbers. Then there is a 4-subspace of $A_{5}(F)$ of dimension 3, and this is the largest dimension of such a 4-subspace of $A_{5}(F)$.

We would like to make some further comments about Corollary 1. Atkinson proved in [3], Theorem A, that when F is algebraically closed, the largest dimension of a 4 -subspace of $M_{5}(F)$ is 3 , so that part of Corollary 1 is anticipated by Atkinson's theorem. On the other hand, it is straightforward to find a 4-subspace of $M_{5}(\mathbb{R})$ of dimension 4, and this is the largest dimension of such a subspace, as implied by a theorem of Meshulam, [9], Theorem 2.

Following earlier work on k-subspaces, we say that two subspaces M and N of $M_{n}(F)$ are equivalent if there exist invertible matrices A and B in $M_{n}(F)$ with

$$
A M B=N
$$

We make a similar definition for subspaces of $A_{n}(F)$.

Definition 2. Let M and N be subspaces of $A_{n}(F)$. We say that M and N are equivalent (as subspaces of $A_{n}(F)$) if there is an invertible matrix A in $M_{n}(F)$ with

$$
A M A^{T}=N
$$

where A^{T} denotes the transpose of A.
Equivalent subspaces lie in the same orbit under the natural action of the general linear group $G L_{n}(F)$ on subspaces of skew-symmetric matrices. The following result shows that, for an algebraically closed field F with $\operatorname{char}(F) \neq 2$, the equivalence of subspaces of $A_{n}(F)$ under the original definition implies equivalence in the sense of Definition 2.

Lemma 1. Suppose that F is an algebraically closed field with $\operatorname{char}(F) \neq 2$. Let M and N be subspaces of $A_{n}(F)$. Suppose that there are invertible matrices A and B in $M_{n}(F)$ with $A M B=N$. Then there exists an invertible matrix D with $D M D^{T}=N$.

Proof. Let $\left\{X_{1}, \ldots, X_{m}\right\}$ be a basis of M. Then the subset $\left\{Y_{1}, \ldots, Y_{m}\right\}$ of N, where

$$
Y_{i}=A X_{i} B
$$

for $1 \leq i \leq m$, is a basis of N. Taking transposes, we obtain

$$
B^{T} X_{i} A^{T}=Y_{i}=A X_{i} B
$$

Thus

$$
C X_{i}=X_{i} C^{T}, \quad 1 \leq i \leq m
$$

where $C=A^{-1} B^{T}$. It follows easily that for any polynomial f in $F[x]$,

$$
f(C) X_{i}=X_{i} f(C)^{T}
$$

for all i.
Now as F is algebraically closed and $\operatorname{char}(F) \neq 2$, there is a polynomial p in $F[x]$ with

$$
p(C)^{2}=C
$$

See, for example, [7], Theorem 68. We set $D=A p(C)$ and consider $D X_{i} D^{T}$. We calculate that

$$
\begin{aligned}
D X_{i} D^{T} & =A p(C) X_{i} p(C)^{T} A^{T} \\
& =A X_{i}\left(p(C)^{2}\right)^{T} A^{T} \\
& =A X_{i} C^{T} A^{T} \\
& =A X_{i} B=Y_{i} .
\end{aligned}
$$

It follows that

$$
D M D^{T}=N
$$

as required.
We note that the same proof holds if we consider subspaces of symmetric matrices.

Corollary 2. Let F be an algebraically closed field with $\operatorname{char}(F) \neq 2$. Let M and N be 4-subspaces of $A_{5}(F)$, each of dimension 3. Then M and N are equivalent in the sense of Definition 2.

Proof. By a theorem of Atkinson, [3], Theorem A, there exist invertible matrices A and B in $M_{5}(F)$ with $A M B=N$. The result follows from Lemma 1.
3. On the calculation of $s_{n}(F)$ and properties of related subspaces

We begin by setting up some general machinery relating to bilinear forms.
Definition 3. Let M be a subspace of $\operatorname{Alt}(V)$ and u an element of V^{\times}. We set

$$
M_{u}=\{f \in M: u \in \operatorname{rad} f\}
$$

and

$$
V_{u}^{M}=\{v \in V: f(u, v)=0 \text { for all } f \in M\}
$$

It is straightforward to see that M_{u}, V_{u}^{M} are subspaces of M, V, respectively. Moreover, since for any $u \in V^{\times}$and $f \in M, f(u, u)=0$, it follows that $u \in V_{u}^{M}$ and hence $\operatorname{dim} V_{u}^{M} \geq 1$. An important fact for the subsequent development is that $\operatorname{dim} V_{u}^{M}=1$ precisely when M does not vanish on any 2 -dimensional subspace containing u. We note also that $M_{u}=0$ for all $u \in V^{\times}$if and only each element of M^{\times}has maximal rank n (and is thus non-degenerate).

We can now reinterpret the previous definition of $s_{n}(F)$ by making the following observation. A finite set α of elements of $\operatorname{Alt}(V)$ vanishes on a subspace of V precisely when all the elements of the subspace spanned by α vanish on this subspace. Hence

$$
s_{n}(F)=\min \operatorname{dim} N
$$

where N runs over those subspaces N of $\operatorname{Alt}(V)$ that satisfy $\operatorname{dim} V_{u}^{N}=1$ for all $u \in V^{\times}$.

To save time in enunciating our various results, we make the following definition.
Definition 4. We say that a subspace M of $\operatorname{Alt}(V)$ realizes the value of $s_{n}(F)$ if $\operatorname{dim} M=s_{n}(F)$ and $\operatorname{dim} V_{u}^{M}=1$ for all $u \in V^{\times}$.

The point then to notice is that the subspaces which realize the value of $s_{n}(F)$ are the minimal subspaces of $\operatorname{Alt}(V)$ which vanish on no 2-dimensional subspace of V. Our purpose in this section is to calculate $s_{n}(F)$ for various fields F and to investigate whether subspaces realizing the value of $s_{n}(F)$ have distinguishing properties.

Our next theorem is a useful result linking the dimensions of M_{u} and V_{u}^{M}.
Theorem 5. Given a subspace M of $\operatorname{Alt}(V)$ and an element u of V^{\times}, we have $\operatorname{dim} M-\operatorname{dim} M_{u}=\operatorname{dim} V-\operatorname{dim} V_{u}^{M}$.
Proof. Fixing $u \in V^{\times}$, we define a bilinear pairing $\varepsilon: M \times V \rightarrow F$ by

$$
\varepsilon(f, v)=f(u, v)
$$

for $f \in M$ and $v \in V$. Following the notation of [2], the left kernel of the pairing is M_{u} and the right kernel is V_{u}^{M}. The result follows from [2], Theorem 1.11.

The following lemma is an immediate consequence of this theorem.
Lemma 2. Let M be a subspace of $\operatorname{Alt}(V)$ that realizes the value of $s_{n}(F)$. Then

$$
\operatorname{dim} M_{u}=s_{n}(F)-(n-1)
$$

for all $u \in V^{\times}$.

Corollary 3. We have $s_{n}(F) \geq n-1$ if n is even and $s_{n}(F) \geq n$ if n is odd.
Proof. Let M be a subspace of $\operatorname{Alt}(V)$ that realizes the value of $s_{n}(F)$. Then the previous lemma yields that

$$
0 \leq \operatorname{dim} M_{u}=s_{n}(F)-(n-1)
$$

for all $u \in V^{\times}$. This clearly implies that $s_{n}(F) \geq n-1$. Suppose now that n is odd. We can improve the estimate for $s_{n}(F)$ in the following way. Each element in M is degenerate when n is odd and hence there is some $u \in V^{\times}$with $\operatorname{dim} M_{u} \geq 1$. The inequality above becomes

$$
1 \leq \operatorname{dim} M_{u}=s_{n}(F)-(n-1)
$$

and the fact that $s_{n}(F) \geq n$ is immediate.
We note that the inequalities for $s_{n}(F)$ are implied by [6], Satz 1 .
Corollary 4. We have $s_{n}(F)=n-1$ if and only if there is an ($n-1$)-dimensional subspace of $\operatorname{Alt}(V)$ all of whose non-zero elements have rank n.

Proof. Suppose that $s_{n}(F)=n-1$ and let M be a subspace of $\operatorname{Alt}(V)$ that realizes the value of $s_{n}(F)$. Then Lemma 2 yields that

$$
\operatorname{dim} M_{u}=s_{n}(F)-(n-1)=0
$$

for all $u \in V^{\times}$. This implies that each element of M^{\times}has rank n, and since $\operatorname{dim} M=s_{n}(F)=n-1, M$ will serve as the required subspace.

Conversely, let N be an ($n-1$)-dimensional subspace of $\operatorname{Alt}(V)$ with the property that each element of N^{\times}has rank n. Then we have $N_{u}=0$ for each $u \in V^{\times}$and hence we obtain

$$
\operatorname{dim} V_{u}^{N}=\operatorname{dim} V-\operatorname{dim} N+\operatorname{dim} N_{u}=1
$$

It follows that $s_{n}(F) \leq n-1$ and, since we already know that $s_{n}(F) \geq n-1$, we deduce that $s_{n}(F)=n-1$.

We may reinterpret Corollary 4 by saying that $s_{n}(F)=n-1$ if and only if there is an n-subspace of $A_{n}(F)$ of dimension $n-1$. Such subspaces seem to be uncommon, and they do not exist when F is finite. This fact seems to be well known, but we include a proof here following the ideas of Heineken, [6], Satz 1. Note that there is no need to exclude the characteristic 2 case, as Heineken appears to do in his proof.

Lemma 3. Let $n=2 m$ be an even positive integer and let F be a finite field. Suppose that M is an n-subspace of $A_{n}(F)$ of dimension r. Then we have $r \leq m$.
Proof. Let S be any element of $A_{n}(F)$ and let $s_{i j}$ be the (i, j)-entry of S, where $i<j$. The theory of the Pfaffian, [8], p.588, shows that there is a homogeneous polynomial $P f$ of degree m in $m(2 m-1)$ variables, whose coefficients lie in the prime field, such that

$$
\operatorname{det} S=P f\left(s_{12}, \ldots, s_{2 m-1,2 m}\right)^{2}
$$

Now let $\left\{X_{1}, \ldots, X_{r}\right\}$ be a basis for M. We may then express any element S of M in the form

$$
S=\lambda_{1} X_{1}+\cdots+\lambda_{r} X_{r}
$$

where the $\lambda_{i} \in F$. The properties of the Pfaffian previously outlined imply that there is a homogeneous polynomial Q in $F\left[z_{1}, \ldots, z_{r}\right]$ of degree m in r variables such that

$$
\operatorname{det} S=Q\left(\lambda_{1}, \ldots, \lambda_{r}\right)^{2}
$$

By the Chevalley-Warning theorem, Q has a non-trivial zero in F if $r>m$. See, for example, [10], Chapter 1, Corollary 1. Since all non-zero elements of M have non-zero determinant, we deduce that $r \leq m$.

We remark that it is easy to construct examples of n-subspaces of $A_{n}(F)$ of dimension $n / 2$ when n is even and F is finite.
Corollary 5. Let F be a finite field. Then we have $s_{n}(F) \geq n$ for $n \geq 3$.
We continue with the theme that n-subspaces of $A_{n}(F)$ of dimension $n-1$ are uncommon by showing that when $F=\mathbb{R}$, they can only exist when n is one of 2 , 4 , or 8 .
Theorem 6. Suppose that $n \geq 3$. Then $s_{n}(\mathbb{R}) \geq n$ except when $n=4$ or $n=8$.
Proof. We know that $s_{n}(F) \geq n-1$ for any field F and that $s_{n}(F)=n-1$ if and only if there is an n-subspace of $A_{n}(F)$ of dimension $n-1$. Suppose then that M is an n-subspace of $A_{n}(\mathbb{R})$ of dimension $n-1$. Let N be the subspace of $M_{n}(\mathbb{R})$ consisting of all elements $X+\lambda I_{n}$, where X runs over the elements of M and λ runs over \mathbb{R}. Clearly, $\operatorname{dim} N=n$ and each non-zero element of N is invertible, since a real skew-symmetric matrix has no real non-zero eigenvalues. Thus N is an n-subspace of $M_{n}(\mathbb{R})$ of dimension n. By [1], Theorem 1.1, such a subspace exists if and only if $n=\rho(n)$, where ρ is the Radon-Hurwitz function. Given the definition of ρ, it is easy to check that $\rho(n)=n$ only when $n=2,4$, or 8 . (We will show that the cases $n=4$ and $n=8$ are exceptional after this proof.)

As we remarked in the introduction, the work of [5] implies that better inequalities than $s_{n}(\mathbb{R}) \geq n$ are available, except possibly when n is a power of 2 .

We proceed next to show why there are two exceptional cases $s_{4}(\mathbb{R})=3$ and $s_{8}(\mathbb{R})=7$, and begin by considering the real octonions \mathbb{O}. Let $e_{0}=1, e_{1}, \ldots, e_{7}$ denote a standard basis of unit octonions. We say that an octonion is pure if it is a linear combination of e_{1}, \ldots, e_{7}. We have the relations

$$
e_{i}^{2}=-1, \quad e_{i} e_{j}=-e_{j} e_{i}
$$

for $1 \leq i \neq j \leq 7$. Moreover, if e is any of the e_{i} different from e_{0},

$$
e e_{j}= \pm e_{k}
$$

for $0 \leq j \leq 7$, where k and the relevant sign are determined by a definite rule. Since the equality

$$
e e_{j}=\varepsilon e_{k},
$$

where $\varepsilon= \pm 1$, implies that

$$
e e_{k}=-\varepsilon e_{j}
$$

we see that in the regular representation of \mathbb{O} on itself, e is represented by a skewsymmetric matrix with a single non-zero entry in each row and column, the nonzero entry being ± 1. It follows that each non-zero pure octonion is also represented by a skew-symmetric matrix, and this matrix is invertible, since the octonion has an inverse. Thus the pure octonions provide us with an 8 -subspace of $A_{8}(\mathbb{R})$ of dimension 7 . We may likewise use the pure quaternions to construct a 4 -subspace
of $A_{4}(\mathbb{R})$ of dimension 3 . Since we may define division algebras of quaternions and octonions over any subfield F of \mathbb{R}, using F-linear combinations of the standard basis elements, we have proved the following result.

Theorem 7. Let F be a subfield of \mathbb{R}. Then

$$
s_{4}(F)=3, \quad s_{8}(F)=7
$$

We note in passing that the example given at the end of [5] to show that $d(\mathbb{R}, 4,3)=1$ is incorrect, since the three alternating bilinear forms presented there have a common isotropic subspace. In the notation of [5], $\alpha_{1}+\alpha_{2}$ has rank 2, whereas it must have rank 4 if the three forms are to have the desired property.

The following data represent our current knowledge of $s_{n}(\mathbb{R})$ for small values of n.

Theorem 8. We have $s_{4}(\mathbb{R})=3, s_{n}(\mathbb{R})=7$ for $5 \leq n \leq 8$, and $s_{9}(\mathbb{R})=15$.
Proof. We have already proved that $s_{4}(\mathbb{R})=3$, and the values of $s_{5}(\mathbb{R})$ and $s_{9}(\mathbb{R})$ are special cases of a theorem proved in [5]. Since $s_{n}(F) \leq s_{n+1}(F)$ is trivially true for any field F, the fact that $s_{5}(\mathbb{R})=s_{8}(\mathbb{R})$ implies that $s_{6}(\mathbb{R})=s_{7}(\mathbb{R})=7$ also.

Theorem 8 implies the following unusual property of $A_{8}(F)$ when F is real. Analogous results hold for $A_{n}(F)$ when F is a field satisfying $s_{n}(F)=n-1$.
Corollary 6. Let F be a subfield of \mathbb{R}. Then there exist subspaces M and N of $A_{8}(F)$ with $\operatorname{dim} M=21, \operatorname{dim} N=7$ and $A_{8}(F)=M \oplus N . M$ contains no elements of rank 2, whereas all non-zero elements of N have rank 2. Similarly, there exist subspaces P and Q of $A_{8}(F)$ with $\operatorname{dim} P=21, \operatorname{dim} Q=7$ and $A_{8}(F)=P \oplus Q . P$ contains no elements of rank 8, whereas all non-zero elements of Q have rank 8.
Proof. Since we know that $s_{8}(F)=7$, the existence of the subspace M is guaranteed by Theorem 4 . We may take N to be any 2 -subspace of dimension 7 (such subspaces certainly exist). Similarly, we may take P to consist of those matrices in $A_{8}(F)$ whose top row is a zero row, and Q to be the subspace of $A_{8}(F)$ obtained from the regular representation of the octonions over F.

We next use an observation of [5] to calculate $s_{n}(F)$ for many fields F whenever n is odd.

Theorem 9. Suppose that F has a cyclic Galois extension of degree n. Then if n is odd, $s_{n}(F)=n$, and if n is even, $s_{n}(F)=n$ or $n-1$.
Proof. It is shown in [5], p.277, that $d(F, n, n)=1$ under the given hypothesis on F. The result then follows from Corollary 3.

Theorem 9 is a result of broad applicability, since many important fields satisfy its hypothesis for all $n \geq 2$. We include here a brief proof of a well known result which shows that Theorem 9 applies to all algebraic number fields.
Lemma 4. Let F be an algebraic number field and let $n \geq 2$ be an integer. Then F has a cyclic Galois extension of degree n.

Proof. Let p be a prime number and let \mathbb{Q}_{p} be the field obtained by adjoining a primitive p-th root of unity to \mathbb{Q}. We claim that for all but finitely many p, $F \cap \mathbb{Q}_{p}=\mathbb{Q}$. To prove this, we note that as F is an extension of \mathbb{Q} of finite
degree, F has only finitely many subfields. If therefore there were infinitely many primes p for which $F \cap \mathbb{Q}_{p} \neq \mathbb{Q}$, there would be different primes r and s for which $\mathbb{Q}_{r} \cap \mathbb{Q}_{s} \neq \mathbb{Q}$. But it is a familiar result of the theory of cyclotomic fields that $\mathbb{Q}_{r} \cap \mathbb{Q}_{s}=\mathbb{Q}$ if $r \neq s$. Thus our claim follows.

Now there are infinitely many primes p satisfying $p \equiv 1(\bmod n)$. Let p be such a prime with $F \cap \mathbb{Q}_{p}=\mathbb{Q}$. Then the compositum $F \mathbb{Q}_{p}$ is a cyclic Galois extension of F of degree $p-1,[8]$, Chapter 6, Theorem 1.12. It follows that $F \mathbb{Q}_{p}$ contains a cyclic Galois extension of F of degree n.
Corollary 7. Let F be an algebraic number field. Then $s_{n}(F)=n$ if n is odd and $s_{n}(F)=n-1$ or n if n is even.

We may obviously ask whether we can have $s_{n}(F)=n-1$ for suitable algebraic number field F and values of n. Theorem 7 has provided examples for $n=4$ and $n=8$ when F is a real algebraic number field. We speculate that the general problem may be related to properties of skew fields over F.

The following corollary of Theorem 9 is required for the proof of Theorem 3 and is used in our final investigation of subspaces realizing the value of $s_{n}(F)$.
Corollary 8. Let F be a finite field. Then for $n \geq 3, s_{n}(F)=n$.
Knowing now that $s_{n}(F)=n$ for a finite field F, it is of interest to study those subspaces of $\operatorname{Alt}(V)$ which realize this value. For odd n, we proceed to characterize these subspaces as precisely the subspaces of dimension n in which each non-zero element has rank $n-1$.
Theorem 10. Let F be a finite field and let $n \geq 3$ be an odd integer. Let M be an n-dimensional subspace of $\operatorname{Alt}(V)$. Then M realizes the value of $s_{n}(F)$ if and only if each element of M^{\times}has rank $n-1$.

Proof. Let $|F|=q$. Since $\operatorname{dim} M=\operatorname{dim} V$, it follows from Theorem 5 that M realizes the value of $s_{n}(F)$ if and only if $\operatorname{dim} M_{u}=1$ for all $u \in V^{\times}$.

Suppose then that $\operatorname{dim} M_{u}=1$ for all $u \in V^{\times}$. Let Ω denote the set of all ordered pairs (f, u), where $f \in M^{\times}$and $u \in \operatorname{rad} f^{\times}$. We note that if $(f, u) \in \Omega$, then $f \in M_{u}^{\times}$. Thus for fixed $u \in V^{\times}$, there are exactly $q-1$ elements (f, u) in Ω and hence

$$
|\Omega|=(q-1)\left(q^{n}-1\right)
$$

Now since n is odd, $\operatorname{dim} \operatorname{rad} f \geq 1$ for each $f \in M$. Thus, setting $\operatorname{dim} \operatorname{rad} f=n(f)$, we have

$$
|\Omega|=\sum_{f \in M^{\times}}\left(q^{n(f)}-1\right) \geq(q-1)\left(q^{n}-1\right),
$$

with equality only if $n(f)=1$ for all $f \in M^{\times}$. Since equality holds in this inequality, we deduce that $n(f)=1$ for all $f \in M^{\times}$and hence each element of M^{\times}has rank $n-1$.

Conversely, if $n(f)=1$ for all $f \in M^{\times}$, we also obtain $|\Omega|=(q-1)\left(q^{n}-1\right)$ and then an identical argument as that above implies that $\operatorname{dim} M_{u}=1$ for all $u \in M^{\times}$.

The proof just given shows that if M is an n-dimensional subspace of $\operatorname{Alt}(V)$ in which all non-zero elements have rank $n-1$, there is a one-to-one correspondence between the one-dimensional subspaces of M and the one-dimensional subspaces of V, given by $\langle f\rangle \leftrightarrow \operatorname{rad} f$ for $f \in M^{\times}$.

We use the argument above to show that n is the largest dimension of a subspace of $\operatorname{Alt}(V)$ in which all non-zero elements have rank $n-1$.
Corollary 9. Let F be a finite field and $n \geq 3$ be an odd integer. Let M be a subspace of $\operatorname{Alt}(V)$ with the property that each element of M^{\times}has rank $n-1$. Then $\operatorname{dim} M \leq n$.

Proof. It suffices to show that we cannot have $\operatorname{dim} M=n+1$. Now if $\operatorname{dim} M=n+1$, the equality

$$
\operatorname{dim} M_{u}=\operatorname{dim} M-\operatorname{dim} V+\operatorname{dim} V_{u}^{M}
$$

implies that $\operatorname{dim} M_{u} \geq 2$ for all $u \in V^{\times}$, and since $\operatorname{dim} \operatorname{rad} f=1$ for each $f \in M^{\times}$, the counting argument used in the proof above yields the inequality

$$
(q-1)\left(q^{n+1}-1\right) \geq\left(q^{2}-1\right)\left(q^{n}-1\right)
$$

This is a contradiction and hence $\operatorname{dim} M \leq n$, as claimed.
We conclude by considering an analogue of Theorem 10 for even n
Theorem 11. Let F be a finite field with $|F|=q$ and let $n \geq 4$ be an even integer. Let M be an n-dimensional subspace of $\operatorname{Alt}(V)$ that realizes the value of $s_{n}(F)$ and let S be the number of elements of rank n in M. Then

$$
\frac{q\left(q^{n}-1\right)}{q+1} \leq S<q^{n}-1
$$

Proof. Our supposition on M implies that $\operatorname{dim} M_{u}=1$ for all $u \in V^{\times}$. Let Ω denote the set of all ordered pairs (f, u), where $f \in M^{\times}$has rank less than n and $u \in \operatorname{rad} f^{\times}$. Then since $\operatorname{dim} M_{u}=1$, we have $|\Omega|=(q-1)\left(q^{n}-1\right)$. On the other hand, if f has rank less than n, $\operatorname{dim} \operatorname{rad} f \geq 2$, since n is even. Thus if R is the number of elements in M of rank less than n,

$$
R\left(q^{2}-1\right) \leq|\Omega|=(q-1)\left(q^{n}-1\right) .
$$

This gives a upper bound for R and since $R+S=q^{n}-1$, we obtain the lower bound for S. That $S<q^{n}-1$ follows because $\operatorname{dim} M_{u}>0$ for all $u \in V^{\times}$.

The lower bound for S would be precise if we knew that M^{\times}contains no elements of rank less than $n-2$. Thus the lower bound is achieved when $n=4$,

References

[1] J. F. Adams, Vector fields on spheres, Ann. of Math. 75 (1962), 603-632.
[2] E. Artin, Geometric Algebra, Interscience Publishers, Inc., New York, 1957.
[3] M. D. Atkinson, A problem of Westwick on k-spaces, Linear and Multilinear Algebra 16 (1984), 263-273.
[4] N. Bourbaki, Elements of Mathematics. Algebra I, Chapters 1-3. Springer Verlag, Berlin-Heidelberg-New York, 1989.
[5] J. Buhler, R. Gupta and J. Harris, Isotropic subspaces for skewforms and maximal abelian subgroups of p-groups, J. Algebra 108 (1987), 269-279.
[6] H. Heineken, Gruppen mit kleinen abelschen Untergruppen, Arch. Math. 29 (1977), 20-31.
[7] I. Kaplansky, Linear Algebra and Geometry, Alleyn \& Bacon, Boston, 1969.
[8] S. Lang, Algebra, 3rd ed., Addison-Wesley, Reading, Mass., 1993.
[9] R. Meshulam, On k-spaces of real matrices, Linear and Multilinear Algebra 26 (1990), 39-41.
[10] J. P. Serre, A Course in Arithmetic, Springer Verlag, Berlin-Heidelberg-New York, 1973.

Mathematics Department, University College, Belfield, Dublin 4, Ireland
E-mail address: rod.gow@ucd.ie, rachel.quinlan@ucd.ie

