

Reconstructing the ENIAC Forecasts using the NCEP/NCAR Reanalysis

Peter Lynch, UCD, Dublin

IUGG General Assembly, 2007

Reconstrucing the ENIAC Forecasts using the NCEP/NCAR Reanalysis

Peter Lynch Meteorology & Climate Centre School of Mathematical Sciences University College Dublin

JMS020: Assessing and Exploiting Reanalysis Data Sets IUGG XXIV General Assembly, Perugia, 4th July, 2007.


Pioneers of Scientific Forecasting

Cleveland Abbe, Vilhelm Bjerknes, Lewis Fry Richardson

64,000 Computers: The first Massively Parallel Pre

Crucial Advances, 1920-1950

- Dynamic Meteorology
- Quasi-geostrophic Theory
- Numerical Analysis CFL Criterion
- Atmopsheric Observations
- Radiosonde
- Electronic Computing DENIAC

The Meteorology Project

Project estblished by John von Neumann in 1946.

To study the problem of predicting the weather using a digital electronic computer.

- New methods of weather prediction
- Rational basis for planning observations
- Step towards influencing the weather!

The ENIAC

multi-purpose mable elecnmable elec-digital com-

- 18,000 vacuum tubes
- 70,000 resistors
- 10,000 capacitors
- 6,000 switches • Power: 140 kWatts

Charney, et al., Tellus, 1950.

 $\begin{bmatrix} Absolute \\ Vorticity \end{bmatrix} = \begin{bmatrix} Relative \\ Vorticity \end{bmatrix} + \begin{bmatrix} Planetary \\ Vorticity \end{bmatrix}$

- The atmosphere is treated as a single layer.
 The flow is assumed to be nondivergent.
 Absolute vorticity is conserved.

$$\frac{d(\zeta + f)}{dt} = 0.$$

This equation looks deceptively simple. But it is nonlinear:

$$\frac{\partial}{\partial t} [\nabla^2 \psi] + \left\{ \frac{\partial \psi \, \partial \nabla^2 \psi}{\partial x \quad \partial y} - \frac{\partial \psi \, \partial \nabla^2 \psi}{\partial y \quad \partial x} \right\} + \beta \frac{\partial \psi}{\partial x} = 0 \,,$$

Charney, Fjørtoft, von Neumann



ration of the barotropic vorticity equation Tellus, 2, 237–254 (1950).

Solution method for BPVE

- Compute the Jacobian
- Step forward (Leapfrog scheme)
- Solve Poisson equation $\nabla^2 \psi = \zeta$ (Fourier expansion)
- Go to (1).
- Timestep : $\Delta t = 1$ hour
- Gridstep : $\Delta x = 750$ km (at North Pole)
- Gridsize : 19 × 16 ≈ 300 points
- Elapsed time for 24 hour forecast: About 24 hours.

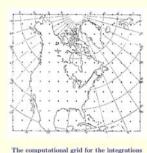
Each forecast involved punching about 25,000 cards. Most of the time was spent handling card-decks.

Flow-chart for the computations.

Some key people in the ENIAC endeavou

Recreating the ENIAC Forecasts

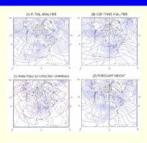
The ENIAC integrations have been recreated using:


- · A MATLAB program to solve the BVE
- Data from the NCEP/NCAR reanalysis

The initial dates for the four forecasts were:

- January 5, 1949
- January 31, 1949
- February 13, 1949

http://mathsci.ucd.ie/~plynch/eniac


The NCEP-NCAR 50-Year Reanalysis: Monthly Means CD-ROM and Documentation Bulletin of the American Meteorological Society, February, 2001

ENIAC Forecast for Jan 5, 1949

Recreation of the Forecast

Case	Mean error		RMS error		S1 Score	
	FCST.	PERS.	FCST.	PERS.	FCST.	PERS
1	56.4	-9.2	113.4	94.6	61.0	62.2
2	31.1	6.3	99.2	114.6	45.6	62.9
3	-35.2	20.4	92.7	89.2	46.4	58.4
4	39.4	1.1	81.9	80.7	39.5	50.1

Computing Time for ENIAC Runs

- George Platzman, during his Starr Lecture, re-ran an ENIAC forecast
- The algorithm was coded on an IBM 5110, a desk-top machine
- The program execution was completed during the lecture (about one hour)
- The program eniac.m was run on a Sony Vaio (model VGN-TX2XP)
- The main loop of the 24-hour forecast ran in about 15 ms.