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ABSTRACT

The horizontal wind field may be deduced from the vorticity and divergence by solving Poisson equations
for the velocity potential and streamfunction or, more directly, by the solution of a single Poisson equation for
one of the velocity components. Both methods are examined here, and both are shown to be equally accurate.

If the domain is of limited extent, boundary conditions must be specified. It is sufficient to prescribe a single
component of the boundary velocity. Methods which use both components overdetermine the solution and

may not converge in general.

1. Introduction

The deduction of the wind from the vorticity and
divergence fields is frequently necessary in numerical
weather prediction. For example, in a numerical model
formulated in terms of the differentiated equations of
motion, winds must be derived at each time step. If
the model covers a limited area, appropriate boundary
conditions for this inversion must be specified. Al-
though it is sufficient to specify a single wind compo-
nent on the boundary, a number of methods have been
proposed which use both components. The resulting
mathematical problem has, in general, no solution: it
is impossible to derive winds which satisfy these
boundary conditions and yield vorticity and divergence
fields in agreement with those given. )

To clarify this difficulty, we must make a sharp dis-
tinction between two situations in which a solution is
sought. In the special case we assume a wind field given,
and derive vorticity and divergence fields from it. We
then try to deduce from these a wind field which agrees
with that originally given. This problem has been used
for evaluating various methods, since the precise answer
is known in advance. However, because of the manner
in which the data are produced, a correct solution may
be found even by methods which use an overspecified
mathematical formulation. Furthermore, integral con-
straints necessary for a solution are automatically sat-
isfied in this case. .

In the general case we assume the vorticity and di-
vergence fields given, together with wind information
on the boundary. It will be shown that a single wind
component suffices to determine a solution. The other
component can be derived, and if prespecified will
overdetermine the solution. Methods which use both
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winds on the boundary are not well posed and are,
therefore, unsatisfactory in general.

The calculation of the streamfunction and velocity
potential for a given wind field is an example of the
special case. However, for a limited area these fields
are of doubtful utility: they are not uniquely defined
by the given data. As shown in the Appendix, either
the streamfunction or the velocity potential can be
modified to assume completely arbitrary values on the
boundary, and provided the other field is modified ac-
cordingly, the implied wind is unchanged. Thus, the
streamfunction and velocity potential have physical
significance only insofar as together they define a
wind—neither field is meaningful in itself.

Sangster (1960) proposed a solution method which
has been widely used. The normal wind is given on the
boundary and the velocity potential is assumed to van-
ish there. This may seem arbitrary but it leads to a
satisfactory solution: the streamfunction and velocity
potential are not uniquely determined by the limited
area data, and partitioning of the wind into irrotational
and nondivergent parts is not unique (see the Appen-
dix). This allows us a degree of freedom; Sangster’s
choice of boundary condition minimizes the divergent
kinetic energy of the solution (Pedersen, 1971).

A number of investigators who have used Sangster’s
method (for the special case of a prescribed wind field)
have reported poor results. Hawkins and Rosenthal
(1965) studied a number of formulations; their best
results, using centered differences at the boundaries,
involved errors of about 0.5 m s™! in the reconstructed
winds. They used a regular grid but concluded that the
staggered grid suggested by Sangster would probably
prove more accurate.

Shukla and Saha (1974) also used a regular (unstag-
gered) grid in implementing Sangster’s method. Fur-
thermore, they used a linear extrapolation in applying
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the boundary conditions. Their errors in the recon-
structed winds were greater than 1 m s}, They pro-
posed an iterative procedure which gave a marginal
improvement; however, this procedure requires the use
of both the normal and tangential boundary winds,
and is therefore unsuitable in the general case. A similar
iterative technique was outlined by Haltiner and Wil-
liams (1980, p. 257) who pointed out that there is no
guarantee of convergence for such a scheme.

The indifferent results reported for Sangster’s scheme
led Bijlsma et al. (1986, denoted hereafter as BHL) to
seek an alternative solution method. They developed
a method of solving the two Poisson equations for the
streamfunction and velocity potential simultaneously.
A staggered grid was used and all finite differences,
including those at the boundaries, were centered. In
the special case tested, the method worked very well
and the prescribed winds were reconstructed to high
accuracy. However, both boundary velocities are used,
which overdetermines the solution in the general case.
The method is reexamined here and found not to con-
verge in general.

The poor results reported for Sangster’s scheme are
not due to any inherent deficiency of the scheme, but
rather to the manner in which it has been implemented;
in particular, the failure to use a staggered grid pre-
cludes the use of centered normal differences at the
boundary. In section 4 it is shown that the method
gives results of high accuracy when a staggered grid
and centered boundary differences are used. Recon-
structed winds agree (to machine accuracy) with those
originally prescribed. For the general case, satisfactory
convergence of the scheme is indicated by the dimin-
ishing residues calculated in the successive overrelax-
ation (SOR) scheme used to solve the Poisson equa-
tions. In this case the scheme of BHL fails to converge.

The method of Sangster involves the solution of two
Poisson equations, for the streamfunction and velocity
potential. An alternative method, requiring solution of
only one Poisson equation, is discussed in this paper.
The velocity potential and streamfunction for a limited
area have meaning only insofar as they imply a wind
field (Miyakoda, 1960). Therefore, it is proposed to
disregard them and to solve directly a Poisson equation
for a component of the wind. Specification of the nor-
mal boundary velocity determines the solution. The
second wind component is then obtained from the def-
initions of vorticity and divergence. The formulation
of the method makes it clear why only one component
of the boundary velocity is required. This method will
be referred to here as the direct method.

Results obtained using the direct method are pre-
sented, and compared to those using Sangster’s method.
Both methods give completely satisfactory results: the
errors in the reconstructed winds are negligible, and
convergence is satisfactory in the general case. The ad-
vantage of the direct method is that only one Poisson
equation need be solved.
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2. Background: Sangster’s method

According to the Helmholtz theorem, the horizontal
wind field V may be defined in terms of a streamfunc-
tion ¥ and velocity potential x by

V=Vx+kXVy 0

We define the vorticity ¢ and divergence § by
¢=k-VXV §=V.V. ()
Then the divergence of (1) leads to a Poisson equation
Vix =4 3)

for x. Similarly, we may obtain a Poisson equation for
12
Vi =¢. 4)

Two problems are distinguished in BHL. The par-
titioning problem is that of separating a given wind
field into rotational and divergent components. The
problem is solved as follows: the divergence is derived,
(3) is solved for x with zero boundary conditions, V,
= Vy is the divergent wind, and the residual (V —V,)
is the rotational wind. This solution is not unique, but
it minimizes the divergent kinetic energy. The non-
uniqueness of the solution is discussed in the Appendix;
the partitioning problem will not be considered further
here.

The reconstruction problem concerns the deduction
of the winds from the vorticity and divergence fields.
If (3) and (4) are to be solved in a limited domain,
boundary conditions are required. From (1) it follows
that

_ Y dx
Vems V=T os ©)
v W X
Vi=n-V=-2242 (6)

where s and n are tangent and normal unit vectors and
s and » are distances along and normal to the boundary.
These relations couple the variables x and ¢ so that
either (3) and (4) must be solved simultaneously or
they must be decoupled by further assumptions.

The method of BHL solves both equations simul-
taneously, but it requires knowledge of both V;and V,
on the boundary. In general there is no solution, as
this problem is overdetermined. Thus, the method is
unsatisfactory; the difficulty will be illustrated by an
example in section 4.

The method of Sangster (1960) decouples the vari-
ables by assuming that the velocity potential x vanishes
on the boundary. The solution involves the following
sequence of steps (subscript B denotes boundary
values).

Step 1: Assume xp vanishes, and solve (3) for x.
Step 2: Integrate (6) stepwise around the boundary,
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using specified values of the normal velocity V,, to
obtain Y.
Step 3: Solve (4), with these boundary values, for .
Step 4: Derive the wind field by using (1).

Note that only the normal component of the boundary
velocity is used.

In order that step 2 should yield a single-valued
streamfunction, it is necessary that the input data satisfy
an integral constraint. If we integrate the definitions of
vorticity and divergence (2) over the domain €,
bounded by 3, and use Gauss and Stokes’ theorems,

it follows that
f f dda=9 V,ds
Q a0

f L {da= ffm Vsds.

These conditions must be satisfied by the prescribed
data. It is assumed that the input information is suitably
modified so that (7) and (8) hold (in the special case
where the winds are prescribed throughout Q, these
conditions are automatically fulfilled).

An alternative method, also discussed by Sangster,
is to set Y to zero on the boundary. Then (4) is solved
for ¢, and (6) provides Neumann boundary conditions
for the solution of (3). The data must still satisfy the
compatibility condition (8). Although the { and x fields
will be different from before, the wind field is un-
changed. We will not consider this alternative formu-
lation further here.

In the Appendix we discuss the nonuniqueness of
the velocity potential and streamfunction, and show
that x may be chosen so as to take arbitrary boundary
values. This discussion illustrates the lack of physical
significance of the x and y fields for flows specified on
a limited domain, and justifies Sangster’s choice of zero
x boundary values.

In section 4 Sangster’s method will be used to solve
for the winds in a special and a general case, and will
be seen to give completely satisfactory results.

(M

®

3. The direct method

Considering the Laplacian of the horizontal wind,
and using well-known vector identities (e.g., see Morse
and Feshbach, 1953) we can write

V2V =V5+kX V(. )

Given 6 and ¢, this vector Poisson equation can be
solved for V if the boundary velocity Vp is specified.
However, the vorticity {o and divergence 6y derived
from this solution will not generally agree with those
prescribed. This is most easily seen as follows: if ¢, 6
and V are arbitrary, they cannot be expected to satisfy
the integral constraints (7) and (8); but these constraints
automatically hold for { and §, [simply integrate the
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definitions (2)]. Therefore, the calculated vorticity and
divergence cannot be the same as those prescribed. The
problem is deeper than this, however: even if the data
are modified so that (7) and (8) hold, the solution may
still fail to generate the specified ¢ and é; if we add an
arbitrary harmonic function to 6 and its harmonic
conjugate to {, the right-hand side of (9) remains un-
changed (see the Appendix); the difficulty arises
through the differentiations in deriving (9), which in-
troduce solutions other than those of the original
problem.

In order to deduce winds which imply the specified
vorticity and divergence, we propose the following
procedure. A single component of (9) is solved for one
component of the wind. This solution requires knowl-
edge of one wind component on the boundary dQ. The
definitions (2) of ¢ and 6 are then integrated stepwise,
starting from specified boundary values, to derive the
other wind component. The use of (2) guarantees that
the solution generates the original vorticity and diver-
gence. Note that only one boundary wind is prescribed.

a. Implementation

To implement the method, we consider a limited
domain Q on the sphere, specified by the coordinates,
longitude A and latitude ¢, and bounded west and east
at Aw and Ag, and south and north at ¢s and ¢n. The
vector Laplacian in (9) may be separated into com-
ponents (Morse and Feshbach, p. 116) but it is easier
to proceed directly as follows. The definitions (2) may

be written
_ 1[ov_ d(ou)
§_aa[8>\ 8¢] (10)
_ 1 [du  &(av) ,
6~a0[6>\+ ¢ ] (1)

where u and v are eastward and northward winds, ¢
= cos¢ and a is the earth’s radius. It is straightforward
to eliminate v between these equations, obtaining an
equation for ¢ = ou:
2. 1[30 1 ICay)
v a[ax s 06 (12)
This Poisson equation for # corresponds to a compo-
nent of (9), and is the equation that we will solve. The
other component, for ¥ = v, will not be required.
To solve (12) we need boundary conditions. We may
specify u everywhere on dQ [Dirichlet conditions] or v
everywhere on dQ [Neumann conditions, through (10)
and (11)]. Usually, we prefer to specify the normal or
tangential velocity on the boundary. We consider the
former case, with u given at Aw and Ag and v given at
¢s and ¢n. Using (10) we deduce 34/d¢ on the south
and north boundaries. Thus, we have the following
problem for #:

J=r.
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VY%i=F, inQ

 given at Aw and A\g
011/9¢ given at ¢s and ¢n

This elliptic equation with mixed boundary conditions
has a unique solution for 7Z. Uniqueness may easily be
seen by considering the homogeneous system corre-
sponding to (13). Let W be a solution of the resulting
Laplace equation. If this equation is multiplied by W,
integrated over Q@ and Gauss’ theorem used, we get

w
ff lgrad W|2da=§ Wé—ds.
o s On

Since the boundary conditions ensure that the right-
hand side vanishes, the solution /¥ must be equal to
zero everywhere. Therefore, any two solutions of the
inhomogeneous system (13) must be identical. Exis-
tence of the solution may be established by means of
the general theory of integral equations (e.g., sce Po-
gorzelski, 1966, §X11.2) or, more simply, by separation
of variables and expansion in eigenfunctions (Morse
and Feshbach, 1953).

Having obtained the solution of (13), we may inte-
grate (11) northwards, using the known value of v at
¢s, to obtain v throughout the domain. It is straight-
forward to show that the eastward gradient of v at the
northern boundary ¢y calculated from the solution is
equal to that prespecified. Thus, a necessary and suf-
ficient condition that the specified and calculated ve-
locities v agree there is that the integral constraint (7)
be satisfied. We should modify the input data (either
6 or V) so that this is so.

Consider now the case where both % and v are given
on 9. Using (10) and (11) we can calculate the normal
derivative of u. Thus, we have Cauchy conditions for
(12), which overspecify the solution. It is now clear
why the methods of Shukla and Saha and of BHL are
unsatisfactory in general: “For an elliptic equation in-
side a closed boundary Cauchy conditions on any por-
tion of the boundary are too many conditions” (Morse
and Feshbach, 1953, p. 702). ’

(13)

(14)

b. Direct solution

The direct solution method is summarized here for
convenience.

Step 1: {and § are given in &, and ¥, on Q2. Modify
V, and/or & to satisfy (7).

Step 2: Calculate 91/d¢ at ¢s and ¢y using (10) and
known values of v and ¢.

Step 3: Solve the system (13) for .

Step 4: Integrate (11) northward, starting from spec-
ified values of D at ¢s, to obtain D.

The boundary conditions described here will be de-
noted by BC = 1. For comparison, we also considered
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the case where the zonal velocity u was specified ev-
erywhere on 9%; these Dirichlet boundary conditions
will be denoted by BC = 2. To obtain v, we specify
vsw = U(Aw, ¢s), integrate (10) eastward to get v on
the southern boundary, and then integrate (11) north-
ward to obtain v everywhere. The recursion in step 4
proved to be stable with respect to error propagation.
In section 4 the direct method will be compared with
Sangster’s method and shown to give equally satisfac-
tory results.

4. Numerical examples

To demonstrate the efficacy of the method of Sangs-
ter and the direct method, we employ them in a limited
area model to derive winds from the vorticity and di-
vergence. The method of Bijlsma, Hafkenscheid and
Lynch is also used and the difficulties encountered with
it illustrate the problems arising through overspecifi-
cation of the solution.

Initially, the wind field is given and ¢ and 6 are cal-
culated—this is the special case—and all three methods
give excellent results. We then make a one hour fore-
cast, using the equation of conservation of potential
vorticity, and derive the divergence through a diag-
nostic relationship. The boundary winds uz, vg are not
changed during this process. We now derive the winds
from the new vorticity and divergence, together with
wind information on the boundary—this is the general
case, since the automatic compatibility between (uz,
vp) and (¢, 6) no longer holds. The divergence is mod-
ified by the addition of a small constant so that (7)
holds. An alternative method of satisfying (7) by mod-
ification of the normal boundary velocities led to vir-
tually indistinguishable results. For the BHL method
¢is also modified to satisfy (8). Despite this, the method
fails to converge. Other means of satisfying the integral
constraints, through modification of the boundary ve-
locities, did not improve the situation. The method is
trying to find winds which imply the given ({, §) and
also agree with (up, vp) on the boundary—but in gen-
eral no such winds exist, and the method cannot con-
verge. Sangster’s method and the direct method both
converge satisfactorily in the general case.

The forecast model uses a rotated latitude/longitude
grid (whose north pole is at the geographical position
30°N, 150°E), bounded by (Aw, Ag) = (—40°, +38°)
and (¢s, ¢n) = (—25°, +25°). The grid spacing is A\
= A¢ = 2.0° and 40 X 26 points cover the area shown
in Fig. 1. (Note that terms like northward component,
eastern boundary, etc., refer to the transformed grid.)

The staggered grid used for the finite difference for-
mulation of Sangster’s method is shown in Fig. 2. All
differences are centered. If (1) and (2) are discretized
and the velocities eliminated, five-point Laplacians
arise in the discrete analogues of (3) and (4). The
boundary velocities which are specified are encircled.
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FiG. 1. (a) Initial S00 mb height field; (b) corresponding wind field
(only values in every alternate row and column are plotted).

The x values which are set to zero are denoted by 0

subscripts and the ¢ values deduced in step 2 by in-
tegration of (6) are denoted by subscript 4. The grid
for the direct method is shown in Fig. 3. The boundary
velocities (for BC = 1) are encircled as before. Note
that the vorticity at ¢s and ¢y is needed; in conse-
quence, 1 on the north and south boundaries is derived.
The finite difference equation is derived by elimination
of v from the discrete forms of (10) and (11), yielding
again a five-point Laplacian analogue of (12). The
Poisson equations are solved by a successive overre-

laxation (SOR) technique, which is iterated until there
is no further significant decrease in the residue.

Initial data are the 500 mb height and wind fields
for 0000 UTC 19 November 1986. These are depicted
in Fig. 1.

In Table 1 we show the results, using the three meth-
ods, in the special case where the initial winds are pre-
scribed. The methods are indicated as follows: Sangs-
ter’s method (SANSTRY); the direct method (DIRECT);
and that of Bijlsma et al. (BIHALY). For the direct
method, results are shown for both the mixed boundary
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FIG. 2. Discrete grid used for Sangster’s method. The values denoted
by xo are set to zero, and the Y-values obtained from (6) are indicated
by subscript b. Specified boundary velocities are encircled.

conditions (BC = 1) and the Dirichlet conditions (BC
= 2). The rms vector error in the reconstructed wind
is defined by

E= ]\i’z{(u,,—ui)2+(vo—v,-)2}]l/2 (15)

where the subscripts i and o indicate input and output
values and the sum is over all the N gridpoints. We
also show the rms and maximum errors for each com-
ponent of the winds. These results show clearly that,
in the special case, all three methods of retrieving the
winds are highly accurate; the reconstructed winds dif-
fer from those originally prescribed by amounts close
to the minimum value that can be represented on the
computer. Use of double precision reduces these dif-
ferences by ten orders of magnitude. Thus, all methods
give satisfactory results.

The success of Sangster’s method is in stark contrast
to the results reported by Hawkins and Rosenthal
(1965) and Shukla and Saha (1974), who obtained er-
rors of about 1 m s™' in the reconstructed winds using
this method. It seems that their use of uncentered
boundary differences caused these large errors. The re-
sults pr;sented here show that the iterative technique
proposed by Shukla and Saha, and reviewed by Hal-
tiner and Williams, is neither computationally neces-
sary nor mathematically desirable.

In the general case the correct winds are not known
exactly, and we cannot use the vector error of the wind
as a measure of the accuracy of the methods. Instead,
we calculate the normalized maximum residual differ-
ences between the calculated and original values of the
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vorticity and divergence. For the SANSTR and BI-
HALY methods these are defined by

Ry =max[V¥,— {il/§
R, = max[szo - 5:‘]/3
and for the DIRECT method we define
Ry=max[k- VX V,— §}/§
R;=max[V-V,—48]/6

where subscripts o and i denote calculated and pre-
scribed quantities, { and 6 are mean absolute vorticity
and divergence values used for normalization, and the
maxima are taken over all gridpoints.

In Table 2 the values of these quantities for the three
methods are given for the special case. All the residuals
are very small, indicating adequate convergence and
confirming the results in Table 1. The values obtained
using double precision demonstrate that the accuracy
of the results is limited only by machine precision.

In sharp contrast, the figures in Table 3 (for the gen-
eral case) show that, whereas the Sangster and direct
methods converge satisfactorily, the method of Bijlsma,
Hafkenscheid and Lynch is unable to converge. The
results for this method in double precision are no dif-
ferent from those in single precision. The method can-
not converge since it is trying to find a solution which
agrees with incompatible data on the boundaries and
in the interior—this is the price paid for overspecifying
the problem.

Both the method of Sangster and the direct method
give excellent results in this general case. The tiny re-
siduals indicate that the methods have converged. This
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FiG. 3. Discrete grid used for the direct method.
The specified boundary velocities are encircled.
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TABLE . Root-mean-square vector error, and rms and maximum errors in the components of the reconstructed winds, using various
methods: Bijisma et al. (1986) (BIHALY), Sangster (1960) (SANSTR), and the direct method (DIRECT). The direct method is run with
both mixed boundary conditions (BC = 1) and Dirichlet conditions (BC = 2). Results are given for both single and double precision code.

Method Rms errors Single precision Double precision

rms Vector error 2.572 X 107% 7.998 x 107"

BIHALY rms errors in ¥ and v 2.308 x 107% 1.136 X 107% 7.235 X 107V 3.408 X 107"
max errors in # and v 6.914 X 107% 4113 X 107% 1.874 X 1076 1.214 X 107'¢
rms vector error 8.167 X 107% 2.515 X 1076

SANSTR rms errors in % and v 6.755 X 107% 4.590 X 107% 2.080 X 107'¢ 1.413 X 1071
max errors in ¥ and v 2.551 X 107% 1.788 X 107 7.355 X 10716 4.233 X 10716
rms vector error 1.182 X 107% 3.406 X 10716

DIRECT rms errors in ¥ and v 7.847 X 107% 8.844 X 107% 2.078 X 10716 2.699 X 107'¢

(BC=1) max errors in ¥ and v 2.861 X 107% 3.311 X 107% 3.886 X 10716 8.422 X 10716
rms vector error 1.442 X 1079 5.161 X 10716

DIRECT rms errors in % and v 1.958 X 107% . 1.428 X 107% 7.148 X 107V 5.111 X 10716
max errors in # and v 5.007 X 107% 2.754 X 107% 1.804 X 10716 8.496 X 10716

(BC = 2)

is the acid test: the residuals measure the extent to
which the calculated solutions satisfy the equations.

As a final test, we made two parallel 24 hour fore-
casts, using the SANSTR and DIRECT methods to
retrieve the winds at each time step. The same normal
boundary winds at the same gridpoints were used in
each case. The direct method uses extra vorticities and,
correspondingly, produces extra values of u# on the
south and north boundaries. To attain maximum sim-
ilarity between the parallel runs, these were reset each
timestep to their initial values, and the vorticity was
rederived. The rms difference between the forecast wind
fields after 24 hours was only 0.13 m s~ !; the height
fields differed by less than one meter. For all practical
purposes, the forecasts were identical.

5. Conclusions

We have examined some methods of deducing winds
from the vorticity and divergence fields. Both Sangster’s
method and the direct method described in this paper

TABLE 2. Residues (see text) of the calculated solutions in the
special case of prescribed winds. The various methods are indicated
asin Table 1. These residues provide a useful indication of the degree
of convergence of the methods.

have been shown to give correct results in both the
special case of prescribed winds and the more general
case where arbitrary vorticity and divergence fields to-
gether with boundary wind data are given. Therefore,
if the streamfunction and velocity potential are not
required, the direct method may be preferable, since
only one Poisson equation needs to be solved using
this technique. (For a limited domain, the stream-
function and velocity potential have no physical sig-
nificance per se, since they are not uniquely defined.)
Methods which use both boundary wind components
are overdetermined and do not converge in general.
Therefore, they should not be used.

The SOR method used here is useful in providing a
clear indication of the extent to which the computa-
tional solutions are converging. However, it is com-
putationally expensive. Highly efficient direct methods
(fast solvers) are available (e.g., see Swartztrauber and
Sweet, 1975) for solving Poisson equations with
boundary conditions of the type occurring here, and
can obviously be used to advantage.

TABLE 3. Residues (see text) of the calculated solutions in the
general case. The vorticity and divergence fields are those resulting
from a 1-hour forecast; the boundary velocities are unchanged from
their initial values. The methods are indicated as in Table 1.

Method .Residue Single precision Double precision Method Residue Single precision Double precision

R, 1.805 X 107¢ 5.880 X 107" R, 2.055 2.055
BIHALY 2 2.928 X 1076 1.001 x 1016 BIHALY . 6.166 6.166

R, 5.983 X 107¢ 2.001 X 1076 R, 5.444 X 107¢ 1.832 X 1076
SANSTR R, 3.001 X 107 1023 x 1077 SANSIR R, 5.124 x 107 1325 X 107
DIRECT R; 9.719 X 1077 2.920 X 10717 DIRECT R; 1.354 X 1078 2.578 X 107"
(BC=1) R, 2,928 X 1077 6.924 X 1078 (BC=1) R; 2.462 X 1077 1.800 X 1076,
DIRECT R; 1.059 X 1076 3.832 X 107" DIRECT R, 1.189 X 1076 3.835 X 107"
(BC=2) R, 2.562 X 1077 8.522 X 1078 (BC =2) Ry 2.480 X 1077 9.737 X 107V



JANUARY 1988

Finally, although we have discussed the problem in
the context of a limited-area domain, the direct solution
method can also be used for global gridpoint models,
with consequent computational savings. The only
conditions on the solution of the Poisson equation (13)
are that it be periodic in longitude and regular at the
poles.
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APPENDIX
Nonuniqueness of Partitioning in a Limited Domain

The streamfunction and velocity potential for a flow
in a limited domain Q have no physical significance in
themselves, but only insofar as they imply a wind field
(Miyakoda, 1960). We show here that an arbitrary har-
monic function may be added to x, provided v is also
modified accordingly, without changing the winds. This
means that x (or alternatively ¥) may be made to as-
sume completely arbitrary values on the boundary.

For a limited domain the kinetic energy does not
partition into divergent and rotational components,
but also contains a cross-product term.

Let the horizontal wind be partitioned into irrota-
tional and nondivergent components as follows

V=V, +V,=VX+kxVy. (Al)

We can represent a point on the sphere by a complex
variable z (e.g., z = A + i¢). Now let &\, ¢) be any
harmonic function, i.e., any function satisfying La-
place’s equation. There is a corresponding harmonic
conjugate function 5(\, ¢), unique up to an additive
constant, such that f(z) = £ + in is an analytic function
(Carrier et al., 1966). The Cauchy-Riemann equations
then imply that

VE+kXVyp=0. (A2)

The modified velocity potential and streamfunction
(x, ¥') defined by

X=x+& Y¥'=¢y+qg (A3)

represent the same wind field as (x, ¢) (but this field
partitions into irrotational and nondivergent compo-
nents in a different way). Thus, x, for example, may
be altered by the addition of an arbitrary harmonic
function provided that y is altered accordingly. In this
way x may be adjusted so as to satisfy arbitrary bound-
ary values. The irrotational and nondivergent com-
ponents V, and V, are not uniquely defined.

[In the same way, the divergence and vorticity may
be altered by the addition of a conjugate pair of har-
monic functions without altering the right-hand side
of equation (9)].

If the domain considered is the entire sphere, the
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only nonsingular harmonic functions are constants, x
and ¢ are essentially unique, and the partitioning of
the wind is well defined.

We define the kinetic energy (assuming density p

=1)by
KslffV-Vda,
2J Ja

and its divergent and rotational components by

KXE%ILVX-dea; Kwséffnw-vwda.

The kinetic energy may be expanded, using (A1) above:

(A4)

K= Kx + K‘p + ff Vx . dea. (AS)
Q

If the domain Q is limited, the cross-product term will
generally not vanish. Using (A1) again, we may write

I =_f H
fLVx V\bda—f;ﬂtﬁ 3 ds anx 7 ds. (A6)

This term may be positive or negative, and the kinetic
energy does not partition into divergent and rotational
components. Sangster’s choice of boundary condition
(x = 0) ensures that the cross term vanishes, and the
partitioning is well defined. Furthermore, this choice
minimizes the divergent component of the energy
(Pedersen, 1971).

If the domain is the entire sphere, the boundary in-
tegral does not arise, the cross term vanishes, and the
partitioning of kinetic energy is unique.
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