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NUMERICAL FORECASTING USING LAPLACE TRANSFORMS:
THEORY AND APPLICATION TO DATA ASSIMILATION.

Abstract

The Laplace Transform technique is used to develop & numerical
scheme for integrating the primitive equations. The scheme is cspable of
faithfully simuleting the dynamics of the low frequency components of the
flow, whilst the high frequency components are strongly sttenuated. Thus, it
models the meteorologically significant synoptic flow, uncontaminated by gravity
wave noisa.

The Laplece Transform (LT) method has been compared to s standasrd
Adams Bashforth (AB) method in the context of a one dimensionsl model. The LT
method with & one hour timestep gives results very similer to the AB scheme
with a 30 second step. The scheme is subject to a stability criterion similer to
that of the semi-implicit method, and depending on the advection velocity. If
the edvection is integrated in a Lagrangian manner this restriction is relexed.

The Laplace transform method is- particularly suiteble for insertion of
dats during an integration: since the gravity waves are strongly damped, the
model can absorb the inserted information without undue shock. Other schemes
generally require reinitielization sfter dsta insertion, or else the imposition of
strong divergence damping. Thus, the method would appear to be s useful
meens for continuous data assimilation.
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1. INTRODUCTION

The main objective of MNumericel Weather Prediction (NWP) is to
provide accurste guidance on the development of synoptic westher systems
evolving from a specified initial state. The basic equations of current NWP
models — the primitive equations — have been found to be capable of faithfully
simulating the dynamics of these systems. However, these equations also have
high freguency solutions corresponding to gravity waves. These are of little
meteorological importance, but they cause computstional and other problems,
and are generslly regarded ss undesirable noise.

We can desl with grevity wave noise in two ways. Historicelly, the
first method was to modify the equstions of motion so that the only solutions
remaining were the low frequency meteorological motions. The resulting filtered
equations — the quasi-geostrophic equations — were used successfully for the
first computer forecasts, and are noise-free. However, they involve
spproximations which are not always justified, with consequent errors in the
forecasts. Therefore, the primitive equations are generally used nowadeys for
NWP, and the corruption of forecasts by noise is prevented by imposing balance
conditions on the initisl fields. This process is called initialization.

Properly initislized fields result in smoothly evolving flow patterns
during the forecast, provided thst the integration proceeds undisturbed. If we
wish to modify the fields during the integration, e.g. to correct them in the
light of new observational data, the balance may be disturbed and noise
generated. RAgsin, we may prevent this in two ways: the fields may be
reinitialized after data insertion, or a numerical scheme may be chosen which
prevents or suppresses noise. The reinitislization of the fields may be
computationally expensive, perticularly if date is being assimileted at frequent
intervals. Therefore, we consider in this report a scheme which suppresses
noise by allowing the low frequency motions to evolve uninhibited while strongly

damping the high frequency motions.



A solution method using the Laplace transform technique was
developed by Lynch (1985a) and spplied to the problem of initialization. In the
present study the same method Is used to devise @ numerical scheme for
integrating the equations of motion. The method forecasts the low frequency
motions while the high frequency components are strongly attenuated. The
method is compsred to a well-tried Adems Bashforth method in the context of
a simple one-dimentional madel. Both methods give very similar forecasts of the
rotational component of the flow. The evolution of the divergence is much
smoother for the Laplace transform method.

The stability properties of the Laplace transform method are
considered. The approximstion of the inversion integral by a sum introduces an
error; this has been investigated by Van Isacker and Struylaert (1985). Their
results can be used to derive a stability criterion for the maximum allowsble
timestep. It turns out to be a very lenient and sasily satisfied condition. The
practical limit on timestep arises through the nonlinear advection terms: the
stability condition is the same as that resulting from the semi-implicit scheme,
and depends on the maximum advection velocity. This restriction can be
circumvented by the use of a Lagrangian trestment of advection, resulting in a
practically unrestricted scheme.

The Laplece transform scheme is of particular interest in the
context of continuous data assimilation. This process involves the modification
of the meteorological fields during a forecast run by insertion of new data.
One consequence of data insertion is the disruption of the fine balance between
the fields, resulting in spurious gravity wave noise. Since frequent
reinitialization is impractical, the noise must be eliminated in some other way.
Most methods of damping, such as divergence damping, which are designed to
control high freguency waves, also affect the rotational motions, altering the
forecast. The Laplace transform technique specifically selects the high
frequency gravity wave components for elimination, and leaves the
meteorological motions virtually unaffected. Rs a result, data may be inserted
continuously and assimilated by the model without undue. shock. Parallel runs

using the Adams Bashforth (AB) and Laplace transform (LT) schemes for data
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assimilation show that the latter scheme absorbs inserted dsta without
apprecisble noise in the ensuing forecest. The AB scheme suffers from
noticeable residusl noise even when the fields are reinitialized after dats
insertion.

The Laplace transform scheme besrs a close resemblance to s scheme
using normal modes, proposed by Daleyb (1980). Both methods forecast the
slowly varying rotationsl components of the flow while diagnosing appropriste
grevity wave components. Since the LT scheme does not require explicit
knowledge of the model normal modes, it may be more useful in the context of
limited ares modelling. Both methods involve costly transformations between
physical space and normal mode or image space. It is possible to derive & set
of equations in physical space (I call them the slow equations) with properties
similar to the scheme of Dsley, but évoiding transformstions at each timestep.
It is proposed that these equstions would provide an efficient end effective
method for forecasting the meteorologically significant components of the flow

and for continuous data assimilation.



2. THE LAPLACE TRANSFORM METHOD

In this section we describe the Laplece transform method of
integrating the equations of motion. In section 28 we outline the theory of the
method; section 2b deals with the effects of discretization of the inversion
operator; and in section 2c we consider the question of stability. The numerical

model used in this study is outlined in section 2d.

2a. Theory.

We consider a system whose state at time t is specified by the

vector X(t), which is governed by an equation of the form
=7 + L¥ + NX) = O 2-1)

where L is a linear operator and ¥ a nonlineer vector function. If the system

is in the state X° ot time t =0 then the Laplace transform of this equation is

~

MX + N = X (2-2)
wherg M{s) = (sl+Ll) with | the identity matrix, s is the transform variasble and
carets denote Laplace transforms.

If we consider the evolution of the system over a short time
interval (0,8{), and assume that the nonlineer term does not very, we may

solve (2-2) as follows
x = m'ix’-aYs3 (2-3)

where N =N(XD). Then, to find the solution at time t = At wé. apply the inverse

Laplece transform

xee) = M -wss3} |
£=at



If we are interested only in the slowly varying components of the flow we may
replace 2—1 by the modified inverse 2* (see Appendix} which acts to filter out

the high frequency components:

X' = 2w = M -wrs1} | (2-4)
t=pt

. Having the solution at t =At we may proceed stepwise to extend the forecast. |

However, it is better to employ a lespfrog timestepping technique; thus, the

solution X° at time 2At can be approximated by

= Q{M-ws1} |
“t=28t
where N' =N(X') is evaluated st the centre of the interval (0,28¢). In general,
having the solutions X" ond X" st times (n-1)At and nAt, we advance the

solution to time (n+1)At as follows:

= M s} | €2+5)
t=2st
Here the origin of time for the inverse transform is (n-1)At so that s
the ‘initial condition’, and the nonlingar terms are evaluated at the centre of
the interval'.
An slternative timestepping scheme was proposed by Vanlsacker and
Struyleert: We assume that the solutions at nAt and (n+#)At are X" and Xm*.

Then we make two steps as follows:

R e S TE UV I (2-6a)
t=At

X" QM- N1} | (2-6b)
t=3Aat/2
The nonlinesr terms are calculated only once. This scheme is slso started by s

forward step. Unlike the lespfrog method, it has no computationsl mode. We

refer to this method as the two-step scheme.

< 5\_



2b. Discretization of the inverse Transform

We have defined the modified inverse transform
Fwos T{FY - e o ™ F(s)-ds -7

To evaluate 2* numerically, we replace the circuler contour ¢’ by »
circumscribed regular N-gon C; (see Figure 1). The integrand is evaluated at the

midpoints s_ of the edges of C;:
s, = 7 expl(2n-1)i7/N]

Now consider the number s raised to the power k=m+rN where 0<m<N. We can

easily show that
k _ _Nr m
S, = (-7 S,

Thus, the function s: (qua function defined on C;) logks like the function s:'
multiplied by a constant (-1N)r. This sliasing means that only the first N
powers of s_are linearly independent:
] 2 N-1
{ Sn'sr:'sn' TS, }

is a basis for functions defined on f:. Thus, we truncate Taylor series

expansions after N terms, so the exponential function ™t is replaced by

=

-~ |
St = (st)™/m! (2-8)

N 0

3
1]

The discrete modified inverse Laplace transform is now defined as follows

WY, = G5, Feopeise,

(where the correction factor «=(ten{s/N))/(n/N) is discussed in Lynch,

%
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1985b). Using the fact that As /s = 27t-«x/N we can rewrite this transform as

Q]| =% %:ﬂsn)e;“t'sn. (2-10)

n=1

(this is the form used by Vanlsacker and Struylaert, 1985). We have shown in
Lynch (1985a) that 2*2 is a perfect low-pass filter (see also the Appendix).
it is of interest to investigate the response of the numerical filter FN defined

by
®
FN = SZ'N 2
This question has been considered by Van Isacker and Struyleert, who showed that

Fol e“t} = Hor-et

where the response function HN is given by
Hio) = 1/ E+Cio/nM. (2-11)

Thus, FN is a double action filter: it damps the input function gtot by Hyla),
but salso truncates the Taylor series expansion at N terms. Graphs of the
response function H (o) for various values of N are shown in Figure 2.

The operator FN leaves the function e:% unchanged. Thus, it is

idempotent of order two. However, since it is not bounded (in the supremum

or L_norm) it is not a projection in the Hilbert space sense.

2c. Stability

We consider the stability properties of the Laplece transform method
by applying it to a simple linear oscillation equation, first with all terms
transformed explicitly, and then with @ term held constant during each

timestep and representing the nonlinear advection.
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Consider the oscillation equation
X+toX = 0, X(@) = X 2-12)

Let X' =X((n-1)a8) end X"=X(ndt). We use the leapfrog method described in
section 2a to integrate this equation. Transforming the equation with the origin

of time taken at t=(n-1)At we have

~

X = X"V(s+io) (2-13)

Then, applying the (continuous) inversion operator S:'* with t =20t we get

-t -1
e OZAtxn , '0|<7
xn+l -
0, |0l)7
. -iw2ht L L , .
Since le ¢ |=1. weg have unconditional stability, i.e. for the continuous

operator 52-* the timestep At is unrestricted. In reslity we must replace 2*

by 2; Recsll that

il 1srio) o= Hed-ey".
Thus, epplying Sﬁ: to (2-13) with t =2At we get the numerical solution

n+! 1

X" = H (o) ey R

-
N X

(2-14)

For stability it is sufficient that the quantity multiplying X" have modulus not

greater than unity, i.e.

Ho)eg | < (2:15)

Now, using Taylor"s theorem with remainder we can show that

-]0‘_



I‘ -1u28t
e

y < 1+ lo-28t" /N

and since the response function H, is given by (2-11), we get, as a sufficient

condition for stability, that (o-28t2"/N$ < (o/9)", or

pt ¢ N (2-16)

Defining the cutoff period 1,=2n/7, and using Stirling’s formule, we may write

(2-16) in & simpler, though slightly less sharp, form:
At < Nr/dwe. (2-11)

This is a very lenient stability criterion; for example, with typicsl values N =8

and 7, =12 hours it implies
At € 24/me = 2-8hours.

This is a longer timestep than we are likely to wish to use in practice.

If the two-step scheme is used Instead of the leapfrog scheme, the
permissible timestep for linear stability is doubled. Note that, in any cese, this
stability criterion does not depend upon the spatial resolution: this s
particularly important for varisble grids, where a locally fine resolution might
otherwise impose an over-restrictive CFL criterion.

The advection terms impose a more stringent limitation upon the
timestep. Consider (2-12) again on the interval (0,2A¢) and evaluste the second
term at time At. Then the transform may be written

~

X = X - ioX's
If we invert this by applying 2.' with t =20t and assume that X"=A"" we. get

A+ 2t(uAIR -1 = O



It is straightforward to show that the roots of this quadretic for A are

unimodular provided that

ot < 1 (2-18)
whereas one of the roots has modulus greeter than unity if this condition is
violated. Thus, (2-18) is the condition for stability. The advection term is of
the form UX_, which for wavenumber k and grid distance Ax becomes

(SR 5x = g

Therefore, stability is ensured provided we have

‘j—A‘it— < 1 (2:19)
X

This is the usual CFL criterion, just es we have for the semi-implicit method
where advection is treated explicitly.

In the integrations we found thst the leapfrog scheme remained
stable provided that (2:19) was satisfied. However, the two step method
became unstable if GAt/Ax was greeter than sbout 0-35. The reeson for this is
not precisely understood, but presumably it is due to the uncentered nature of
(2- 6b). The results presented below are for runs using the leepfrog scheme.

It is not possible to explicitly transform the nonlinesr terms.
However, the CFL restriction may be circumvented in another way: the
advection may be in'tegrated by the semi-Lagrangian technique, which is
unconditionally stable. In that case the only restriction is that due to the

discretization of the Laplace transform, namely (2-16) above.

2d. The Forecast Model

The model used in this study is the simple one-dimensional model

DYNAMO described in Lynch (1984). The basic equations may be written:
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g, W v gs+py = 0 (2-20)
&, * (Wd) - fL +put + 0 = 0 (2-21)
0, + (W) - flv + b6 = 0 (2-22)

The veriables ¢, 6 and 0 are specified on a staggered grid of M points, and
periodic boundary conditions are assumed. Thus, the state of the system at

any time is completely defined by the vector

XKoo= 008000 or 808000 0 oo L8 By
The Laplace transform of ¥ is written § When the system (2:20)-(2-22) is
transformed, the resulting equations may be written as a single vector
equation:

~

MX + N = (2-23)

where M is & matrix depending on s, N is the vector of nonlineer terms and x°
is formed from the initial values (for more details see Lynch, 1984). Equation
(2:23) is formally identical to (2-2), so that the method of integration
outlined in section 2a may now be applied.

in the model runs described below we chose @ channel length
L=10"m, where M-Ax=L with M =50 and Ax =200km. For the chosen parameter
values the maximum Rbssby wave frequency and minimum gravity wave frequency
have the (nondimensional) values:
= 0.203 ; |l vw = 2.224.

I VR lmex G lmln

Any value of 7» lying between these values should serve to separate the
timescales. The value » =1 was chosen. The contour t:‘t was approximated by an

octogon €, (Figure 1); only the upper half of this contour need be considered
9 8 g PP
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(Lynch, 1985b). The matrix M was evaluated st the centre points s of the
four upper edges As_, inverted and stored for use during the forecast. The
forecasts were evaluated by reference to a run using an Adams Bashforth time
scheme with At =30sec.., from which the rms differences in vorticity,

divergence and geopotential were calculated.
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3. NUMERICAL RESULTS

3a. Comparison between the Laplace Trensform (LT) and

Rdams Bashforth (AB) Timestepping Schemes

In order to show that the Laplace transform (LT) scheme described
above is an effective method of integrating the equations of motion, we
incorporated it into the model DYNAMB (Lynch, 1984) and compered the results
to those using the well-tried Adams Bashforth (AB) method.

The parameter values chosen for~the parallel runs are as follows:

Gridpoints 50 Forecast Length 48 hours
Channel Length 10,000 km Timestep (LT) 1 hour
Gridfength 200 km Timestep (AB) 30 secs.

The initial conditiens consisted of a superposition of ten wave components with
rendomly chosen phases and amplitudes such that the energy spectrum was
proportional to k'-5/3. where k is the wavenumber. The wind was derived using
the geostrophic relationship, and then the flelds were initislized using the
Laplace transform technique (Lynch, 1985@). The value »=1.0 was chosen,
corresponding to a cutoff of components with periods less than 12 hours. (A
modification of the iteration procedure was proposed by Vanlsacker and
Struylaert (1985): this results in improved convergence properties of the
scheme and was incorporated in the version used in this study). Parailel runs
of the model using the LT and AB schemes were made, and the results written
to disk for subsequent- analysis. The root mean square (rms) values of the
differences between the geopotential, vorticity and divergence fields for the
two runs were calculated. The initial geopotential field- (nondimensionalized) is
shown in Figure 3(a), and the 48 hour- forecasts using the AB and LT schemes in
Figure 3(b). The two forecasts are virtually identicel: the rms difference is
ab=15mzs_2‘; this is- minute compsred to the standard deviation of the Ffields

(which is of order 10°m%™). The two curves of Forecast_ geopotential in

~15-
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TABLE 1

36

Root Meen Square differences of the Geopotential, Vorticity and Divergence

fields, between the Adams-Bashforth (AB) run (At = 30sec.)

and the Laplsce Transform (LT) runs with various timesteps.

At Ty 0'{ o

4 hr. 1.0:10' 5.0:10" 1.7:10°
I he. 1.5.0' 1.0:0° 2.0:10°
2 hre. 2.0:10' 2.0:10° 3.0:10°
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Figure 3(b) are indistinguishable; a plot- of the difference, scaled by 100, is
also shown,

Although the geopotentiel forecasts are almost identical, there are
some visible differences in the manner in which the divergence fields evolve in
the two cases. In Figure 4 we show the divergent kinetic energy at a central
point during the 48hour run. The AB run (solid line) is noticeably noiser than
the LT run (deshed line). The Laplace transform method is better at controlling
gravity wave noise during the forecast. However, it should be observed that
the noise in the AB run is of small amplitude and unlikely to be of significance
— this is so since the flelds have been well initialized.

In Table 1 we show the rms difference between the geopotential,
vorticity and divergence fields, after 48 hours, of the reference run (RB
scheme, At =30 sec.) snd the LT scheme with various- timesteps. We can see
that even with a 2hour timestep the LT scheme vyields results very close to
the reference run. This Implies the possibility thet it. may provide & very

efficient. meens of integrating the equations of motion.

3b. Experiments with Data Insertion during the Run

Parallel runs to 4B hours were made with the AB and LT schemes. In
each cese the fields were perturbed after 12 hours in the following way: a
smell increment A® is added to the 0 fleld and a corresponding geostrophically
balanced increment is added to the meridional wind Ffield. The integration Is
continued by making a forward step of length At/2, followed by normal
centered steps. The & field at 12 hours, end the perturbation A® are shown in
Figure S(a). The meridional wind field and perturbation are shown in Figure
5(b). The perturbation is meant to simulate the insertion of observational
information during the forecast run. The subsequent evolution is then examined.

In the cese of the AB scheme the date insertién resulfs in the
generation of>noise in the ensuing forecast. This is due to the disruption of
the delicate balance between the mass- and wind- fields. The divergent_ kinetic
energy of the original run is plotted as & solid-curve in Figure 6(e), and the

results for the run perturbed after 12 hours is shown by the dashed curve.
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The system clearly suffers shock due to the insertion of the data. and the
forecast is noisy thereafter. The corresponding plot of the results using fields
which were re-initislized after data insertion is also shown (Figure 6(a),
dotted line). The shock due to date insertion is much reduced, but there is
still some noise remaining.

In Figure 6(b) we show the difference between the originel and
perturbed runs using the LT scheme. In this case the flelds were not
re-initielized after data Insertion:; nevertheless, there is no evidence of shock.
The model Fforecsst- adjusts immedistely to the new field values, and the
subsequent evolution is noise-free.

The rms differences: between the original and- perturbed- forecast
fields were calculated and compared. In Figure 7(s) the differences in the
geopotential field sre shown. The runs are broadiy similer, but-there Is cleerly
more noise in the runs using the AB scheme, even when reinitislized sfter dsta
insertion. The vorticity fields, shown in Figure 7(b), are all fairly similar.
Finally, in Figure B we see plots of the divergence fields. The shock due to the
data insertion is manifest (Figure B8(s), solid line). This is reduced, but not
entirely, by reinitislization (dashed line, Figures 8(a) and 8(b)). That the
Laplace transform scheme can absorb the inserted data smoothly is clearly
shown in the dotted curve in Figure B8(b) (note the expanded vertical scale).

The above results show thet the LT scheme- is capable of sbsorbing
new observational information during the forecast. run, without undue shock or
noise in the ensuing forecast. The RB scheme suffers from acute noise due to
data assimilation, and this is not entirely eliminated by re-initializion of the
fields.

Several parallel runs were made with the RAB and LI schemes, in
which the fields were modified frequently during the runs, to simulste
continuous data assimilation. In some cases dozens of “observatiens® were
introduced. The results coofirmed the above findings: the. LT integretion
proceded smoothly, adjusting to & pew state of slow evolutien whenever new
dets were introduced, whereas the AB scheme was incapeble- of ~sssimilating the

dats without shocks.
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4. THE LAGRANGIAN ADVECTION SCHEME

The LT scheme handles the linear terms in such a manner as to allow
a lerge timestep: the only restriction, due to the discretization of the
inversion integral. is a very lenient one (2-16). This means that-the fast
gravity waves do not limit the timestep. However, the nonlinear advection
terms are hendled in an explicit. manner, and this results in a CFL. criterion
depending on the advection speed (2-19). For reslistic. atmospheric flows this
limitation cen be problematic, as the advective windspeed may be focally large. A
meens of ciccumventing this restriction Is to use & Lagrengian scheme for
advection (Robert, 1981; Bates and Mclonald, 1982).

To test  the shove idea the model was modified- in such & way that
the advection by the mean flow U was integrated in @ Lagrengien manner. Thus,

we have, for example,

such that the value at. gridpoint. k at time (n+1)At equals- the value at- some
departure point (denoted by the star) at time (n-1)4t. The deperture point is
a distance 20At upstreem from the gridpoint k and the variables are evaluated
there by quartic interpolation (using the neasrest five gridpoints). The source
term (~va=vl§9) is also an advective term and was integrated in a Lagrangian
manner; however, In order to avoid spurious energy generation it was found to
be necessary to use the meridional velocity at the arrival point in calculating
this term. We discuss this further below.

Each advection step was followed by an adjustment. step which used
the Laplace transform technique to integrate the remaining terms. We call the
combined scheme the Laplace-Lagrange (LL) model.

Three perallel runs were made using the RAdams Bashforth (AB)

scheme, the Laplace transform (LT) method- with the advection terms
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integrated explicitly, and the Leplace-Lagrange (LL) scheme described above.
The initial condition was a geostrophically balanced wavenumber one perturbation
superimposed on a zonal meen flow G. The stability of the LT scheme is
determined by the nondimensional number Le = GAt/Ax (denoted Le for Lewy, who
discovered the stability criterion (see Reid, 1976, p116)). For the RAB scheme
we set At =30sec., and for the LT and LL runs At =3600sec. =1 hour. The grid
interval was bx =200km in all cases. Thus, the criticel velocity for stability is

0=555 ms'_'. We chose two values of the zonal velocity as follows:

SO ms' : Le = 0-90

0ms' ; Lle = 1-08

(=4 ]
fi

<l
1]

The forecast geopotential after 48 hours is shown in Figure 9. For G=50m/s
the three schemes give very similar results —- it is difficult- to distinguish
between the three curves in Figure 9(a). For U =60m/s the stability criterion
(Le < 1) is violated and the LT scheme becomes unstable. This is clearly seen in
Figure 9(b). The Adams Bashforth and Laplace-Lagrange schemes remain stable,
and both give very similar results — the AB and LL curves are almost.identical.

Further runs with G=100m/s and with other initial conditions
confirmed that-the LL scheme remains stable- for strong advection. This scheme
gives us @ method of integrating the equations using timesteps of the order of
an hour, without the problem of numerical instability. The only restriction is
the criterion (2-16) due to the discretization of the inversion integral.

In the case where all three schemes remained stable the errors in
the LL scheme, though small, were larger than those using the LT scheme
(errors were relative to the AB run). This is believed to be due to the handling
of the source term (-fUv). In the case of geostrophic. flow this term exactly
balances the mean advection U , and-in general it-seems that special cere must
be taken in modelling the small residual. The results with the LL. scheme were
found to be quite sensitive to the precise manner in which this term was
integrated. The question was not- exemined further, since in more general

models the advection is-not separated into components in this-way.
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5. DISCUSSION

The numerical technique discussed in this report allows us to
forecast the meteorologically significant components of the flow whilst
attenuating the high freguency components to the level necessary for nonlinear
balance of the rotational modes. The application of the method does not require
explicit- knowledge of the normal modes of the forecast model.

Van Isacker and Struylaert (1985) have applied the Laplace transform
method to a three dimensional global spectral model. They report that the
method provides an efficient means of integrating the primitive equations,
allowing them to use & large timestep, and that the evolution of the
meteorological fields is much smoother that thet obtained using explicit
integration methods.

Datey (1980) hes used the idess of normal mode initialization to
develop @ method of integrating the primitive equations efficiently. The original

equations can be written

X + LY + NX) = O (5-1)

where X is the state vector of unknowns, L. is & constant linear operator

(matrix) and N is & nonlinear vector function. When transformed to Hough mode

space, the system splits into two subsystems:

i
(=]

Y + AY + NAWD (5-2)

2+ A2+ NOLD

1
(=]

(5-3)

Where Y. and € are respectively the coefficients of the slow and fast
components of the flow and A, A, are diagonal matrices of eigenfrequencies.
Assuming Machenhauer’s criterion (2=0) to hold throughout the Integration,

Datey replaced (5-2)-1(5-3) by the system
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(5-4)

i
(==

¥oeoAYL + N(OLD

AZ ¢ NOYLD (5-5)

"
&

giving a prognostic equation for the slow modes and @ diagnostic equation for

the fast modes. | will call (5-4)-(5-5) the Slow Equations. Using the slow

equations, Daley developed an integration scheme which was stable, efficient
and accurate: he compared a run with the slow equations and At-=40min. to o
control run with the primitive equations and At =10 min.; the rms differences
in surface pressure and 500 hPa winds at 48 hours were onfy 0-6hPa and 1 m/s.
These differences are minute.

The great- majority of  the additional computational effort_ (per
timestep) in Daley's- scheme is due to the trensformations between spectesal
(spherical harmonic) space and normal (Hough-)mode space: for a gridpoint
model the transformations would be even more expensive. The Laplace
transform technique avoids these transformetions but involves, insteed,
transformations to and from image space (s-space), which are also expensive.
Using the ideas of implicit normal mode initialization (Temperton, 1985;" Juvanon
du Vachat, 1986), | have derived- & set- of equations, expressed in terms of the
physical variables (not normal modes), which forecast the low frequency
motions while diegnosing appropriate gravity wave components.. These slow
equations in physical space obviate the need for costly transformations. The
slow equations are similar to the balance system, but not identical to it. They
would appear to provide us with a means of selectively forecasting those
components of the atmospheric motion which are important, while avoiding the
troubles associsted with the gravity waves. They would also seem to provide a
suitable means for the assimilation of observational data during a forecast,- as
they can absorb inserted data without suffering high frequency shocks.

The three methods mentioned here are obviously all closely related to
each other, and may be expected to behave similarly in their handling of-gravity
wave noise. All would seem to show promise in the area of continuous data

assimilation. Since the slow equations in physicel space require -no
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transformations, they would seem to offer the most attractive prospect. They
involve the solution of Helmholtz and Poisson equations at esch timestep and
would therefore be most economically incorporated in a spectral (spherical
harmonic) context. It is hoped to test the slow equations in a full baroclinic

model and to present the results in @ further report.
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APPENDIX
Laplace Transform Theory

The basic definitions and properties of Laplace
transforms needed in this study are summarized, and
the method of filtering is described. A good compre-
hensive guide to the theory, from a practical viewpoint,
is Doetsch (1971).

The Laplace transform of a function f{#) of time ¢
is defined as:

LI} =f5) = fo ) Sfinedt (A1)

and is a function of the associated complex variable
s. Thus, a constant a transforms to a/s. The complex
exponential function representing a wavemotion is
transformed to an algebraic function

L{e“} = 1/(s — iw). (A2)

Since .L is linear, the superposition of a number of
waves may be transformed component-wise:

J J
L{z ajei“’f’} = z aj/(s - iwj). (A3)
j=1 J=1
The higher the frequency wj, the further the corre-
sponding pole s = iw; lies from the origin.

If the transform of f(f) is f(s) then the time-
derivative, f'(¢), transforms as

L{f'O} = s-f(5) — 0 (A4)

where f(0) is the initial value of f(¢). Thus, differen-
tiating in #-space corresponds to algebraic operations
in s-space. This is the power of the Laplace transform
method: it lowers the level of transcendence of func-
tions and operators. Ordinary differential equations
transform to algebraic ones.

A modification of the Fourier theorem gives us the
complex inversion formula for the Laplace transform:

" 1 “
10 = LA = 5 [ oerds (a3)

where the contour C is parallel to the imaginary axis,
and to the right of all singularities of f(s). We assume
that f(s) is meromorphic, that is, analytic except for
isolated poles; and that the contour C can be com-
pleted by an asymptotically large semicircular arc in
the left half plane.

The contributions to f{¢) in (A5) come from the
poles of f(s). Since the high-frequency components
correspond to poles far from the origin, they can be
eliminated by shrinking the contour to a circle C* of
radius r centered at the origin. This is the motivation
for the definition of the operator .L* [Eq. (7), Section
2k}, and we see that L*.L acting on f{#) will select
the components with frequency w < r and filter out
the high-frequency components of f(?).
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