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Abstract

To elucidate his numerical technique and to examine the effective-
ness of geostrophic initial winds, Lewis Fry Richardson carried out
an idealized forecast using the linear shallow-water equations and
simple analytical pressure and velocity fields. This barotropic fore-
cast has been repeated and extended using a global numerical
model, and the results are presented in this paper. Richardson’s
conclusions regarding the use of geostrophic winds as initial data
are reconsidered.

An analysis of Richardson’s data into normal modes shows that
almost 85% of the energy is accounted for by a single eigenmode,
the gravest symmetric rotational Hough mode, which travels west-
ward with a period of about five days. This five-day wave has been
detected in analyses of stratospheric data. ltis striking that the fields
chosen by Richardson on considerations of smoothness should so
closely resemble a natural oscillation of the atmosphere.

The numerical model employed in this study uses an implicit
differencing technique, which is stable for large time steps. The
numerical instability that would have destroyed Richardson’s
barotropic forecast, had it been extended, is thereby circumvented.
It is sometimes said that computational instability was the cause of
the failure of Richardson’s baroclinic forecast, for which he obtained
a pressure tendency value two orders of magnitude too large.
However, the initial tendency is independent of the time step (atleast
for the explicit scheme used by Richardson). In fact, the spurious
tendency resuited from the presence of unrealistically large high-
frequency gravity-wave components in the initial fields.

High-frequency oscillations are also found in the evolution
starting from the idealized data in the barotropic forecast. They are
shown to be due to the gravity-wave components of the initial data.
These oscillations may be removed by a slight modification of the
initial fields. This initialization is effected by means of a simple digital
filtering technique, which is applicable not only to the linear equa-
tions used here but also to a general nonlinear system.

1. Introduction

Before attending to the complexities of the actual
atmosphere . . . it may be well to exhibit the working of a
much simplified case. (Richardson 1922, p. 4)

The numerical weather forecast carried out manually
by Lewis Fry Richardson in the second decade of this
century was a triumphant scientific achievement. The
true significance of his work was clouded by his
unrealistic results, in particular the “glaring error’ in the
pressure tendency, for which he calculated a change
of 145 hPa in 6 h. In view of these results, his decision
to publish the book Weather Prediction by Numerical
Process (Richardson 1922; denoted LFR) was an act
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of considerable courage, as there were few who could
appreciate the great worth of his brilliantly innovative
research.

To clarify the essential steps required to obtain a
numerical solution of the equations of motion,
Richardson included in his book (LFR, chap. 2) an
introductory example in which he integrated a linear-
ized system equivalent to the shallow-water equa-
tions. For this example he used an idealized initial
pressure field defined by a simple analytical formula,
and corresponding winds derived from the geostro-
phic relationship. In the following, this barotropic fore-
cast will be reexamined, and repeated and extended
using a global numerical model.

A superlative review of Richardson’s book by
Platzman (1967) appeared on the occasion of the
publication of the Dover paperback edition in 1965.
This extensive article is a wonderfully readable ac-
count of Richardson’s work, enriched by fascinating
historical detail. Platzman wrote that he found the
illustrative example in chapter 2 “one of the most
interesting parts of the book!” Richardson’s step-by-
step description of his calculations is clear and explicit
andis a splendid introduction to the process of numeri-
cal weather prediction. In contrast, the remainder of
the book is heavy going, containing so much extrane-
ous material that the central ideas are often obscured.

2. Richardson’s model and data

The equations solved by Richardson are obtained by
vertical integration of the primitive equations linear-
ized about anisothermal, motionless basic state. They
may be written as follows:

au _ a_[(p'\ _
W fy 4 8x<p0> =0 (1)
av a_(p'\ _
ot + fu + 8y<p0> =0 (2)
d_(p' YR
() + gHV-V =0 &)

The dependent variables are the horizontal wind V =
(u,v) and the surface pressure perturbation p'. The
independent variables are the time ¢, latitude ¢, and
longitude A (dx=acos¢dAand dy = ad ¢ are distances
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Fia. 1. The initial pressure field chosen by Richardson for his ba

eastward and northward on the globe). The earth’s
radius is 2 x 10’ m = 6366 km. The gravitational
acceleration is g =9.79 m s, and f=2Qsin¢ is the
Coriolis parameter. The scale height H=RT, g ' was
setat9.2km, corresponding to a mean temperature T,
=314 K, somewhat larger than one might expect. The
value chosen for Hwas based on observations carried
out by W. H. Dines (LFR, p. 4). The reference density
p, may be determined by fixing the mean surface
pressure; taking p, = 1000 hPa, itis approximately 1.1
kg m=3. The familiar velocity form of the equations of
motion has been used here, although Richardson
wrote the equations in terms of vertically integrated
momentum. He used the cgs system of units; the
momentum values on page 8 of LFR are approxi-
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rotropic forecast (reproduced from LFR, p. 6).

mately equivalent to the S| values of wind speed
multiplied by 10°; his pressure values are numerically
equal to pressure in microbars or deciPascals.

The Egs. (1)—(3) are mathematically isomorphic to
the linear shallow-water equations that govern the
small-amplitude dynamics of an incompressible ho-
mogeneous shallow fluid layer on a sphere. In this
case one interprets Has the mean depth and equates
(p'/p,) to @' = gh’, the geopotential perturbation of the
free surface. The equations are also called the Laplace
Tidal Equations and their solutions have been studied
extensively by both analytical and numerical means.

The initial pressure perturbation chosen by
Richardson is depicted in Fig. 1. It is a simple zonal
wavenumber-one perturbation, given by
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p' = 10° sin20 cos¢ sink (Pa), (4)

which is symmetric about the equator with maxima of
magnitude 38.5 hPa at 90°E and 55°N and S, and
corresponding minima in the western hemisphere at
the antipodes of the maxima. The initial winds were
taken to be in geostrophic balance with the pressure
field, and are given by

u=-(10*2Qa p )(2cos?p - sin?p) sinA (ms™") (5)
v=(10%2Qa p ) sing cosh (ms™). (6)

The maximum velocity is about 20 m s~ zonally along
the equator.

Figure 1 is an “elevation” view of the eastern hemi-
sphere on what appears to be a globular or equidistant
projection. This is reproduced from page 6 of
Richardson’s book and is also featured on the cover of
the Dover edition. It is surprising that the Antarctic
coastline, well known long before Richardson’s day, is
unmarked on the background map.' A “plan” view of
the initial fields in the northern hemisphere, on a polar
stereographic projection, is shown in Fig. 4(a).

3. The barotropic forecast

Richardson calculated the initial changes in pressure
and wind (or momentum) using a finite difference
method. He selected a time step of 2700 s, or 3/4 h,
and used a spatial grid analogous to a chessboard,
with pressure evaluated at the center of the black
squares and winds at the center of the white. The
frontispiece of LFR shows such a grid, displaced 2°
west fromthat usedin hisintroductory example. Today
such a discretization is called an E-grid, following the
classification introduced by Arakawa; however, the
appellation “Richardson Grid,” proposed by Platzman,
would perhaps be better. The distance between adja-
cent squares of like color is 400 km in latitude, with 64
such squares around each parallel. This implies grid
intervals of AL = 5.625°, A¢ = 3.6°. The resolution at
50°N is about the same in both directions. The advan-
tage of the chessboard pattern is that the time rates
are given at the points where the variables are initially
tabulated. Thus, the integration process can be con-

"There is another curiosity about the background map in Fig. 1: The
island marked near 50°S, 80°E is 10° east of its correct position. This
island was discovered by Kerguelen in 1772 but his determination
of its longitude was inaccurate. The following year, James Cook, on
his second voyage, crossed the assigned latitude 10° too far east
and failed to find it (Debenham 1929). it is interesting that the
position of the island marked in Fig. 1 coincides with Kerguelen's
original estimated location.
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tinued without limit and is in Richardson’s words
“lattice reproducing.” The chessboard pattern is de-
picted in Fig. 2 (from Platzman 1967).

The changes in pressure and momentum were
calculated for a selection of points near England and
entered in the table on page 8 of LFR. The focus here
will be on the pressure tendency at the grid point 5600
km north of the equator and on the prime meridian (the
coordinates are 50.4°N, 0°E, and the point lies in the
center of the English Channel, south of Sussex). The
value obtained by Richardson was a change of 2.621
hPa in % h. This rise suggests a westward movement
of the pressure pattern (similar rises were found at
adjacent points). Such a movement is confirmed by
use of the geostrophic wind relation in the pressure-
tendency equation (3). The divergence corresponding
to geostrophic flow is

VeV, = (-B/N) v, = (-B/p,1?) 32,

where the “beta parameter” is B = 0f/dy. This implies
convergence for poleward flow and divergence for
equatorward flow. Since the initial winds are geostro-
phic, the initial tendency determined from (3) is

B _ (gHpIf*) L @)

[LFR, Eg. (8)]. This means that “where pressure
increases towards the east, there the pressure is rising
if the wind be momentarily geostrophic” (LFR, p. 9).
Richardson argues that this deduction indicates that
the geostrophic wind is inadequate for the computa-
tion of pressure changes.

The right-hand side of (7) is easily calculated for the
chosen pressure perturbation (4). The parameter val-
uesarea=2x10"1w"'"m, g=9.79 ms2 H=9.2 km,
20 =1.458x10"*s™, in agreement with LFR, page 13.
At the point in question, the tendency calculated from
(7) comes to 0.09713 Pa s or 2.623 hPa in % h. This
analytical value is very close to the numerical value
(2.621) calculated by Richardson, indicating thaterrors
dueto spatial discretization are small. The assumption
of geostrophy implies zero initial tendencies for the
velocity components; this follows immediately from (1)
and (2). The calculated initial changes of momentum
obtained by Richardson were indeed very small, con-
firming the accuracy of his numerical technique.

Richardson, pointing out that “actual cyclones move
eastward,” described a result of observational analy-
sis that showed a negative correlation between dp'/dt
and dp'/dx, in direct conflict with (7). In fact, the
generally eastward movement of pressure distur-
bances in middle latitudes is linked to the strong
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prevailing westerly flow in the upper troposphere.
Presumably, Richardson was unaware of the domi-
nant influence of the jet stream, whose importance
became evident only with the development of com-
mercial aviation.

Richardson was free to choose independent initial
fields of pressure and wind, but “it has been thought to
be more interesting to sacrifice the arbitrariness in
order to test our familiar idea, the geostrophic wind, by
assumingitinitially and watching the ensuing changes”
(LFR, p. 5). Recall that he worked out the introductory
example in 1919, perhaps at W. H. Dines’ suggestion
(the chapter ends with an acknowledgment to Dines;
LFR, p. 15). He had ascribed the failure of his baroclinic
forecast to erroneous initial winds. He wanted to
examine the efficacy of geostrophic winds and, more-
over, Eq. (7), which foliows from the geostrophic
assumption, allowed him to compare the results of his
numerical process with the analytical solution for the
initial tendency. As has been seen above, the numeri-
cal errors were negligible. However, the implication of
(7) for the westward movement of pressure distur-
bances led him to infer that the geostrophic wind is
inadequate for the calculation of pressure changes.
Toward the end of the chapter, he concludes: “It has
been made abundantly clear that a geostrophic wind
behaving in accordance with the linear equations (1),
(2), (3) cannot serve as anillustration of acyclone.” He
then questions whether the inadequacy resides in the
equations or in the initial geostrophic wind, or in both,
and suggests that further analysis of weather maps is
indicated.

Was Richardson’s conclusion on the inappropriate-
ness of geostrophic initial conditions justified? It is
clear from a historical perspective that the reason that
his simple forecast lacked verisimilitude lies else-
where. The zonal component of the geostrophic rela-
tionship is obtained by omitting the time derivative in
(2). Taking the vertical derivative of this (allowing for
variations of density) and using the hydrostatic equa-
tion and the logarithmic derivative of the equation of
state, one obtains the thermal wind equation:

ay g\ 9T U\ aT
Z-mye o

The second term on the right may be neglected by
comparison with the first. Taking a modest value of 30
K for the pole-to-equator surface temperature differ-
ence, and assuming that this is representative of the
meridional temperature gradient in the troposphere,
(8) implies a westerly shear of about 10 m s between
the surface and the tropopause. Thus, if the winds
_near the surface are light, there must be a marked
westerly flow aloft. Although the importance of the jet
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stream was unknown in Richardson’s day, the above
line of reasoning was obviously available to him. Yet,
he focused on the geostrophic wind as the cause of
lack of agreement between his forecast and the ob-
served behavior of cyclones in middle latitudes. Surely,
the real reason for this was his assumption of a
barotropic structure for his disturbance, in contrast to
the profoundly baroclinic nature of extratropical de-
pressions. ,

Richardson might have incorporated the bulk effect
of the jet stream on his perturbation by linearizing the
equations about a westerly flow. Platzman has opined
that Richardson’s “disregard of perturbation theory as
a means of clarifying the problems of dynamic meteo-
rology” was a major defect in his approach to weather
prediction (Platzman 1967, p. 530).

4. The global numerical model

Richardson’s forecast has been repeated and ex-
tended using a global barotropic numerical model
based on the Laplace tidal equations (1), (2), and (3),
the same linear equations as used by him. The same
initial data were used and the same time step and
spatial grid interval employed. There were only two
substantive differences from Richardson’s method.
First, an implicit timestepping scheme was used to
insure numerical stability, in contrast to the explicit
scheme of LFR, which is restricted by the Courant-
Friedrichs—Lewy (CFL) criterion. Second, a C-grid
was used for the horizontal discretization. The C-grid
has zonal wind represented half a grid step east, and
meridional wind half a grid step north of the pressure
points. This grid was chosen when the model was first
designed, for reasons that are irrelevant in the current
context. Richardson’s grid comprises two C-grids su-
perimposed, and coupled only through the Coriolis
terms (Fig. 2). The initial pressure tendency calculated
on one C-grid is independent of the other. The distri-
bution of variables on the C-grid in the vicinity of the
North Pole is shown in Fig. 3 (from McDonald and
Bates 1989).

The CFL criterion requires that the time step of an
explicit scheme be chosen to satisfy an inequality of
the form

CAt

LGEES'I,

where c¢ is the maximum wave speed. This
nondimensional parameter is often called the Courant
number, but is denoted here as Le for Lewy, who
discovered the stability criterion (Reid 1976, p. 116).
The advantage of implicit differencing is that the CFL
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Fia. 2. The Richardson grid. Pressure is evaluated at the center
of the black squares and winds at the center of white. The grid is
comprised of two C-grids, one composed of the quantities marked
by asterisks, the other composed of the remalnlng quantities. (From
Platzman 1967.)

condition no longer applies and a longer time step may
be used.

The numerical scheme used is a linear version of
the two—time-level scheme devised by McDonald
(1986). The momentum equations (1) and (2) are
integrated in two half-steps, At/2. In the first half-step,
the Coriolis terms are treated implicitly and the pres-
sure-gradient terms explicitly:

(U —u")y = Fv"*t 4 DO" = 0 9)

)

(V" =) + Fu" 4+ DO = 0. (10)

Here ® =p'/p,, D= At/2, and F=fAt/2. In the second
half-step, the Coriolis terms are explicit, while the
pressure-gradient terms are implicit:

n+1

(U _un+%)_,_—n+z Dq)n+1_0

(11)
(v = vt Rt D®)*'=0. (12

If (9) and (10) are solved for u ™2 and v "', these
quantities can be eliminated from (11) and (12), yield-
ing:

"+ D" = R, (13)
v+ DO = R, (14)

The right-hand terms R = (R,,R,) depend on the
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variables attime nAf. An expression for the divergence
at time (n+1)At follows from these equations:

V.Vn+1 IV’R.

The continuity equation (3) is integrated in a single
step At

+ DV %o’ (15)

@ - ") + dD(YV " + YV (16)
where @ = gH. Elimination of the divergence between
(15) and (16) yields an equation for @"*':

[V - K]

where K?= 1/(®°D?), and the right-hand forcing is
calculated from variables at nAt. This Helmholtz equa-
tion is solved by the method of Sweet (1977). With @+
known, u ™' and v ™ follow from (13) and (14). The
simple form of (17) is a consequence of splitting the
integration of the momentum equations into two half-
steps. However, the splitting is formal, and no (n+ 1/2)-
level quantities are actually computed. An analysis of
the scheme is undertaken in McDonald (1986) and
it is shown to be unconditionally stable and to have
a time truncation of O (Af).

"' =R, (17)

5. Extending the forecast

The pressure and wind selected by Richardson and
specified by (4), (5), and (6) are shown in Fig. 4a.
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Fia. 3. The distribution of variables on the C-grid in the vicinity of
the North Pole.
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Fic. 4. (a) The initial fields of pressure and winds in the Northern Hemisphere. (b)—(f) Forecasts valid every 24 h from one to five days;

(e) and (f) on next page.

Figures 4b—f show the forecast fields valid every 24 h,
out to five days. Only the Northern Hemisphere is
plotted, as the fields south of the equator are a mirror
image of those shown. The initial change in pressure
atthe location 50.4°N, 0°E was 2.601 hPain 3/4 h. This
is close to Richardson’s value (2.621), the slight differ-
ence being due to the implicit timestepping scheme.
The wavenumber-one perturbation rotates westward,
almost circumnavigating the globe in five days. The
pattern is substantially unchanged in extratropical
regions. In the tropics, a zonal pressure gradient,
absent in the initial field, develops and is maintained
thereafter. )
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One may ask why the chosen perturbation is so
robust, sustaining a coherent structure for such a long
time and undergoing little change save for the retro-
gressive or westward rotation. This behavior is in fact
attributable to the close resemblance of Richardson’s
chosen data to an eigensolution of his linear equa-
tions. These equations were first employed by Laplace
to examine forced tidal motions. Their free or normal-
mode solutions were studied by Hough and Margules,
who found solutions falling into two categories. The
first category comprised rapidly traveling progressive
and retrogressive waves with large divergence fields;
these are the gravity-inertia waves. The “oscillations
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Fia. 4. (e} and (f), continued from previous page.

of the second class” were of lower frequency, with
vorticity dominating divergence, and depending for
their existence on the earth’s rotation; they are re-
ferred to as rotational modes.

The dynamics of the second class of motions were
greatly elucidated by Rossby and Haurwitz. Rossby
(1939) assumed conservation of absolute vorticity on
a beta plane and derived his now-famous formula for
the wave speed:

_o_ BL?
c=1U- ,
4n?
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where u is the zonal mean velocity, B the mean merid-
ional variation of the Coriolis parameter, and L the
wavelength. Haurwitz (1940) found the corresponding
dispersion relation valid in spherical geometry:

2
c=p-_Ba

nin+1)’

where n is the total wavenumber (the degree of the
spherical harmonic solution), and showed that it corre-
sponds to Margules’ oscillations of the second class in
the limit of nondivergent flow. The Rossby—Haurwitz
waves are prototypical of the large-scale free waves in
the atmosphere.

6. Hough function analysis

A more complete analysis of the solutions of the
Laplace tidal equations has been undertaken by
Longuet-Higgins (1968), Kasahara (1976), and oth-
ers. The eigenfunctions of these equations are now
called Hough functions. Figure 5 shows the meridional
structure of height and wind for the first symmetric
normal mode in each of the three categories, for zonal
wavenumber one: Fig. 5a is the gravest, or largest-
scale, rotational mode, Fig. 5b is the first eastward-
traveling gravity wave, and Fig. 5¢ is the largest-scale
westward-traveling gravity wave. These structures
were calculated using the Fortran program in appen-
dix B of Kasahara (1976). He used an equivalent depth
of 10 km, not too far removed from Richardson’s 9.2
km. Plots of several higher modes, and for other zonal
wavenumbers, may be found in his paper. The solu-
tions shownin Fig. 5 closely resemble the correspond-
ing graphs in Figs. 4 and 5 of Kasahara (1976). The
eigenfrequencies and periods of the lowest six
symmetric modes in each of the three groups are
given in Table 1 (these are for Richardson’s value of
H, and differ slightly from Kasahara’s values). The
largest symmetric rotational normal mode (Fig. 5a)
has a period of about five days. This “five-day wave”
has been unequivocally detected in the atmosphere
(e.g., see Madden 1979). The primary eastward-
traveling gravity wave (Fig. 5b) is known as the Kelvin
wave.

The horizontal structure of the five-day wave is
shownin Fig. 6a (with maximum amplitude of 38.5 hPa
as for Richardson’s field). The global model was
integrated for five days using this wave as initial data,
and the result is shown in Fig. 6b. It is practically
indistinguishable from the initial field except for the
angular displacement (it has almost completed a full
revolution of the globe), consistent with the expected
behavior of an eigenfunction. The initial pressure
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tendency calculated for the five-day wave
at the grid point at 50.4°N, 0°E was 1.39
hPain 3/4 h. Recall that Richardson’s data
produced an initial change of 2.62 hPa.
Why the difference? Suppose thatthe pres-
sure pattern (4) defined by Richardson
were to rotate westward without change of
form, making one circuit of the earth in a
period t=>5 days. It could then be described
by the equation

p(t) = 10° sin?p cosd sin(A + 2rt /1)

and the rate of change is obviously
' _
at ~

<~2§> 10*sin’p cosg cos (A + 2nt/t),

which, atthe point 50.4°N, 0°E attime t=0,
givesthe value 1.44 hPain 3/4 h, about half
the value obtained by Richardson. One
must conclude that the evolution of his
pressure field involves more than a simple
westward rotation with period 7.

The meridional structures of Rich-
ardson’s initial pressure and wind pertur-
bations are shown in Fig. 7 (solid lines).
Also shown are the structures of the five-
day wave (dotted) and the Kelvin wave
(dashed). A linear combination of these
two modes, with respective weights of about
1.2 and -0.4, whose pressure vanishes at
the equator, is also shown (dot—dash line).
There is a close similarity between
Richardson’s data and the five-day wavein
middie and high latitudes. Conversely, their
structures in the tropics are quite different.
The pressure structure of the combination
of five-day and Kelvin waves is close to
Richardson’s curve everywhere; the wind
fields are in fair agreement in this case.
Thus, if Richardson’s data is analyzed into
a combination of Hough functions, one
finds that the primary contribution is from
the five-day wave, with the Kelvin wave
second in importance, and less significant
contributions from other normal modes.

To support the above qualitative argu-
ment, a more precise analysis of Rich-
ardson’s data into Hough modes was per-
formed, and the results are presented in
Table 2. They show that almost 85% of the
energy projects onto the five-day wave and
about 11% resides in the Kelvin wave.
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TasLe 1. Frequencies (nondimensional) and periods (in hours for gravity waves and days for rotational modes) of the lowest six symmetric
modes in each of the three categories: eastward gravity waves, westward gravity waves, and Rossby—Haurwitz waves.

SYMMETRIC EASTWARD WESTWARD ROSSBY-

MODE GRAVITY GRAVITY HAURWITZ
NUMBER WAVE WAVE WAVE

1 0.354 (33.9 h) ~0.891 (13.5 h) -0.09666 (5.2 day)
2 1.241 (9.7 h) ~1.362 (8.8 h) -0.03994 (12.5 day)
3 1.885 (6.4 h) -1.925 (6.2 h) -0.02131 (23.5 day)
4 2.515 (4.8 h) —2.534 (4.7 h) -0.01301 (38.4 day)
5 3.148 (3.8 h) —3.160 (3.8 h) -0.00871 (57.4 day)
6 3.786 (3.2 h) -3.794 (32 h) ~0.00622 (80.4 day)

Over 99% of the energy is accounted for by only three
of the Hough function components.

The time evolution of pressure at the chosen grid
point, throughout the five-day period of the forecast
starting from Richardson’s data, is shown in Fig. 8.
Also shown are the corresponding curves for zonal
and meridional wind components (consider only the
solid curves; the dashed curves will be discussed
presently). The predominant variation of pressure is a
single oscillation during the forecast, as one expecits if
the major component of the data is the five-day wave.
There is a variation with a period of about 4/3 days and

smaller amplitude superimposed on this. Consulting
Table 1, one sees that the period of the Kelvin wave is
about 34 h, in agreement with this secondary variation.
Note that the meridional wind is very small for this
wave (see Fig. 5b). The two components are also
found in the curve of zonal wind (Fig. 8, center panel),
but the picture is complicated by the presence of
further components. The situation is clarified by con-
sidering the variation of the meridional wind, the
bottom panel of Fig. 8, since v is very small for the
Kelvin wave. This curve shows a short-period oscilla-
tion, with about nine cycles in the five days, superim-
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Fia. 6. The “five-day wave,” the gravest symmetric rotational eigenfunction. (a) is chosen as the initial state, and (b) shows the forecast
after five days, when the wave has almost completed a circuit of the globe.
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posed on the dominant long-period varia-
tion. Referring again to Table 1, the first
westward gravity wave has a period of 13.5
h, in good agreement with what is found
here. Thus, the temporal variations shown
in Fig. 8 can be accounted for by the
primary component in each of the three
categories: rotational, eastward gravity, and
westward gravity waves.

7. Filtering the noise

The short-period variations visible in the
velocity curves in Fig. 8, and due to the
gravity-wave components, may be consid-
ered as noise. Such noise is generally
undesirable and may be removed by modi-
fication of the initial data, a process known
as initialization. A simple initialization tech-
nique that uses a digital filter will be em-
ployed. It is so constructed that high-fre-
quency components are eliminated from
the forecast, while long-period variations
are virtually unchanged. The noise has a
period of about 13 h. Normally it is desir-
able to preserve the Kelvin wave, which,
although a gravity wave, has an important
dynamical role. This wave has a period of
34 h. To separate it from the noise, a filter
with a cutoff at a period of 24 h was chosen.

The design of the low-pass filter and its
application to initialization are described in
the Appendix. The fields of pressure and
wind resulting from this process are plotted
in Fig. 9a. By comparing this with Fig. 4a,
one sees that the changes induced by the
initialization process are relatively small.
Similarly, the one-day forecast starting from
initialized data, in Fig. 9b, is very similar to
the corresponding forecast from the origi-
nal data, in Fig. 4b. However, the character
of the time evolution is changed in an
essential way. The dashed curves in Fig. 8
resultfromtheinitialized forecast. The high-
frequency oscillations in the wind compo-
nents, which occurred when using the origi-
nal data, are almost completely absent
now; the initialization has eliminated the
noise.

Richardson’s baroclinic forecast came
to grief through his use of uninitialized data.
The unrealistic size of his calculated pres-
sure tendency, 145 hPain 6 h, was entirely
due to anomalously large amplitude grav-
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TasLe 2. Expansion coefficients of Richardson’s data for the lowest six symmetric modes in each of the three categories. The percentage
of total energy in each mode is given in brackets (less than 0.005% indicated as 0.00%).

SYMMETRIC EASTWARD WESTWARD ROSSBY-
MODE GRAVITY GRAVITY HAURWITZ
NUMBER WAVE WAVE WAVE

1 -0.3302 (10.90%) 0.0751 (0.56%) 0.9196 (84.54%)
2 —0.0029 (0.00%) -0.0075 (0.01%) 0.1984 (3.93%)
3 0.0003 (0.00%) ~0.0009 (0.00%) 0.0105 (0.01%)
4 0.0003 (0.00%) -0.0008 (0.00%) ~0.0005 (0.00%)
5 0.0004 (0.00%) —0.0008 (0.00%) ~0.0009 (0.00%)
6 0.0005 (0.00%) —0.0009 (0.00%) -0.0010 (0.00%)

ity-wave components in his initial data. He blamed the
failure of his forecast on errors in the wind observa-
tions leading to spuriously large values of divergence.
However, this is not the whole story; even if changes
in the wind field had been contrived to eliminate
divergence entirely, high-frequency oscillations would
still have ensued.

Richardson did propose several ways to smooth
the initial data (LFR, chap. 10). In particular, time-
averaging of the data was considered. This is the
essence of the digital filtering technique: in the ab-
sence of time-series of data, the model equations are
used to generate such series, which may then be
combined with weights designed to effect the desired
smoothing.

Such an option was hardly practicable for
Richardson. For effective filtering, the time series
must span a period comparable to the desired cutoff.
Had he continued his forecast with his chosen time
step (3 hours) and his explicit time-stepping scheme,
computational instability would have spoiled it. But a
time step short enough to guarantee stability would
entail unmanageable computation to cover the re-
quired span. The only possibility would have been to
use an implicit scheme. Richardson sketched in out-
line such a scheme (LFR, p. 151) but surmised that it
was “probably unworkable” on account of the com-
plexity of the simultaneous system of quadratic equa-
tions that would arise. Nowadays the implicit method
is applied only to the linear gravity-wave terms. The
use of a semi-Lagrangian formulation of the advection
results in an unconditionally stable scheme allowing
large time steps and making the time-filtering initializa-
tion scheme feasible.
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8. Discussion

The introductory example in Richardson’s book has
been reexamined in the light of advances made since
his work was published. His barotropic forecast has
been repeated and extended using a global linear
shallow-water model. To avoid computational instabil-
ity that would occur with Richardson’s time-stepping
scheme, animplicitintegration method was employed,
yielding a stable forecast with the time step-of 3/4 h
used by Richardson.

A spectral analysis of Richardson’s idealized initial
data into the normal modes of the shallow-water
equations shows the remarkable preponderance of a
single component, the five-day wave. This eigenmode
is the symmetric rotational wavenumber-one solution
of largest meridional scale. It has been clearly de-
tected in series of atmospheric data. The five-day
wave contains almost 85% of the energy of
Richardson’s fields.

Richardson was unaware of the existence of the
five-day wave and other such free waves in the atmo-
sphere. Although these solutions had been studied
much earlier by Margules and Hough, an understand-
ing of their geophysical significance became apparent
only with the work of Rossby (1939). Richardson
regarded the westward movement of his pressure
pattern to be in conflict with the generally eastward
progression of synoptic systems in middie latitudes,
and concluded that “use of the geostrophic hypothesis
was found to lead to pressure changes having an
unnatural sign” (LFR, p. 146). He seems also to have
neglected the dominant influence of the westerlies in
the upper troposphere. Although the jet stream was
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Fic. 8. The time evolution of (a) pressure, (b) zonal wind, and (c)
meridional wind at the chosen grid point for the forecast starting from
Richardson’s data. Solid curves are for the uninitialized data, while
dashed curves are for the data initialized by the digital filter.

yet to be discovered, the existence of westerly shear
follows from simple balance considerations. Omission
of the effect of any background flow in his initial fields
could easily have accounted for the disagreement
between his barotropic forecast and the observed
eastward movement of midlatitude systems.
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The baroclinic forecast that forms the centerpiece
of Richardson’s book was spoiled by high-frequency
gravity-wave components in the initial data. These
gave rise to spuriously large values of the pressure
tendency. Richardson recognized that the divergence
field calculated from his data was unrealistic, and he
blamed this for the failure of the forecast. However,
even if the wind fields were modified to remove diver-
gence completely, high-frequency gravity waves would
still be present and cause spurious oscillations. It took
many years before this problem was satisfactorily
resolved, and meteorological noise could be removed
by a modification of the analyzed fields in a process
called initialization.

The normal mode analysis of the fields used for the
barotropic forecast indicated the presence of a west-
ward-traveling gravity wave with a period of about 13.5
h. This component could be clearly seen in the time
traces of the forecast fields. A simple initialization
technique, using a digital filter, was applied to the initial
fields, and was successful in removing this oscillation
without significantly affecting the evolution of the longer-
period components. Although the barotropic model is
linear, this initialization technique may also be used
with a fully nonlinear model.
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Appendix: Initialization Using a
Digital Filter

The height and wind fields defined by Richardson
were initialized by application of a digital filter. Some
details of the construction of this filter and its applica-
tion are given below.

Consider a function of time, f(t), with low- and high-
frequency components. To filter out the high frequen-
cies, we may proceed as foilows: 1) Calculate the
Fourier transform F(w); 2) set the coefficients of the
high frequencies to zero; and 3) calculate the inverse
transform.

Step 2 may be performed by multiplying F(w) by an
appropriate weighting function H(w). Typically, H(w) is
a step function, equal to 1 for lol < ®_ and O for lwl > @,
with-w_the cutoff frequency. Multiplication of F(w) by
H(w) is equivalent to convolution of the corresponding
functions in the time domain. Thus, to filter f () we
calculate

F(t) = Feh(t) = f”“ f(t)h(t - 1) dt,

—oo

(A1)
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Fia. 9. (a) Pressure and wind fields initialized using the digital
filter. (b) One-day forecast resulting from the initialized data.

where h(1) = sin(w_f)/ntis the inverse Fourier transform
of H(w). To evaluate this integral approximately at t =
0, we calculate f (1) at a finite set of times {~NA{, ...,
—At, 0, Af, ..., NAt} and compute the sum

f(0) = i f.h_,,

n=-N

(A2)

where f = f(nAt) and h = sin(no At)/nr. As is well
known, truncation of a Fourier series may result in
Gibbs oscillations. These may be greatly reduced by
means of an appropriate window. The response is
improved if h  is modified by the Lanczos window w |
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= sin[nr/(N+1))/[nn/(N+1)]. For more details, see, for
example, Hamming (1989).

The method outlined above was used to calculate
filtered fields of height and wind at an initial time. The
coefficients of the filter (A2), with a Lanczos window,
for parameter values At=3 h, N = 4, and cutoff period
T, =2n/w, =24 h, normalized to have sum unity, are as
follows: ’

h, = 02531 h., = 0.2132
h,, = 0.0383

h,, = 0.1219
h,, = 0.0.

The forecast model was used to make three steps
forward and three backward, giving heights and winds
at seven times centered on t = 0. Filtered fields were
calculated using (A2) with the coefficients given above,
for each field at each point. The initialized pressure
and wind fields are shown in Fig. 9a, and, by compari-
son with the original data in Fig. 4a, the changes
induced by the initialization are seen to be small.

Although the equations used in this application are
linear, the digital filtering technique can be used in
precisely the same manner in the case of a nonlinear
model. Its advantages are its economy and its great
simplicity.
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