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1. INTRODUCTION

While Vilhelm Bjerknes and his team were developing their synoptic models in Bergen,
a radically different approach to forecasting was being pursued by Lewis Fry Richardson.
Richardson’s starting point was the system of fundamental physical principles governing
atmospheric motion. He assembled the set of mathematical equations which represent
these principles and formulated an approximate algebraic method of calculating their
solution. Starting from the state of the atmosphere at a given time — the initial
conditions — the method could be used to work out its future evolution.

Using the most complete set of observations available to him, Richardson applied his
numerical method and calculated the changes in the pressure and winds at two points
in central Europe. The results were something of a calamity: Richardson calculated a
change in surface pressure over a six-hour period of 145 hPa, a totally unrealistic value.
As Sir Napier Shaw remarked, the wildest guess would not have been wider of the mark!
Despite the “glaring errors” in his forecast, Richardson was bold enough to publish his
method and results in his remarkable Weather Prediction by Numerical Process (LFR;
Richardson, 1922). This profound, and occasionally whimsical, book is a treasure-store
of original and thought-provoking ideas and amply repays the effort required to read it.

The application of Richardson’s forecasting method involved an enormous amount of
numerical computation. Even the limited results he obtained cost him some two years
of arduous calculation (Lynch, 1993). This work was carried out in the Champagne
district of France where Richardson served as an ambulance driver during the Great
War (Ashford, 1985). His dedication and tenacity in the dreadful conditions of the war
are an inspiration to those of us who work in more genial conditions.

In this chapter the results obtained by Richardson will be examined and the causes
of the errors in his forecast will be explained. It will be shown how a realistic forecast
can be obtained by modifying the initial data. The study is based on the original
observations for 20 May, 1910, originally compiled by Hugo Hergessel and analysed by
Vilhelm Bjerknes. These are used to extend the table of values published by Richardson,
to cover most of Europe. A numerical model is then constructed, keeping as close as
possible to the method of Richardson, except for omission of minor physical processes.
When the model is run with the extended data, the results are virtually identical to
those of Richardson. In particular, an initial pressure tendency of 145 hPa in 6 hours is
obtained at the central point, in agreement with Richardson. The tendency values are
unrealistic, being generally about two orders of magnitude too large.

The reasons for the spurious tendencies will be discussed. They are essentially due
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to an imbalance between the pressure and wind fields resulting in large amplitude high
frequency gravity wave oscillations. The ‘cure’ is to modify the analysis so as to re-
store balance; this process is called initialization. An initialization method based on
a digital filter will be outlined, and its application to Richardson’s problem described.
The forecast tendency from the modified data yields reasonable results. In particu-
lar, the tendency at the central point is reduced to 3 hPa per 6 hours — a realistic
value! The chapter will conclude with some speculations about what-might-have-been
had Richardson been able to initialize his data.

2. OBSERVATIONS AND INITIAL FIELDS
2.1 Observational Data

The forecast made by Richardson was based on “one of the most complete sets of obser-
vations on record” (LFR, p. 181). During the first decades of the century observations
of conditions at the earth’s surface were made on a regular basis, and daily surface
weather maps were issued by several centres. Upper air observations were made only
intermittently, typically for one or a few days each month, as agreed by the countries
participating in the work of the International Commission for Scientific Aeronautics
(ICSA). The data were compiled and published by the Meteorological Institute of Stras-
bourg, under the editorship of Hugo Hergessel, Director of the Institute and President
of ICSA.

A detailed analysis of the aerological observations was undertaken by Vilhelm Bjerk-
nes at the Geophysical Institute in Leipzig. He produced a publication series consisting
of sets of charts of atmospheric conditions at ten standard pressure levels from 100 hPa
to 1000 hPa. These charts provided Richardson with the data required for his arith-
metical forecasting procedure. The initial date and time chosen by Richardson for his
forecast was 20 May, 1910, 0700 UTC. For this time there were 12 soundings and 18
reports of upper level winds over western Europe.! The observations are tabulated in a
synopsized form in Bjerknes (1914).

2.2 Preparation of the Initial Fields

Richardson chose to divide the atmosphere into five layers, centered approximately at
pressures 900, 700, 500, 300 and 100 hPa. He divided each layer into boxes and assumed
that the value of a variable in each box could be represented by its value at the central
point; we refer to such points as grid-points. They were separated by AX = 3.0° in
longitude and A¢ = 1.8° in latitude. Richardson tabulated his initial values for a
selection of points over central Europe. The area is shown on a map on p184 of LFR,
and the values are given in his “Table of Initial Distribution” on p185.

In §9/1 of LFR, Richardson describes the various steps he took in preparing his ini-
tial data. He prepared the mass and wind analyses independently (univariate analysis).
The initial fields used in the present study were obtained from the same source, but we
did not follow precisely the method of Richardson; the procedure adopted is outlined
below. In order that the geostrophic relationship should not be allowed to dominate the
choice of values, the pressure and velocity analyses were performed separately (and by

1 On 20 May 1910 the observation for Vienna comprised only winds; no pressures or temper-

atures were available, the registering balloon being recorded as bis heute noch nicht gefunden. It is
unlikely to be found now.



two different people; see Acknowledgement).

The initial pressure fields were derived from Bjerknes’ charts of geopotential height
at 200, 400 600 and 800 hPa (his charts 6, 8, 10 and 12). A transparent sheet marked
with the grid-points was super-imposed on each chart and the height at each point read
off. Each level pj corresponds to a standard height z; with temperature T},. Conversion
from height z to pressure p was made using the simple formula

zZ— Z
= 1
P Pk<‘|‘ o, )

where H, = RT}/g. Sea-level pressure values were extracted in the same way as heights,
from Bjerknes’ chart number 1. His values in mm Hg were converted to hectopascals
by multiplication by 4/3. Then the surface pressure ps was calculated from

where h is orographic height at the point in question, and standard values Ty = 288K
and v = 0.0065 K m~' were used for the surface temperature and vertical lapse-rate.

The initial values of momenta for each of the five layers are required. These were de-
rived from the wind velocities at the intermediate levels 100, 300, 500, 700 and 900 hPa.
The observed wind speeds and directions for each level were plotted on charts upon
which isotachs and isogons were then drawn by hand. The grid-point values of speed
and direction could now be read off. It was necessary to exercise a degree of imagina-
tion as the observational coverage was so limited. The wind values were converted to
components u and v and the layer momenta U and V were defined by

U=—v V=—v
g g

where Ap is the pressure across the layer (obtained in the pressure analysis).

The pressure, temperature and momentum values, at a selection of points in the
centre of the domain, resulting from the re-analysis, are given in Table 1. The corre-
sponding values obtained and used by Richardson, extracted from his “Table of Initial
Distribution” (LFR, p185), are reproduced in Table 2. The stratospheric temperatures
and orographic heights are also indicated (top and bottom numbersin each white block).
To facilitate comparison, the orography values used by Richardson were used (where
available) in the re-analysis.

There is reasonable agreement between the pressure and stratospheric temperature
values in the two tables. In general, pressure differences are within one or two hec-
topascals. There is a notable exception at the point (48.6° N,5.0° E), where the old and
new values differ by 10 hPa. We will see below that Richardson’s value at this point is
suspect.



Table I: Initial Distribution, Re-analysed Values

5°F 8°F 11°F 14°F 17°E
106 -228
120 -144
54.0°N 0 -81
-97 0
-221 81
0
212
-62 206 -25
-138 410 -79
52.2°N -133 609 -107
-135 799 -156
-155 987 -181
150 200 100
216 212
-175 208 205 -105 -182 206 -126 -218
-292 263 409 -268 -38 410 -167 -213
50.4°N -249 174 607 -201 -18 608 -155 -130
-118 99 796 -199 73 798 -214 0
-88 51 983 -127 73 976 -175 82
200 200 400 300 300
221 214 213
204 -159 206 -131 206
406 -275 410 -205 410
48.6°N 605 -216 608 -147 608
793 -131 796 -129 798
984 -60 961 -81 989
200 400 400 400 200
217 213
204 -208 18 205
405 -289 0 407
46.8°N 604 -172 172 606
794 -45 64 796
872 -32 38 842
1200 1800 1500
210
203
404
45.0°N 603
795
995
100




Comparing the momenta in Tables 1 and 2, we see more significant discrepancies.
Although the overall flow suggested by the momenta is similar in each case, point
values are radically different from each other, with variations as large as the values
themselves and occasional differences of sign. These dissimilarities arise partly from the
different analysis procedures used, but mainly from the large margin of error involved
in the interpolation from the very few observations to the grid-points. In repeating
the forecast, we have simply replaced the re-analysed values of all fields by Richardson’s
original values at the few gridpoints where the latter are available. The values in Table 2
are thus the initial values for both Richardson’s forecast and the forecasts described
below.

3. THE FUNDAMENTAL EQUATIONS

The behaviour of the atmosphere is governed by the fundamental principles of conser-
vation of mass, energy and momentum. These principles may be expressed in terms of
differential equations. The idea of solving the equations to calculate future weather was
propounded in a famous address by Bjerknes (1904). The first attempt to put this idea
into practice was that of Richardson.

Richardson was careful not to make any unnecessary approximations, and he took
account of several physical processes which had the most marginal effect on his forecast.
He included in his equations many terms which are negligible; with the benefit of hind-
sight, we can omit most of these. We shall ignore all the effects of moisture and thermal
forcing, and consider the adiabatic evolution of a dry atmosphere. One fundamental
approximation was made by Richardson: the atmosphere is in a state of hydrostatic
balance. This was an essential step, necessitated by the lack of observations of vertical
velocity, and it enabled Richardson to derive his elegant diagnostic equation for this
quantity.

We shall set out the basic equations as commonly used today, and then convert
them to the form used by Richardson. Some of Richardson’s notation is archaic and the
modern equivalents will be used (a full Table of his notation is found in Ch. XII of LFR).
The independent variables are latitude ¢, longitude A, height z and time ¢. Distances
eastward and northward are denoted z and y. The dependent variables are the eastward,
northward and upward components of velocity (u, v, w), pressure p, temperature T' and
density p.

3.1  The Primitive Equations.

The primitive equations may be found in standard texts on dynamic meteorology. The
equations of motion are:

d_u_<f+utan¢)v+15_p:0

dt a ;Bz
dv u tan ¢ 10p
dp
E-I—gp—O

The Earth’s radius is a, its angular velocity is } and f = 2Qsin¢ is the Coriolis
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Table II: Initial Distribution, Richardson’s Values

5°F 8°F 11°E 14°F 17°F
-65 8
127 -104
54.0°N 81 -25
-81 0
-198 84
0
214
-70 205 -160
-62 409 40
52.2°N -114 609 -60
-91 798 -60
-160 988 -219
150 200 100
212 214
-30 -110 205 -56 -18 205 -100 -32
-245 300 408 -146 -62 409 0 -260
50.4°N -223 158 607 -95 29 609 -55 -135
-91 87 795 -52 58 798 -25 48
-18 15 983 -110 55 976 -190 160
200 200 400 300 300
214 212 214
203 27 205 0 204
405 -328 409 -166 408
48.6°N 604 -136 608 -95 607
793 -33 796 -19 798
974 48 963 -65 988
200 400 400 400 200
214 214
204 -50 80 204
406 -280 41 408
46.8°N 605 -175 150 607
795 -105 80 797
875 -155 40 846
1200 1800 1500
213
203
403
45.0°N 603
796
997
100




parameter.

The continuity equation, expressing conservation of mass, is

Op Opu Opv pvtand Opw
8t+5m+8y_ a +8z_0

(a small term 2pw/a has been dropped). In combination with this equation, the hori-
zontal equations of motion may be written in flux form:

dpu  Bpu® Opuv  Dpuw B ( 2u tan qS) op
ot Oz Oy + 0z U P+ =0

¢a

dpv  Opvu  Opv?  Bpvw

p(u? —v?)tan ¢ op
ot e "oy e It Ty =

The atmosphere is assumed to be a perfect gas:
p= RPT7

where R is the gas constant for dry air. Using this ‘equation of state’, the thermody-
namic equation may be written

1 [dp 1 (dp

— [ —=)]=-=1=1=0

vp \ di p \ di
where v = ¢, /¢, is the ratio of specific heats.

3.2  “Finding the vertical velocity”

The vertical component of velocity in the atmosphere is typically two or three orders of
magnitude smaller than the horizontal components. It is difficult to measure w and in
general no observations of this variable are available. In particular, Richardson had no
such observations for 0700 UTC on 20 May, 1910. Moreover, even if he had had such
observations, he recognized the practical impossibility of computing the tendency dw /8t
which would have to be calculated as a tiny residual term in the vertical dynamical
equation.

Richardson acknowledged the influence of Vilhelm Bjerknes’ publications Statics
and Dynamics (Bjerknes, 1910, 1911) on his work. In his Preface (LFR, p viii; Dover
Edition, p xii) Richardson states that his choice of ‘conventional strata’, his use of
specific momentum rather than velocity, his method of calculating vertical motion at
ground level and his adoption of the hydrostatic approximation are all in accordance
with Bjerknes’ ideas.

The hydrostatic equation results from neglecting the vertical acceleration, and other
small terms, in the vertical dynamical equation. But this precludes the possibility of
calculating the acceleration dw /38t directly. It was a stroke of genius for Richardson not
only to realize the need to evaluate w diagnostically from the other fields but also to
construct a magnificent mathematical equation to achieve this.

To construct Richardson’s w-equation we eliminate the time dependency between
the continuity equation and the thermodynamic equation using the hydrostatic equation.

7



Recall that the thermodynamic equation can be written in the form

1 [op Op ldp

and that one of the various forms of the continuity equation is

1dp Ow
;E—I_(V'V—{_E) = 0.

We can eliminate the density between these and use the vertically integrated hydrostatic
equation to get

1 0 8
—<—/ gV-dez+V-vp>+(v-v+—w>=o.
P z 62

Expanding the integrand and using the hydrostatic equation again we get

1 [~ \%
—— <ng-V—|—a—-Vp> dz—{—(V-V—I—a—w):O.
¥p J. 0z 0z

Since the upper limit of the integral is infinite, it is convenient to use pressure as the
independent variable; this is done by using the hydrostatic equation once more, yielding
the result: 5 , oV

w 1
—:—V-V—}——/ <V-V——-Vp) dp. 1
0z P Jo op 1)
This corresponds to (9) on page 124 of LFR, save that we have omitted the effects of
moisture and diabatic forcing which were included by Richardson.

The solution of (1) for w is straightforward. The gradient Ow/8z is calculated
for each layer, working downwards from the stratosphere since the integral vanishes at
p = 0. Then w may be calculated at the interface of each layer, working upwards, once
it is known at the Earth’s surface. Richardson followed Bjerknes in taking the surface
value

ws = (v-Vh)g .

This is equivalent to the kinematic condition that the ground is impervious to the wind.
However, Richardson does not state how he evaluates vg; in repeating his forecast we
have assumed a simple relationship vg = kvs where vs is the lowest layer velocity and

E=0.2.

The vertical velocity equation was a major contribution by Richardson to dynamic
meteorology. In recognizing its essential role in his forecast scheme he observed (LFR,
pl178) that ‘it might be called the keystone of the whole system, as so many other
equations remain incomplete until the vertical velocity has been inserted’.

3.3  Temperature in the Stratosphere

Richardson devoted a full chapter of 24 pages to the stratosphere. We shall not discuss
the bulk of this, but we must consider the means by which the temperature of the
uppermost layer is forecast. For, in the scheme adopted by Richardson, the vertical
integral of pressure through the stratospheric layer depends on the temperature so that

8



prediction of the latter is essential to ensure a ‘lattice-reproducing’ scheme — that
is, an algorithm which, starting with a set of variables at one instant, produces the
corresponding set at a later instant.

Richardson calculated the change in stratospheric temperature using two different
equations, his elaborate equation (8) on page 147 of LFR and a much simpler equation
corresponding to (14) on page 143. The resulting temperature tendencies, given in his
Computing Form Px1v on page 201, were 9.1 x 10~*K s~ ! for the elaborate equation
and 9.2 x 107*K s~ for the simpler. In view of this close agreement, we shall confine
attention to the simpler alternative

oT ow
i TE. (2)

This equation is sufficient for predicting the stratospheric temperature as long as the
assumptions of geostrophy and vertical isothermy are acceptable. We shall use this
simple prognostic equation in the sequel.

4. “THE ARRANGEMENT OF POINTS AND INSTANTS”

Richardson chose to divide the atmosphere into five strata of approximately equal mass,
separated by horizontal surfaces at 2.0, 4.2, 7.2 and 11.8 km, corresponding to the mean
heights (over Europe) of the 800, 600, 400 and 200 hPa surfaces. He discusses this choice
in LFR, §3/2. It is desirable to have a surface near the tropopause, one stratum for the
planetary boundary layer and at least two more for the troposphere above the boundary
layer. Taking layers of equal mass simplifies the treatment of processes like radiation,
and the particular choice of surfaces at approximately 2, 4, 6 and 8 decibars greatly
facilitates the extraction of initial data from the charts and tables of Bjerknes. The
strata are depicted in Fig. 1. Each horizontal layer is divided up into rectangular boxes
or grid-cells. Richardson selected boxes with sides of length AX = 3° in the East-West
direction and 200 km (or A¢ = 1.8°) in the North-South direction.

The numerical integration of the equations is carried out by a step-by-step procedure
— an algorithm — which produces later values from earlier ones. Richardson took pains
to devise a numerical scheme such that where a particular variable was given at an initial
time, the corresponding value at a later time at the same point could be computed. His
scheme is best illustrated for the linear shallow water equations:

ov oP
E+fU+@_O
oP

. 1 gHV.U=
5 +gHV

The tendency of each component of momentum depends on the other momentum com-
ponent and on the gradient of pressure. Thus, U and V should be specified at the same
points, and these points should be inter-meshed with those where P is given:

9
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U, v P U,V

Uu,v P Uu,v

This arrangement is also ideal for the continuity equation: for the tendency of pressure P
depends on the divergence of momentum which is (primarily) comprised of horizontal
derivatives of momentum, so P should be evaluated at points intermediate between
those where momentum is given. This staggered arrangement of points is known today
as an E-grid. Platzman’s proposal to call it a Richardson grid has much to commend
it (Platzman, 1967). When the values of a variable are specified on the discrete grid,
spatial derivatives may be calculated approximately by means of finite differences. For
example, the derivatives of P are, to second order accuracy,

0P\ (P — Py OP\ (P —FBj
Oz / ; ~\ 2acosgAN )’ 9y /; B 2aA¢ ’

where P, j is the value of P at the point (1AX, jA¢).

The geographical coverage used in repeating Richardson’s forecast is shown in Fig. 2.
P-points are indicated by solid circles and M-points by crosses. The region was chosen
to best fulfil conflicting requirements: that it be as large as possible; that data coverage
over the area be adequate; and that the points used by Richardson be located centrally
in the region. The absence of observations precluded the extension of the region beyond
that shown. The P-point and M-point for which Richardson calculated his tendencies
are encircled.

The method of calculating the dependent quantities at each new time-level will
now be described. It is performed by means of the familiar leapfrog scheme, called by
Richardson the step-over method (LFR, p150). The prognostic variables are R, the
mass per unit area and U and V, the components of momentum per unit area, for each
stratum, and the temperature 7' of the stratosphere. Let () denote a typical dependent
variable; it is governed by an equation of the form

% _p

ot
where F', the tendency of @), is a function of () and the other dependent variables.
Let us assume that all the dependent variables are known at time ¢ = nAt so that
F* = F(nAt) can be computed, and that the value of @) at the previous time level
t = (n — 1)At has been retained. Then the forecast value @"*' may be computed from

the old value Q" ! and the tendency F":

QU =@t + 20t P
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The first step forward cannot be made with the leapfrog scheme, since the variables are
known only at £ = 0. A simple non-centered step

Q1:Q0+AtF0

provides values of the variables at ¢ = A{; from then on, the leapfrog scheme can be
used.

The calculations of Richardson were confined to the evaluation of the initial ten-
dencies (at 0700 on 20 May, 1910). He multiplied these by a time interval 2A¢t = 6h
to represent the change over the six-hour period centered at 0700 UTC. In modern
terminology, the time-step is specified as the interval between adjacent evaluations of
the variables; thus, the time-step used by Richardson was three hours, not six hours as
so often stated. A three-hour step was also chosen by him in describing his fantastic

forecast factory (LFR, p219).

5. THE EQUATIONS FOR THE STRATA

As we have seen, Richardson divided the atmosphere into five ‘conventional strata’
separated by horizontal surfaces at fixed heights 2.0, 4.2, 7.2 and 11.8 km. These
heights will be denoted respectively by zi, z2, z3 and z4, all constants. The variable
height of the Earth’s surface will be written z5 = h(), ¢). Variables at these five levels
will be denoted by corresponding indices 1-5. Where convenient, values at the surface

of the Earth may be indicated by subscript S.

The equations of motion will be integrated with respect to height across each stra-
tum, to obtain expressions applying to the stratum as a whole. Quantities derived by
integrating in this way will be denoted by capitals:

Rz/pdz P:/pdz Uz/p'u,dz Vz/p'udz.

The stratum is specified by the index corresponding to the lower level; thus, for example,

R3:/ pdz.

In differentiating mean values for the lowest layer, allowance must be made for the
variation of the height h of the Earth’s surface. For the other layers, the limits are
independent of z and y.

The continuity equation will now be integrated in the vertical. Taking, for example,
the stratum between z3 and z2, and using the definitions of R, U and V', we get

OR3 0Us; oVs Vs tan ¢
ot + Oz + Oy a +

[pw], — [pw]; =0. (3)

The equations for the other upper layers are of similar form. For the lowest layer the
slope of the bottom boundary must be considered, and the term — [pw]s is cancelled
by a term [pv - Vh]s.

The vertical integration of the horizontal equations of motion is performed in the
same manner. To express the result in terms of the variables R, U and V it is necessary

12



to make an approximation in the horizontal flux terms (see LFR, p 34). With this
approximation the equations for the stratum (z3, z2) are

(9_U+2(U_2>+2<H)+[ ]_[ ]
ot Tos \ ') oy \r )T IPrwl leuwls

2U tan ¢ oP
_(f+T)V+3—m_O (4)

ov o (UV o (V?
ot Tz \ R’ ‘|‘5—y B + [pvw], — [prw],

(U? - V?) tan ¢ L 0P _
aR oy

The equations for the other upper layers are of similar form. For the lowest layer the

+fU + 0. (5)

slope of the bottom boundary must be considered.

6. “REVIEW OF OPERATIONS IN SEQUENCE”
The title of this section is identical to that of LFR, Ch. VIII, in which Richardson

traces, step by step, the sequence of calculations necessary to carry his forecast forward
in time. Let us assume that all the dependent variables are known at time ¢ = nAt. The
advancement to the next time level, ¢ = (n 4+ 1)At, requires both prognostic and diag-
nostic components (these terms, borrowed from medicine, were introduced by Vilhelm
Bjerknes). The prognostic variables are (at P-points) the mass per unit area R in each
stratum and the stratospheric temperature 7}, and (at M-points) the components U
and V of momentum in each stratum. Once these quantities are known for a particular
moment, all the auxiliary fields (temperature, divergence, vertical velocity, etc.) for
that moment can be calculated from diagnostic relationships.

The time-stepping calculations are done in a large loop which is repeated as often
as required to reach the forecast span. The sequence of calculations will now be given.
For each step, the number of the relevant Computing Form in LFR is indicated [in
brackets|. First we consider the P-points.

1. [P1] The layer integral of pressure is calculated:
P=Az.-Ap/Alogp

Here A represents the difference in value across the layer. For the top layer P = RTy/g. The
density integral is also calculated from

_Ap
=

R

2. [P1] Mean values for each stratum are calculated for various quantities, e.g.,

P R D
P=Az 7 Az R

o

3. [Px111] The divergence of momentum V - U is computed for each level.

4. [Px11] The values of V - U in the column above each P-point are summed up and the total
multiplied by —g to give the surface pressure tendency

strata

8;5 -9 Z v-u

all
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10.

. [Pxv] The divergence of velocity § = V -V is calculated using the following approximations for

mean velocity in each layer:

v=U/R v=V/R.

. [Pxv1] The vertical velocity gradient dw/3z in each layer is now calculated using (1). The vertical

velocity at the surface is determined from
wg = Vs~Vh

where we assume vg = kv /Ry with k = 0.2. Then it is a straightforward matter to calculate w
at each interface, working upward from the bottom.

. [Px1v] The tendency of the stratospheric temperature T} is calculated next, using (2).

. [Pxvi] The temperature at each interface is calculated by linear interpolation. Then the density

there is computed using the gas law, after which the momentum pw at each interface can be
obtained.

. [Pxi111] The tendency of the density integral R is now obtained using the continuity equation (3).

[Px111] The final calculation at P-points is the tendency of pressure at each interface, obtained

from
a - OR
P\ _ k
(at)]'{_gz<8t>‘
k=1

The surface pressure tendency, already computed in step 4, is confirmed here.

This completes the calculations required at the P-points. We now list the operations at
the M-points [LFR, Computing Forms My;; and Myy]

11.

12.

13.

14.

15.

The pressure gradient is evaluated by calculating the spatial derivatives of the integrated pressure
P. For the lowest stratum there is an extra term due to orography. The z-component is given by

1 8h - 6pg
—— lsp4 258
2Azx 6 logps

where § here represents the difference across a distance 2Az. The y-component is analogous.

The Coriolis terms and those involving tan ¢ are evaluated. All the necessary quantities are
available at the relevant points.

The horizontal flux terms are calculated. It is necessary to approximate the derivatives by differ-
ences over a distance 4Az or 4Avy.

The vertical flux terms are calculated. The momentum flux above the uppermost layer is assumed
to vanish.

The tendencies of momenta, U /8t and 3V /3t may now be calculated, as all the other terms in
(4) and (5) are known.

The tendencies of all prognostic variables are now known, and it is possible to update
all the fields to the time (n+ 1)A¢. When this is done, the entire sequence of operations
may be repeated in another time-step.

7. “AN EXAMPLE WORKED ON COMPUTING FORMS”

This section title refers to the elaborate set of 23 forms drawn up by Richardson for
the arrangement of his calculations. They are included in LFR, pages 188-210, filled
in with the values relevant to the two points to which his forecast applied. Richardson

arranged, at his own expense, to have sets of blank forms printed so that they could be

used by anyone wishing to carry out similar forecasts. I do not know if they were ever
put to their intended use.
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A computer program has been written to repeat and extend Richardson’s fore-
cast. The same initial values were used, so that the calculated initial changes could
be compared directly with the values in LFR. It will be seen that the computer model
produces results consistent with those obtained manually by Richardson. In particular,
the “glaring error” in the surface pressure tendency is reproduced almost exactly by the
model.

7.1 The Initial Tendencies

Richardson’s computations were confined to the calculation of the initial tendencies at
a single pair of points. These calculations amount to evaluating the right hand sides of

0Q
E_F

The leapfrog method of integration in time amounts to approximating this equation by

equations of the form

AQ = [Q(t + At) — Q(t — At)] = F(t) x 2At.

It is important to note that the tendency F' is independent of At, so that the change AQ
is directly proportional to the time-step. The time-step between successive calculations
is At = 3h and the changes given in LFR are over a six hour period centered at the

initial time 0700 UTC 20 May 1910.

On p211 of LFR, Richardson presents his results for the changes in the prognostic
variables at the two points. We first consider the changes of the pressures at each
of the four interfaces and at the Earth’s surface for the central P-point. The values
obtained by Richardson are given in Table 3 (they are in the column marked LFR). The
corresponding changes produced by the numerical model are also given, in the column
marked MOD. The units of pressure change are hPa/6h. It is evident that the changes
computed by the model are in close agreement with Richardson’s calculations.

The changes of momentum calculated by Richardson and those computed with the
model are given in Table 4. The agreement is not as close as for the pressure changes,
but there is broad agreement between the two sets of forecast changes. The remaining
prognostic variable is the temperature of the uppermost layer. The change tabulated by
Richardson using (2) was AT} = 19.9°. The computer model used the same equation

and gave a forecast change of AT} = 19.6°, in close agreement with Richardson. 2

7.2  The source of the problem

Richardson ascribed the unrealistic value of pressure tendency to errors in the observed
winds which resulted in spuriously large values of calculated divergence. This is true
as far as it goes. However, the problem is deeper: even if the winds were modified
to remove divergence completely at the initial time, large tendencies would soon be
observed.

A subtle state of balance exists in the atmosphere between the pressure and wind
fields, ensuring that the high frequency gravity waves have much smaller amplitude
than the rotational part of the flow. Minor errors in observational data can result in a
disruption of the balance, and cause large gravity wave oscillations in the model solution.

2 Was Richardsons ATy & 80°/day the first-ever forecast of a stratospheric sudden warming?!!!
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Table 3. Six-hour Changes in Pressure
Units: hPa/6h
LFR: Richardson; MOD: Model.

Level LFR MOD
1 48.3 48.5
2 77.0 76.7
3 103.2 102.1
4 126.5 124.5
S 145.1 145.4

Table 4. Six-hour Changes in Momentum Components
U: Eastward. V: Northward. Units: 10® kg/m/s/6h
LFR: Richardson; MOD: Model.

U v
Layer LFR MOD LFR MOD
I —73.0 —71.8 —-33.7 —39.7
II —19.6 —19.9 +23.8 +29.0
I11 —8.9 —10.3 —13.8 —15.9
v —15.3 —13.7 —4.3 —4.1
\4 —-17.9 —22.5 +6.3 +7.1

Table 5: Six-hour Changes in Pressure Thickness

Richardson’s Values: No Initialization

Layer | (92p/o0at | dogventioe | Conversence
1 185 65.9 174
11 28.4 237 52.1
11 25.3 47.6 223
v 22.3 75 14.8
v 20.8 48.0 272
Sum 1454 145.4 0.0

Table 6: Six-hour Changes in Pressure Thickness
After Initialization by Digital Filter

Layer | (0Ap/aAt | BRI | oveenance
I -1.0 124 -13.4
11 -24 -33.3 30.8
111 -0.9 11.0 -11.9
v -0.5 -10.4 9.8
\% 1.7 17.0 -15.4
Sum -3.2 -3.2 0.0

They are avoided by modifying the data to restore harmony between the fields. We will
describe a simple method of achieving balance, apply it to Richardson’s data and show
that it yields realistic results.
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8. DIGITAL FILTER INITIALIZATION

To obtain reasonable values for the tendencies, we must reduce the high frequency
components implicit in the initial data to realistic amplitudes. This process is called
initialization. There are several ways to achieve it, one of the simplest being to use a
digital filter. Such a filter was used by Lynch (1992) to initialize Richardson’s barotropic
data (see LFR, Ch. 2). We will apply the same technique below to the full baroclinic
case.

Consider a function of time f(t) with low and high frequency components. To filter
out the high frequencies, we may proceed as follows:

(1) calculate the Fourier transform F'(w)
(2) set coeflicients of high frequencies to zero;
(3) calculate the inverse transform.

Step 2 may be performed by multiplying F(w) by an appropriate weighting function
H(w). Typically, H(w) is a step function, equal to one for |w| < w, and zero for |w| > w,,
with w. the cutoff frequency. The three steps are equivalent to a convolution:

+ oo

F@=hes= [ wa-nse)an

— 00

where h(t) = sin(w,t)/nt is the inverse Fourier transform of H(w). To evaluate this inte-
gral approximately at ¢ = 0, we calculate f(¢) at a finite set of times {—NAt, ..., —AL0,

At,... ,NAt} and compute the sum

F0)= > fahon (6)
n=—N

As is well known, truncation of a Fourier series may result in Gibbs oscillations. These
may be greatly reduced by means of an appropriate window. The response is improved

if h,, is modified by the Lanczos window w,, = sin[nw/N + 1]/(n7/N + 1).

The method outlined above was used to calculate filtered fields of height and wind
at the initial time. The numerical model was integrated six hours forward and also
six hours backward from the initial time, providing a sequence of values centered on

t = 0 for each variable at each gridpoint. The cutoff was set at 7. = 2n/w. = 6h and
At = 300s, so that N = 72. Filtered fields f*(¢) could then be calculated using (6).

9. “SMOOTHING THE INITIAL DATA”

The idea of filtering in time goes right back to Richardson, who proposed several meth-
ods of smoothing the data, one way being to take the average value of observations
made at successive times (LFR, Ch. X). The digital filtering method is similar, but the
time series are generated by the model, and the filter is designed for optimal selectivity.

Fig. 3 shows the sea level pressure based on an extension of Richardson’s values.
The curious low near Strasbourg appears to be due to an error made by Richardson
in converting sea level to surface pressure. This is confirmed by an examination of
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Fig. 4. Sea level Pressure. Filtered data.
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the values in Table 2. The surface pressure at the point (48.6° N,5.0° E) is seen to be
suspiciously low. The pressure analysis after filtering is shown in Fig. 4. The changes
induced by the initialization are seen to be small. However, notice the absence of the
erroneous low near Strasbourg.

Platzman (1967) examined Richardson’s results and discussed two problems con-
tributing to the large pressure tendency: horizontal divergence values are too large,
due to lack of cancellation between the terms; and there is a lack of compensation be-
tween convergence and divergence in the vertical. Table 5 shows the six-hour changes in
pressure thickness for each level, and the contributions from the horizontal and vertical
parts of divergence. The values are rather large, and there is little cancellation between
them. Table 6 shows the corresponding figures for the filtered initial data. The values
are all reduced, generally by about a factor of two. However, the changes are such
that the compensation in the vertical between horizontal divergence at different levels
is now much more complete. The result is that the surface pressure change is dramati-
cally reduced in size, from 145 to 3 hPa — a realistic value. (The vertical convergence
integrates to zero, making no contribution to surface pressure tendency). Clearly, the
compensation in the vertical is vital in achieving balance.

10. CONCLUDING REMARKS

The numerical model was used to extend the forecast to 24 hours. It was found that
spatial smoothing was required to maintain stability. Moreover, a timestep consistent
with the CFL criterion was required. Thus, lack of initialization is not the only short-
coming of the method devised by Richardson. The results of the extended forecast will
be reported elsewhere.

But let us suppose that Richardson had applied some filter, however crude, to his
initial data. His results might well have been realistic, and his method would surely have
been given the attention which it certainly deserved. For there can be little doubt that
the failure of his trial forecast persuaded most meteorologists to ignore his work, so that
his wonderful book gathered dust for many years. A more encouraging demonstration
might have led his colleagues to consider his ideas more carefully and to investigate the
potential usefulness of numerical forecasting in greater depth. > However, his fantastic
forecast factory would hardly have come into being: even making no allowance for the
short time step required for stability, his figure of 64,000 ‘computers’ required to keep
pace with the weather was a serious under-estimate (Lynch, 1993).

Richardson claimed that his prediction was ‘a fairly correct deduction from a some-
what unnatural initial distribution’. The model results presented above confirm that
he was fully justified in making this claim, and that what he presented in his book was
indeed a marvellous forecast.

ACKNOWLEDGEMENT: My thanks to Dr Elias Hélm, University of Stockholm, who
analysed the winds without the luxury of seeing the heights.

3 His venture in printing sets of blank forms might also have been more profitable.

19



References

Ashford, Oliver M., 1985: Prophet—or Professor: The Life and Work of Lewis Fry
Richardson. Adam Hilger Ltd., Bristol. 303pp.

Bjerknes, V., 1904: Das Problem der Wettervorhersage, betrachtet vom Standpunkte
der Mechanik und der Physik. Meteor. Z. 21, 1-7.

Bjerknes, V. and J.W. Sandstrom, 1910: Dynamic Meteorology and Hydrography. Part I:
Statics. Carnegie Institution, Washington, Publication 88 (Part I). 146pp and ta-
bles.

Bjerknes, V., Th. Hesselberg and O. Devik, 1911: Dynamic Meteorology and Hy-
drography. Part II: Kinematics. Carnegie Institution, Washington, Publication
88 (Part II). 175pp and Atlas of 60 Plates.

Bjerknes, V., 1914: Veroffentlichungen des Geophysikalischen Instituts der Univer-
sitat Leipzig. FErste Serie: Synoptische Darstellungen atmosphdarischer Zustande.
Jahrgang 1910, Heft 3.

Lynch, Peter, 1992: Richardson’s barotropic forecast: a reappraisal. Bull. Amer. Met.
Soc., 73, 35-47.

Lynch, Peter, 1993: Richardson’s forecast factory: the $64,000 question. Met. Mag.,
122, 69-70.

Platzman, G.W., 1967: A retrospective view of Richardson’s book on weather predic-
tion. Bull. Amer. Met. Soc., 48, 514-550.

Richardson, L.F.; 1922: Weather Prediction by Numerical Process. Cambridge Univ.
Press, 236 pp. Reprinted by Dover Publications, New York, 1965.

TABLE CAPTIONS

Table 1: Initial Distribution, Re-analysed Values

Table 2: Initial Distribution, Richardson’s Values

Table 3: Six hour pressure changes (in hPa).

Table 4: Six-hour momentum changes (units are 10°kgm™!s~1/6h, U left, V right)
Table 5: Six-hour Changes in Pressure Thickness. Richardson’s Values: No Initialization
Table 6: Six-hour Changes in Pressure Thickness. After Initialization by Digital Filter

FIGURE CAPTIONS

Figure 1: Vertical stratification

Figure 2: Horizontal grid and geographical coverage.
Figure 3: Sea level Pressure: original data

Figure 4: Sea level Pressure: filtered data.
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