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SUMMARY

A multi-level imited-area model based on the stow equations is formulated, and applied to the problem
of initializing data {or a primitive-equation forecast. The slow equations comprise a filtered system whose linear
solutions correspond to the low-frequency atmospheric motions. There are no solutions corresponding to the
high-frequency gravity-wave soluttons of the primitive equations.

The model is used to inifialize data for a primitive-equation forecast. It is successiul in eliminating high-
frequency noise without causing any significant changes in the forecast, The method converges well even when
all vertical modes are itialized.

1. INTRODUCTION

In this paper a multi-level limited-area inttialization and forecasting model 1s for-
mulated using the slow equations. These comprise a filtered system of equations in which
the high-frequency gravity-wave solutions are absent, and whose low-frequency solutions
correspond to the rotational atmospheric motions. The filtering is accomplished by using
an approximation similar to that employved in normal-mode initialization: the terms
representing the projections of the tendency onto the gravity-wave components are
omitted. There results a set of equations in which the rotational components of the
flow are determined prognostically whilst appropriate gravity-wave components are
determined diagnostically.

The background to the development of the slow system is described in Lynch (1989)
and a barotropic version of the equations is derived there. The slow system is closely
related to the classical balance system (Charney 1962) but differs at second order in the
Rossby number and is free of the spurious solutions of the balance equations. The
system models the low-frequency motions which are meteorologically significant, and the
evolution of the variables in time i1s smooth and noise-free.

The model described in this paper has been developed as a component of a system
for hourly data assimilation and short-range forecasting. The insertion of observational
data which are incompatible with a forecast gives rise to large oscillations in a primitive-
equation model. Such data shocks interfere with subsequent data induction cycles. The
slow eguations may provide a suitable means for the assimilation of observational data
during a forecast, as they can absorb inserted data without suffering high-frequency
shocks. |

As a first step 1n developing such a system, we derive in section 2 a baroclinic slow-
equation model from the primitive equations of a multi-level model. There are two
essential approximations involved in the derivation of the slow equations. First, in the
divergence equation the term representing the tendency of divergence is set to zero,
yielding the balance equation. Second, an equation for the tendency of the deviation
from geostrophic balance 15 derived and the tendency term is then omitted. vielding a
diagnostic equation for divergence, which we call the imbalance equation. The system is
discretized 1n such a way that advection is treated in a semi-Lagrangian manner. This
has the great advantage of yielding a model with attractive stability characteristics,
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In section 3 we apply the slow-equation model to the problem of initializing data
for a primitive-equation forecast. The diagnostic components of the slow equations
correspond precisely to those used in implicit normal-mode initialization (Bourke and
McGregor 1983; Juvanon du Vachat 1986; Temperton 1988}. It is shown that the method
is successful in eliminating high-frequency noise without causing any significant changes
in the forecast. The method converges well, even when all vertical modes are initialized.

Some preliminary forecasts have been made using the slow-equation model. This
model is capable of faithfully simulating the evolution of the baroclinic atmospheric
flow. Although the guantitative errors are modest, there appear to be some difficulties
associated with the boundaries and with the treatment of orography. We hope to report
on a more detailed examination of these problems at a future date.

2. DERIVATION OF THE BAROCLINIC SLOW SYSTEM

(@) Basic equations and vertical discretization

The equations of motion for an inviscid dry adiabatic atmosphere may be written as
follows (symbols are conventional and are defined in the appendix):

p = R (1)
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where the horizontal Lagrangian derivative is
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The temperature T has been separated nto a constant part T® and a perturbation 7"
which is small compared to T%: T= T"+ T°. The modified geopotential G is given by
G=¢+RT%Inp, The nonlinear right-hand terms are given by the following
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Vorticity and divergence equations can easily be derived from (1) and (2):

7t = (dﬂ(i: f) + £6 ~ Ri) yy (7)
%?—+‘?36mf;‘mf%ﬁmﬂ (8)

where the vorticity and divergence are given by
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and the nonlinear terms have the following form:
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with the kinetic energy density defined by K = #(«* + v?). The B-terms in the divergence
equation (8) are absorbed into R° in the same manner as for System D of Temperton
(1989).

It is convenient to introduce the vertical discretization at this point. The distribution
of variables is shown in Fig. 1. The boundary condition o = 0 is imposed at the top
(o0 = o7) of the model atmosphere; by definition ¢ = 0 at the bottom (¢ =1). After
discretization the continuity equation (4) becomes:

dH) Opey = 01y
(a’t flnps + 6, + Ao, 0. (9)
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-
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Figure 1. Distribution of the variables in the vertical direction.
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Total and partial vertical summatians of {9), using the boundary conditions, yield

Za {(d)gznpﬂa,} 0 (10)

and
& d
d'k=2&ﬂg{(“‘ﬂ) lﬁps “i‘“fS;}ka (1})
[=1 dt/,

where, for any variable W, a vertical average 1s defined by P, =W, , +W¥,,,) and
the matrix J is upper triangular, with elements defined as follows:

kaﬁl k‘:l
Ty =13 k=
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Summing the hydrostatic equation (5) in the vertical and using G, = ®, + RTInp,
yields

K
G,=®. +RTInp,+ >, RT, Alng, (12)
=k
where @, is the surface geopotential and the primed summation notation is defined by
K , K
X W = 2 W
f=k (=k+1

In order to proceed with the derivation, which hinges on using the variable G rather
than 7T, the thermodynamic equation (3) is partially summed in the vertical:

K K
’ d RT" . d
ZS = RAlno, {( H) [T,; }npg]—Rf}«PZMﬂ{(ﬁ) h}pg-i-sﬁg}m{}.
I=k dt/ Cp =1 dt/,
(13)

In arriving at this result, {11} has been substituted in the discrete form of (3) and the
integrated mass equation {10) has been used. The vertical coupling matrix M is defined

by
RT" R2TY &' /Aln O, 1
My = [(1“{:@) * C mE:k ( & e ){lmUTMJ’"fH Aa, (14)

p

It is straightforward to show that M has the following property:
EMWRTU[HE-—E aiwf} (15)
pi=k

(b} Derivation of the slow equations

The scene is now set for deriving a slow system of equations. Firstly, setting
36/8t = 0 in the divergence equation (8) vields a diagnostic equation involving G and £,
the so-called balance equation

VG, —fEi =R (16)
which is the multi-level analogue of Lynch’s (1989) Eq. (17).
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Secondly, the multi-level analogue of Lynch’s (1989) Eq. (18), the so-named imbal-
ance equation, can be obtained by deriving an equation for the tendency of geostrophic
imbalance, £ = (V:G, — f{,), and then omitting the tendency term. To accomplish this,
we combine (7) and (13) as follows: V2Z{ ~ fZ; = 0. Using (6) and (12) and property
{15) of the matrix M gives

K
0 . |
g}(szk —fL) +V° g‘z] M0, — f20, = A} (17)
where AL = V2A{ — fAL with
K 0 ~
Af:;:‘{ RA In o, {—v;-‘-’(T;— . mpg)»%»Rf’}-;%Mm’;'Vinps
- n =

and A = R; — v, - V({; + f). If the tendency term is omitted, (17) becomes a diagnostic
equation for the divergence.

The vertical levels are coupled through the matrix M. To separate them, let E be the
matrix whose columns are the eigenvectors of M, and A the diagonal eigenvalue matnx,
s0 that

E"'ME = A. (18)
We denote the vertical transform of a variable W by a tilde:
K
W= 2 (7
=}

Now, pre-multiplying {17) by E™* and omitting the tendency term, we obtain a diagnostic
equation for &:

(A V2 =35, = Al (19)

where A, is the kth eigenvalue of M. We call (19) the imbalance equation. It is the multi-
level analogue of Eqg. (18) in Lynch (1989).

Next, a prognostic equation involving ¢ and & is obtained by eliminating é between
the vorticity equation (7) and the {(summed) thermodynamic equation (13), which yields

K K
' d RTY d
f!:z RAIn o, {(f) (T,mwlnps)mR;T}+sz; (—H) lnpg]

Cp
dalE+f) .
-3 M ~RE| =0
b o | ] (20)

In order to maximize the allowable time-step, the time discretization is performed
in a semi-Lagrangian fashion. For any variable W(A, 0, 1), we denote by an asterisk the
value of the varniable at a departure point at time nA#

o= WA - aAt/acos 8, 8 — 6At/a, nAt) (21)

corresponding to the parcel arriving at point (4, ) at time (n+ 1)At. Here (i, 6) is the
centred in space and time velocity (McDonald and Bates 1987). Using property (15) of
the matrix M, (20) can then be written

F.d
fGEl = 2 M, e =Y (22)
I=1
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where
K K
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and
If (22) is pre-multiplied by E~! and use made of (18) we obtain

fGn+1 é-n +1 . C}:. (23)

This constitutes the first prognostic equation and relates G and £ at time (n+ 1)At
Equation (23) is a form of the potential vorticity equation.

It remains to derive a prognostic equation relating In p, and £. This can be done by
eliminating 0 between the continuity equation (10) and the vorticity equation (7):

féaq {dﬁ(i;f) Rt f(dH ;;ps)}f 0 "

Again, discretizing in time in a semi-Lagrangian fashion yields

é ﬁUI{C ' —+-f fhlpﬂ-ﬂ e (Ca}i N "}*f(lﬂps):: ,r.'} == (}

or

fl—op)lnpitt = ; Ao{Ert + F—=(CHL 1+ flnpy)t b (25)

This concludes the derivation of the slow system of equations. The system comprises
the two prognostic equations (23) and (25) and the diagnostic balance and imbalance
equations (16) and (19). To complete the system we use the continuity equation (9)
diagnostically for the vertical velocity, that is

K .
' d nt1
P -
where
o s4-1 1 K
{(ar) inps} - mlmﬁTgﬁﬁf{vg'Vinps +53}”+]-

(¢} Numerical solution of the slow system

The method of solution will now be described. The slow system comprises prognostic
and diagnostic elements. In the context of forecasting, the prognostic components are
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used to advance the variables from time-level nAf to (n + 1)At. In this paper we restrict
attention to the application of the slow system to initialization. In that case, the first step
below, the semi-Lagrangian step, is omitted, the time-step Af is taken as zero and the
index # may be interpreted as an iteration count.

The first step of the integration (omitted for initialization) is the semi-Lagrangian
step. This 1s performed by estimating the departure-point values of the terms Inp,, C7
and C* by means of a bi-cubic interpolation using the surrounding gridpoint values.
Having completed this, the values of (Inp,)} , (CT):: and (C ‘?)’; associated with the G-
type arrival points interior to the solid line in Fig. 2 are known.

V v v V
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Figure 2. Distribution of the variables on the horizontal D-grid. The solid line is the boundary for geopotential
and normal wind.

In the second step of the integration G"*! is calculated. This can be accomplished
by eliminating {**! from (16) and (23) to yield a Helmholtz equation for G:

(V2 = F2IANNG = RE — fCY /A, (27)

As a result of step 1, Y can be computed. In addition it is necessary, in principle, to
know R} at time-level n+ 1 in order to solve (27). In practice, it must be approximated
by its value at time n Ar. Since it consists of nonlinear terms, the resulting error should
be small. Dirichlet boundary conditions are used in solving (27), with the values of &G
specified at the points along the solid line in Fig. 2.

Once G"+! is known, &7*! follows from (23), and this in tarn yields In p?*! from
(25) and then T"*! from (12). We now know the mass field at time-level (n+ 1)At, or
iteration number (n+4 1) in the case of initialization.

In the third step of the integration the imbalance equation (19) is solved for §**1,
Again it is necessary in principle to know A} at time (n+ 1). In practice, because V7+!
is not yet known, this is not possible. However, if a term in A} is known at the new time-
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level, it is used. In solving (19) the homogeneous Dirichlet condition 8 = 0 is applied on
the dashed line 1n Fig. 2.
In the second and third steps a Helmholtz equation of the form

(V2 — A(L, O)]®(A, 6) = B(A, ) (28)

with A positive, must be solved. The method used 15 analogous to that of Concus and
Golub (1973) in that, instead of (28), the following iterative equation is solved:

[V — AW L = B(A, 8) — [A — A(4, §)]T* (29)

where A is the areal average of A(A, 8). Four iterations of a fast solver (Sweet 1977)
were found to give satisfactory convergence.

In the fourth step of the integration u”*' and p"*! are recovered from {"*' and 6"*'.
This requires that a component of the wind on the boundary be specihied. The method
used is that of Sangster (1960), discussed in detail in Lynch {1988). We introduce a
streamfunction 3 and velocity potential y:

1 a9y 1ay

“T dcosBal aab (50)
i a8y 1oy
"7 acos@ A +aaﬁ (31)
which, when differentiated, give
Viy =& (32)
Vig=¢. (33)

These Poisson equations are solved using the fast method of Sweet (1977) to yield x"*'
and ¢!, Subsequently, u**! and p"*! are recovered by means of (30) and (31). In
solving the Poisson equation for ¥ the boundary condition y = U 1s applied on the dashed
line in Fig. 2. A boundary condition for y is derived using the normal component of the
wind on the boundary: the equation

Jiy N ay

v, = -
" as  on

(34)

is integrated along the solid line in Fig. 2 using the known normal gradient of y on this
line to yield the streamfunction as a function of boundary position. In order that this

process should vield a single-valued streamfunction, it i1s necessary that the mput data
satisfy the following integral constraint:

” 5d¢z=§ V. ds. (35)

To ensure this, the normal boundary wind is adjusted by the addition of a (normally
small} constant.

The fifth and final step of the integration is the calculation of the vertical velocity
¢"*! by means of (26). ' |

A multi-level model, LASER, has been coded to solve the equations developed in
this section. It is run on a limited area using a transformed latitude/longitude grid, with
pole at the geographic position 30°N 150°E, and resolution AA = A8 = 2°. There are
40 x 26 points covering the area shown in Fig. 3. There are five vertical levels, with an
upper boundary at o = 0-2. In order that G and ¢ points coincide, a D-grid 1s used, with
u and v specified half a grid-step north and east respectively of G (see Fig. 2).
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3. INITIALIZATION

Nonlinear normal-mode initialization is an effective way to define balanced initial
fields (Machenhauer 1977). An implicit formulation of normal-mode initialization (we
denote it INMI) has been developed (Bourke and McGregor 1983; Juvanon du Vachat
1986; Temperton 1988). The essence of INMI is to reformulate the primitive equations
in such a way that the tendencies of gravity-wave components occur as explicit terms,
and to derive diagnostic relationships by omitting these terms. The diagnostic equations
derived in section 2 above are analogous to those of scheme B of Bourke and McGregor
(1983) and system D of Temperton (1989).

Temperton (1988) used &MI with a barotropic regional model, and showed that it
eliminates the high-frequency oscillations. We have extended this method to the baro-
clinic case using the slow-equation model LASER. In this section we describe initialization
experiments using LASER, corresponding to a muiti-level formulation of INMI. The
assumptions made in deriving the slow equations are the same as for INMI, and the
resulting diagnostic relationships are similar. Each time-step of LASER involves a semi-
Lagrangian advection and an adjustment component. If the time interval is set to zero
each time-step corresponds exactly to a single iteration of an INMI scheme. In (23) and
(23} the departure point quantities are evaluated at the arrival points. In (16), (19) and
(26) the advection terms are explicitly included. The initialization is performed by running
LASER for two time-steps with Az =0, corresponding to two iterations of nonlinear
normal-mode imtialization of all vertical modes.

The forecast model used for the intialization experiments is described in McDonald
(1986). It uses a semi-Lagrangian advection step and a semi-implicit adjustment step. A
C-gnd is used, with # and v specified a half grid-step east and north respectively of @,
Since LASER uses a D-grid, with the positions of # and v interchanged, the initialized
winds must be interpolated to the C-grid before the forecast can be made. The vertical
levels of the forecast model are the same as those of the mitialization scheme (see Fig.
1), and the two models have the same equivalent depths and vertical normal modes. For
the forecast experiments described here, the geopotential was held constant on the
boundary. All wind and mass values interior to this boundary were updated during the
forecast.

The initial data are the analyses of mass and wind vahd at 0000 urc, 22 November
1982. The 500hPa geopotential and sea-level pressure are seen in Figs. 3(a) and 3(b).
The 24-hour forecasts from these fields are shown in Figs. 3(c) and 3(d). The initialized
fields and the forecasts resulting from them look similar to those in Fig. 3 and 1t 1s more
useful to plot the difference ficlds. In Figs. 4{a) and 4(b) the changes in 500 hPa height
and sea-level pressure are plotted. The differences in these fields at 24 hours between
the initialized and uninitialized runs are seen in Figs. 4(¢) and 4(d). The maximum change
in 500 hPa height is 22 m (the contour interval in Figs. 4(a) and 4(c) is 10 m). The largest
change in surface pressure is 2-6 hPa (the contour interval in Figs. 4(b) and 4(d) is 1 hPa).
The differences between the 24-hour forecasts, shown in Figs. 4(c) and 4(d), are slightly
smaller than those of the imtial fields, with maximum differences in 500 hPa height and
surface pressure of 19m and 1-8 hPa respectively. There is some evidence of a large-scale
pattern of error in Fig. 4(c). This may be due to the treatment of the B-terms, as discussed
in Temperton {1989). .

The r.m.s. changes in surface pressure and 500 hPa height due to initialization are
0-58 hPa and 6-2 m. The corresponding differences between the two forecasts are 0-53 hPa
and 5-0m. The r.m.s. change in the wind field, averaged in the vertical, is
3-3ms~'. The corresponding r.m.s. difference between the forecasts is 1-9ms™!, It is



605

SLOW-EQUATION MODEL

SOSAFRUE POZI[enIUIUN PR POZILNIMI Wox] SUnIv]S S1SuO0I0] U2omiaq ‘sinssaid 12a9]

-pas pue jepuatododd edy Qs
a1 ut sanualafycy (p) ‘(o) rainssaxd [pa0p-eds pur [ERUi0dosd BJy Qs JO SIsARuR paziE

NIMIUT PHE PIZIRGI 313 UD2M15q 20U (q) ‘(¥)

b 2Ingrg

A3

-
-
ammmd

89 e dy|

005 (»)

¥ xv .h

|

[B13U870008Y 849 005 (&7



606 PETER LYNCH and A. McDONALD

clear that the changes induced in the analysed fields by the initialization result in
acceptably small changes in the forecast.

The effect of initialization on the evolution of the forecasts can be seen by plotting
the surface pressure at a single point. The solid line in Fig. 5(a) shows the pressure for
the uninitialized run. The dashed line, for the initialized run, is very much smoother and
the initial shock is absent. The mean absolute divergence provides a global indicator of
gravity-wave noise. The evolution of this quantity before and after initialization, shown
in Fig. 5(b), confirms the effectiveness of the initialization procedure in removing high-
frequency noise.

{al

02 SURFACE PRESELRE - (b} MERN RESILUTE OIVERGENCE

e RINTTHIE 7203 FLS1.
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Figure 3. (a) Evolution of the surface pressure at a central point {19, 9) starting from uninitialized data (solid)
and initialized data (dotted), (h) Corresponding curves for the absolute divergence averaged over the forecast
area (units 107%™,

The mean absolute divergence before initialization was 833 (in units of 107%7).
After initialization this was reduced to 200. Since LASER uses a D-grid, interpolation
back to the forecast model C-grid was necessary and this increased the mean absolute
divergence to 208. The value at the end of the 24-hour forecast was 218. Divergence
damping (with a coefficient Cs= 3-4x10"m’s™!) was applied in both the uninitialized
and initialized forecasts. It was not necessary in the initialized run, but was included to
make the correspondence between the runs as close as possible.

Most initialization procedures are applied only to the vertical modes of largest scales
and higher internal modes are left unaltered. Non-convergence of the iterative process
for the higher modes has been reported in several cases. In Table 1 we give the mean
absolute value of divergence in each of the five vertical modes, and at each model level,
for the uninitialized analysis (in colurmn 2) and after initialization of an increasing number
of modes. The equivalent depths of the five vertical modes are 10398, 494, 94, 20 and
3-4 metres. All values in Table 1 are for the D-grid and two imtialization iterations are
applied in each case. The total divergence decreases consistently as more modes are
initialized. It is noteworthy that the iteration procedure converges with all modes
initialized; the scheme was run for 24 iterations and the fields after 4, 8, 16 and 24
iterations were virtually the same. This is in contrast to results reported for other methods
(e.g. Williamson and Temperton 1981) where attempts to initialize the higher modes led
to divergence.

The initialization using LASER includes a component {Eq. 25) which determines
the change in surface pressure explicitly. This removes an indeterminacy found in many
previously reported methods. For example, Temperton and Williamson (1981) assume
a linear relationship between changes in log p, and modified geopotential G, and Daley
(1979) uses a variational formulation to remove the indeterminacy. When the slow
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TABLE i. MgAN ABSOLUTE DIVERGENCE IN FACH MODE AND AT EACH LEVEL OF

LASER FOR THE UNINITIALIZED ANALYSIS {COLUMN 2) AND AFTER INITIALIZATION OF

DIFFERENT NUMBERS OF VERTICAL MODES, UNITS ARE 107% 1,

MNumber of vertical modes initialized

0 1 2 3 4 5

Mode

o= 1 G.23 0-05 (+90 -90) 0-90 0-90
m=2 752 7-52 153 1.54 1-55 1-55
m o= 3 G-87 9-87 G-87 265 2-68 270
m o= 4 584 584 5-84 5-84 2-90 - 292
mo=5 297 297 287 2-97 297 i-79
Level

[ =1 10-60 724 278 1-66 167 1.68
[ = 2 10306 6:05 631 275 211 215
f= 3 626 513 208 3-30 163 1:54
| = 4 6-81 & 68 380 235 262 1.62
[ =5 7-46 7-65 500 356 2-93 273

equations are used in forecasting, the explicit changes in surface pressure must be
calculated from (23). It seems most natural to use the same procedure for initialization,
which is what we have done.

4, CONCLUDING REMARKS

A multi-level model, LASER, based on the slow equations, has been formulated.
The slow system comprises prognostic equations for potential vorticity and surface
pressure and diagnostic relationships for the remaining variables. The goal in developing
this model is to construct a system for hourly analysis and short-range forecasting. Since
the slow equations are free of high-frequency solutions, it is hoped that they may be used
to assimilate observational data at frequent intervals without repeated initialization and
without data shock.

As a first step, the slow-equation model has been used to initialize data for a
primitive-equation forecast. The diagnostic components of the siow system, the balance
and imbalance equations, are stmilar to those used in the implicit normal-mode method.
This method has recently been shown to yield results very similar to the explicit normal-
mode method (McGregor and Bourke 1988). It has alse been applied to a spectral
barotropic model (Temperton 1989). In this paper we have shown that the technique
provides a satisfactory method of initialization for a baroclinic limited-area model. The
normal modes of such a model are generally unknown, as the horizontal variables are
not separable. The method proposed here provides a practicable solution to the problem
of initialization for such models.

We hope to report at a future time on the use of the model LASER 1n forecasting
mode. Preliminary studies have indicated that the errors of forecasts with this model,
while modest, may be too large to be tolerated m.an operational context. The source of
these errors does not appear to be the approximations made in deriving the slow system,
but the treatment of the boundaries. A number of variations to the boundary formulation
described in section 3 above have been tried, but, to date, no completely satistactory
formulation has been found. The boundary conditions used in this study are adequate
for the initialization problem, but apparently not for forecasting. There 1s also some
evidence of errors resulting from the present treatment of orography, and methods of
improving this will be imvestigated.
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APPENDIX

List of variables and constants

pressure (Pa)
surface pressure {(Pa)

temperature (K)
mean temperature (K)
time (s)

divergence (s™!)

vorticity (s™1)

latitude (radians)
longitude (radians)
vertical coordinate {(p/p,)

_%Q‘:wmﬁm o zﬂirqmc‘p“@ A Bl - T T

vertical velocity (do/df)
geopotential (m?*s™)

o

velocity potential (m*s™)
streamfunction (m?s™1)

RSN -t

Bourke, W. and McGregor, J. L.

Charney, J§. G.

Concus, P, and Golub, G. H.

Daley, R.

Juvanon da Vachat, K.

gas constant (287-04J kg~ K™)

surface geopotential (m?s™2)

1983

1962

1973

1979

1986

radius of the earth (6-371x10°m)

isobaric specific heat (1004-6J kg 'K
vertical mode eigenvector matrix

Coriolis parameter (2€2 sin 8)

modified geopotential (®+RT’ Inp,)
acceleration due to gravity (9-80665ms2)
vertical coupling matrix (Eq. (14))

zonal component of velocity (ms™!)
meridional component of velocity {(ms™!)

geostrophic imbalance (V*G — f{)

value of o at the top of the atmosphere

angular speed of the earth (7-:292x107%™)
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