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The slow equations
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SUMMARY

A filtered system of equations is derived, using the ideas of normal mode initialization. This slow equation
system models the low frequency rotational atmospheric motions; there are no solutions corresponding to
gravity waves. The prognostic element of the system is an equation expressing the conservation of potential
vorticity. The slow equations differ from the general balance system at second order in the Rossby number,
and are free from the spurious solutions found in that system. Integration of a barotropic model with the slow
equations shows them to be highly accurate when compared with the primitive equations. Since the slow
equation model has no high frequency solutions and is free from data shock, it may be useful for continaous
assimilation of observational data.

1. INTRODUCTION

The object of numerical weather prediction 1s to forecast the evolution of the slow,
rotational motions of the atmosphere. The high frequency gravity waves which are also
solutions of the primitive equations have been causing headaches for modellers ever since
Richardson’s (1922) pioneering forecast.

The first successful numerical forecasts by Charney ef al. (1950) circumvented the
problem by filtering the equations so that only the slow motions remain as solutions.
However, the resulting quasi-geostrophic equations were not always sufficiently accurate,
and have systematic errors which make them unsuitable for operational forecasting. The
balance equations are based on assumptions less drastic than those leading to the quasi-
geostrophic system, and should therefore be more accurate. Daley (1982) has constructed
a non-iterative procedure for integrating the balance system, and his results confirm its
high accuracy. A balance system involving minimal filtering assumptions has also been
proposed recently by Thompson (1980). However, the general balance system admits
spurious non-physical solutions (with phase speeds far in excess of the gravity wave
speed) in addition to the rotational modes (Moura 1976).

Since the primitive equations support gravity waves, forecasts made with them may
be very noisy unless the initial data reflect the balance between the mass and wind fields
found in the atmosphere. Modification of the data to ensure this balance is called
initialization.

A more direct attack on the noise problem would be to develop a filtered system
which simulates the rotational flow accurately but is free from gravity waves (and spurious
high frequency solutions). Using the ideas of normal mode initialization, Daley (1980)
devised a system in which the low frequency components of the flow are forecast, while
appropriate gravity wave components are diagnosed at each moment. This system proved
to be highly accurate when compared with a primitive equation model. Combining
Daley’s approach with the implicit normal mode method of Temperton (1985), it is
possible to express this system in terms of the physical variables (obviating the need for
transformations to and from normal mode space). We shall call the resulting system the
slow equations. (A recent paper of Browning and Kreiss (1987) also discusses filtered
systems derived using constraints based on initialization theory.)
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The slow equations may also be deduced by means of scaling arguments similar to
those used to derive the balance system, and based on smallness of the Rossby number,
Ro. Both systems are accurate up to O(Ro?), and may be expected to yield results of
comparable accuracy. There is a difference at O(Ro?) between the systems, with the
consequence that the slow equations are free from the spurious unphysical solutions.

The slow system has one prognostic component, the equation of conservation of
potential vorticity. This equation is in a form ideally suited to the application of the semi-
Lagrangian method of integration. The diagnostic elements of the system mmay be written
as standard Helmholtz equations, whose solution is straightforward. Parallel runs show
the slow system to be very accurate when compared with a primitive equation model.
When used with a zero timestep (i.e. omitting the semi-Lagrangian step) the slow system
can be used to initialize data for a primitive equation run. This is precisely the implicit
normal mode method of initialization (Temperton 1985; Juvanon du Vachat 1986). The
method is equivalent to the filtering condition B derived heuristically by Bourke and
McGregor (1983).

The slow equations may provide a suitable means for the assimilation of observational
data during a forecast, as they can absorb inserted data without suffering high frequency
shocks. The general balance equation, relating the mass and wind fields, is an inherent
component of the slow system, and it may conveniently be used to define a local balance
when data are inserted, in such a way that perturbations of given magnitude {(i.e. in
agreement with observations) are assimilated by the system. A further diagnostic com-
ponent of the system, the imbalance equation, ensures the definition of an appropriate

divergence field. The response of the primitive and slow equation models to inserted
data 1s discussed in Lynch (1987).

2. DERIVATION OF THE SLOW EQUATIONS

(a) Background

Daley (1980) has used the ideas of normal mode initialization to develop a method
of integrating the primitive equations efficiently. The original equations can be written

X+LX+NX)=0 (1)

where X is the state vector of unknowns, L is a constant linear operator (matrix) and N
is a nonlinear vector function. When transformed to Hough mode space, the system splits
into two subsystems:

Y + AyY + Ny((Y,Z) = 0 (2)
2+ AZ+NUY,Z)=10 (3)

where Y and Z are respectively the coefficients of the slow and fast components of the
flow and Ay, Ay are diagonal matrices of eigenfrequencies. Machenhauer (1977) proposed
that (2)-(3) could be initialized by setting the tendencies of the fast modes to zero.
Assuming Machenhauer’s criterion (Z = 0) to hold throughout the integration, Daley
replaced (2)-(3) by the system

Y + AyY + Ny(Y,Z) = 0 (4)
AyZ 4+ Ng(Y,Z)=0 (5)

giving a prognostic equation for the slow modes and a diagnostic equation for the fast
modes. I will call (4)5) the ‘slow equations’ (in normal mode form). Using the slow
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equations, Daley developed an integration scheme which was stable, efficient and
accurate: he compared a run with the slow equations and Az = 40min to a control run
with the primitive equations and Ar = 10min; the r.m.s. differences in surface pressure
and in S00hPa winds at 48 hours were only 0-6hPa and 1m s™'. The great majority of
the additional computational effort (per timestep) in Daley’s scheme is due to the
transformations between spectral (spherical harmonic) space and normal (Hough-) mode
space; for a gridpoint model the transformations would be even more expensive.

Temperton (1985) has devised an initialization scheme which is completely equivalent
to the normal mode method, but which operates in physical space. A very similar method
has been presented by Juvanon du Vachat (1986). The central idea of Temperton's
approach is to choose a linearization and to reformulate the physical equations so that
the tendencies can be separated by inspection into slow and fast components:

X=Xy +Xg. (6)

(Subscripts R and G denote the Rossby and gravity wave projections.) Using Mach-
enhauer’s criterion, X; = 0 at ¢ = 0, Temperton derived an initialization scheme which
he called the implicit normal mode method; the same approach will be used here to
derive a system of slow equations in physical space.

In the following section we will use the ideas of Daley and Temperton to develop a
system of equations equivalent to that of Daley, but formulated in terms of the physical
variables. The integration of this system does not require any transformations between
physical and spectral space; nor does it require knowledge of the linear normal modes
of the model being integrated.

(b) Derivation of the slow equations

A general baroclinic system of equations may be separated, by transformation to
the vertical eigenmodes, into a number of systems equivalent to the shallow water
equations. Therefore, we consider the shallow water system

L+ f6=—N; (7)
5 — fE+ Vi = —N, (8)
b+ D6 = —Ng (9

where N, N and N4 represent the nonlinear terms, dots denote local time derivatives
and otherwise the notation is conventional. The Coriolis parameter f 1s variable, but the
B terms are included on the right-hand side. We assume that f = f(x, y) depends upon

both horizontal coordinates (as it does for a polar stereographic projection or for rotated
latitude/longitude coordinates) and denote its derivatives by 8, and ,. Then the nonlinear
terms are

Ne=V-Vi+ 00+ (Byv+ Bu)

Ny=V.-V3+ & + (Byu— B,v) — 2Hu, v)

Ne =V .V® + (P — §)4.

The vorticity and continuity equations may be written
A+ Hjdt+(E+Hs=0 and d®/dt + ®6 =0
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and from these we easily derive an equation expressing the conservation of potential

vorticity
d {{+ f)
== (), 10
il 10

Expanding the time derivative and keeping only linear terms on the left, this may also
be written in the form

ARZLD) (BN, - Ny, (11)

This equation may alternatively be derived directly from (7) and (9).

Although (7)9) are not separable, we can easily deduce some crucial properties
of their linear eigenmodes (Temperton 1985, 1988): (A) The slow modes are stationary,
geostrophic and nondivergent. (B) The fast modes have zero linearized potential vorticity
(11 = @f — f®). Property (A) is easily seen by considering stationary solutions of the
system (7)—(9). Property (B) follows from (11), linearized so that the r.h.s. vanishes, and
the fact that the fast modes must have non-zero frequencies. These properties imply that
the tendencies of divergence and (geostrophic) imbalance (¢ = V2® — f{) project entirely
onto the fast modes, and the tendency of potential vorticity entirely onto the slow modes:

b= 0 + 8g (12)
£ = Vb -ff = 0 + (V2 ~ B (13)
M= ®-fd = (Df—fd)g + 0. (14)

These are the explicit form of (6) above. An equation for the tendency of the geostrophic
imbalance is easily derived from (7) and (9):

£+ (V2 ~ fY®)B6 = —(V*Ng — fN;). (15)

This imbalance equation, together with (8) and (10) (or (11)), gives a system of three
equations completely equivalent to the original system (7)—(9).
We now assume that the gravity wave projections of tendency vanish. Thus, the

tendency terms in (8) and (15) are dropped; the potential vorticity equation (10) is left
unchanged. The resulting system is

d

i (g“%‘ =0 (16)
V2 — ff = ~N, (17)
(V2 - /)P = —(V2N, — fN,). (18)

We shall call this system the ‘slow equations’. They comprise the equation of conservation
of potential vorticity (16), the nonlinear balance equation {17) and the imbalance or
omega equation {18). They are analogous to Daley’s equations (4)—(5), but refer to the
physical variables, obviating the need for transformations to and from Hough space.

Although Daley used Eqs. (4) and (5), his criterion to determine the prognostic or
diagnostic treatment of each coefficient was based on its associated frequency. His system
is thus more general than (16)—(18). A system using the frequency cut-off criterion and
formulated in terms of the physical variables can be devised using the Laplace transform
technigque (Lynch 1985).
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The above analysis may be repeated with the f terms included in the linear analysis
(Temperton 1988). The resulting equations are a little more cuambersome, and it is unclear
whether any advantage is obtained (cf. Lynch 1985, section 4). Similarly, the total
derivatives of & and £ may be omitted, rather than their local tendencies; Thompson
(1980) argues that this is a physically more meaningful approximation. Again, the result
is a somewhat more complicated form of the nonlinear terms. It is not clear whether the
alternative approximation yields better results. Finally, Tribbia (1984) has developed a
higher order method of initialization. Rather than assuming that the nonlinear terms in
(3) are constant, he represents them by low order polynomials in time. The first-order
version of his technique is the same as Machenhauer’s method. The second-order version
consists of setting to zero the second (time) derivative of the gravity modes. One could
use Tribbia’s criterion to derive slow equations of higher order; any practical advantages
would have to be weighed against the added complexities of the resulting system.

3 THE SLOW EQUATIONS AND THE BALANCE S5YSTEM

(@) Introduction

The slow equations are similar, but not identical, to the general balance system.
There is a single prognostic variable, the potential vorticity. Various small terms are
retained in the slow equations which are normally dropped in the balance system.
However, the most important difference is the omission of the tendency of (geostrophic)
imbalance (£) in the slow equations. This may be justified by scaling arguments similar
to those which lead to the balance system.

The essential approximation in deriving the balance system is the replacement of
the divergence equation by a diagnostic relationship between the streamfunction and the
geopotential. The resulting system of equations is highly implicit, and its numerical
solution presents some difficulties (Charney 1962; Daley 1982). The general balance
system admits spurious high frequency solutions in addition to the Rossby wave solutions
(Moura 1976); it will be shown below that the slow equations are free from this problem.

(b) Perturbation expansion
We consider the shallow water equations, linearized about a state of rest:

dufot — fo + 9@ fax =0 (19)
du/ot + fu + a®'[ay = 0 (20)
ad' /ot + ®(ou/ax + dv/ay) = 0. (21)
The corresponding vorticity and divergence equations are
Lot + fo+ Pv =10 (22)
3d/at + (V@' — fC + pu) = L. {23)

We introduce length and velocity scales L and V, assume an advective time scale L/V
and scale &' geostrophically as 2QLV. The non-dimensionalized forms of (19)-(21) then
become

Ro dujfat — pv + o®/dx = 0 (24)
Ro dv/at + pu + o®/ay = 0 (25)
Ro~'Fra®/at + (3ufox + ov/dy) =0 (26)
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where p=sing, Ro= V/2QL is the Rossby number and Fr = V2/® is the Froude
number. The vorticity and divergence equations become

Roalfot+ ud+ (L/a) ov =0 (27)
Ro 38/at + {V2® — ul + (L/a)ou} = 0 (28)

where o = cos¢ and g is the earth’s radius.
We assume the following values for the scale factors, etc.

V=2ms™, L=10m,2Q =1-5%x 107", & =5 % 10* m%~2, 4 = 6 X 105 m.

Then the non-dimensional numbers take values as follows: Ro ~ 1071 Fr~ 1072,
Ro™'Fr ~ Ro, L{a ~ Ro. We have assumed that L. < a so that L/a = O(Ro). This is true
for synoptic scales of motion; for planetary scales I ~ a, and the scaling must be
reexamined (Burger 1938).

We will now derive perturbation forms of the equations, correct up to O{Ro?). First,
the dependent variables are expanded in the Rossby number

qg=qpo+q Ro+qg,Ro*+---.

The expansions are substituted into the equations of motion and terms of like order in
Ro are equated. We perform the expansion process in two different ways: the conventional
method leads to the balance system; and a reformulated method, starting from equivalent
but different forms of the original equations, vields the slow equations,

Method A. We expand Eqs. (26), (27) and (28). The zero-order terms give
tﬁ{; = {} and vz@{] = }.tg[)

representing non-divergent, geostrophically balanced flow. Next, we consider the terms
of order Ro, which give

dLy /ot + 6, =0
a8y /ot + ud, + ovy =0
vz‘b]_ -~ ;“'Cl -4 Oy = 0.

In dimensional form, the equations correct up to order O(Ro?) are

D, +D5=0 (i)
L +f6+Pv=0 (ii) [BE]
Vi@ —fE+ Bu=0 (iii).

This is the conventional (linearized) balance system {(denoted [BE]). We note that there
are two prognostic equations, and will show below that this leads to spurious solutions
of the system in addition to the Rossby wave solutions.

We have assumed that L < g and L/a = O(Ro), which is true for synoptic scales.

Since O, vanishes, the wind field may be partitioned into solenoidal and potential
components as follows

VmV¢,+Ro.Vx.

Thus, in the § terms of [BE] the winds may be replaced by their rotational components.
The equations are then equivalent to the linearized form of Eqgs. (3.1-3) in Charney
(1962). For planetary scales the full winds must be kept (Charney 1973). It is the inclusion
of the term Bu, in [BEC(iii)] which leads to the spurious solutions (Moura 1976).
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Method B. We now define the imbalance as & = V*® — f{ -+ fu and observe from the
foregoing analysis that £ = O(Ro?). With an advective timescale appropriate to low
frequency motions we expect that the tendency of ¢ is also small. From (19), (21) and
(22) we easily deduce

de/ot + (BV? — )6 — fpv — B(fv — @) = 0. (29)
In non-dimensional form this becomes
Rode/ot + {{Ro*Fr~)V? — u*1é - (L/a)pov — (Lja)o(upy — @) =10 (30)

and we recall that Ro*Fr~! = O(1).

Consider the system of equations (22}, (23) and (29) or, in non-dimensional form,
(27), (28) and (30). The dependent variables are expanded as before and coefficients of
like powers of Ro considered together. The zero-order terms yield

by =0 gy =V0y —pule =10

which represents non-divergent geostrophically balanced flow, as before. Now the first-
order terms give the following system:

9E, /0t + pdy + ovy =0
g, = V2, —ub, + ouy =0
(V2 — u?)dy — povy = 0.

In dimensional form the equations correct up to O(Ro?) are

E,+fé+ Pv=0 (i)

Vi — fL+ pu=10 (i) [SE]

(®V2 — )8 — fBv =0 (iii).
This system is denoted [SE] as it is a form of the slow equations, of the same character
as those derived in the previous section. The first two equations are identical to those
which were obtained above for the [BE] system. However, we now have a diagnostic
equation for 6 in place of the continuity equation. There is only one prognostic
component, and the only normal modes are the Rossby waves—the system is free from

spurious modes. This fact, together with the extra simplicity of the system, makes it more
attractive than the conventional balance system.

(¢) The transition between the two Systems

Since both the systems [BE] and [SE] have been derived from the same starting
point, with the same scaling assumptions, and since both are correct at O(Ro), any
differences between them must be O(Ro?) at most. We will show now that this is the
case.

From [BE] it is straightforward to derive the equation

3 (V2@ — f&)/ot + (DV? — )8 — fBv = 0. (31)

This equation differs from [SE(iii}] only in having a tendency term. Now, by scaling this
equation as before, it appears immediately that this tendency term vanishes at the zeroth
and first orders in Ro. But the removal of the term renders the balance and slow systems
identical. Therefore, they are equivalent at O(Ro).
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Despite the difference between [BE] and [SE] being only O(Ro?), there is no direct
means of transition between them. Considering [BE] per se, the tendency term in (31)
must be kept. To make the transition we must take a step backwards to the original
primitive system. The presence of the tendency term in (31) is a fundamental difference
between the balance and slow systems, and justifies different names being given to them.

(d) Linear normal modes

Since two time derivatives are omitted in the slow system [SE], the dispersion
relation is linear in the frequency. There is only a single normal mode for given
wavenumbers. The balance system [BE] has two time derivatives; a naive argument
would suggest that the system should have a quadratic dispersion relation and therefore
admit modes other than the Rossby wave solutions. Let us examine this in more detail,

The system [BE], written in terms of the streamfunction and velocity potential, is

aB/ot + dViy =0
aViyp/at+ FV2y + B, +vy,)=0
Vi __.fviq) + ﬁ(x.:: — tp}*) = (.

Seeking solutions of the form Aexpfi(kx + Iy — vi)} we get a quadratic dispersion relation:
(aBl)v? + {B2(ak? + PV/K? ~ KD + f2/K?) + 2f . Billy — PRK D =0 (32)

where K* = (k% + 1) and a (=1 or 0) is a tracer indicating inclusion or exclusion of the
term fu, in the balance equation. For simplicity, let us assume that [ = 0. If @ = 1 and
we define cg = — /K* and cg = V(@ + f2/K?), the phase speed ¢ = v/k must satisfy

crc® + (ck — ck)c — Dey = 0. (33)

Since |cg| <€ cgl, the second term in the coefficient of ¢ may be omitted. The two roots
may easily be found approximately: for |c| small we omit the quadratic term, arriving at

¢ =cr(l + fF2/K2®)!
which is the familiar Rossby wave speed; for |c| large the constant term is dropped, giving

C=cCg = C%}/(“"’"CR)-

Since |¢g| 3 |cg], this solution is much faster than a gravity wave. It is in fact a spurious
solution, with no physical significance. Such physically unrealistic high frequency,
castward-propagating solutions were discussed by Moura (1976).

Our naive reasoning has proved correct: the two time derivatives in the balance
system give rise to two types of normal mode solution. If the term pu, is dropped from
the balance equation, we put & = 0 and the quadratic term in the dispersion relation {32)
disappears. Then the only solution is that having the Rossby wave speed, and the system
i1s free from spurious solutions. In general, the condition necessary to avoid spurious
solutions is that the balance equation have no term involving a divergence element

(x.u,, v, ord).
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(e} A general filtered system

The foregoing analysis was applied to the linear shallow water equations (19)-(21).
A similar approach may be used in a more general nonlinear context. We write the
divergence equation in the form

dé/dr + €= 0 (34)

where ¢, the imbalance, is the sum of all remaining terms. Now we derive an equation
for the rate of change of £, which may be written formally as

de/dt+ n = 0. (35)

The derivation of this equation may be algebraically involved. Thompson (1980) has
derived an expression for 5 which includes the effects of nonlinear advection (although
the § terms are omitted). Note that (35) may also be written

d*8/dt* + n = 0. (36)

To obtain a general filtered system, we omit the time derivatives in (34) and (35).
(Either partial or total time derivatives may be omitted; Thompson (1980) argues that
only the total derivatives have intrinsic physical meaning, being independent of the
coordinate system. ) Equation (34) now becomes a generalized balance equation, express-
ing the relationship between the mass and rotational flow fields. Equation (35) becomes
a diagnostic equation for the divergence (analogous to the omega equation); we may call
it the imbalance equation, since it is the approximate form of the equation for the
tendency of imbalance. We complete the system by adding the equation for conservation
of potential vorticity. This general slow system, with a single prognostic component,
models the slow, rotational motions and is free from both gravity waves and spurious
solutions.

Hinkelmann (1969) proposed a general method for defining initial data for the
primitive equations. He suggested that the observed wind and mass fields should be
adjusted so that

AV -V}/dt=0 and d*(V-V)/di*=0. (37)

That is, these two conditions should be used to derive diagnostic relationships, which
could then be used to filter the initial data. As an alternative, he pointed out that these
conditions could be used to replace two prognostic equations by diagnostic relationships,
yielding a general filtered system; this is precisely what we have done above. Thus, the
slow equations are an implementation of the filtering technique originally suggested by
Hinkelmann.

It was further argued by Hinkelmann that an improved balance would be achieved
by requiring

d"(V-V)/di" =0 and  d"Y(V-V)/dr*! =0 (38)

for n > 1. We can re-express these criteria as
dré/de =0, d*e/di” = 0. (39)

Clearly, for n =2 these are essentially the same as Tribbia’s (1984) second-order init-
ialization technique. Likewise, there is a correspondence between the procedures for
larger n. 1t is evident that higher order systems of slow equations could be derived by
using (38) rather than (37), to derive diagnostic relationships, together with the potential
vorticity conservation equation.



210 P. LYNCH

We will see below that the difference between a forecast with the slow equations
and a reference run with a primitive equation model is of about the same size as the
errors obtained by Daley (1982) using the balance system. As the two systems yield
results of comparable accuracy, the slow equations may be considered to have a clear
advantage over the balance system by virtue of their greater simplicity and the absence
of unphysical solutions.

4, NUMERICAL INTEGRATION OF THE SLOW EQUATIONS

The numerical integration of the slow system is straightforward. We rewrite the
system (16}—(18) here for convenience:

i) 0
Vo - ft = —N, (41)
(V2 - 2/®)B6 = — (V2N — INy). (42)

The potential vorticity equation (40) is in a form ideally suited to the semi-Lagrangian
approach. This method ensures unconditional stability for the time integration, which is
a great advantage. After each timestep, the diagnostic relationships (41) and (42) are
used to calculate the remaining variables. Certain quantities not known at the new time
must be lagged, or evaluated using values from the previous time. The error thus incurred
could have been reduced by an iterative procedure, but this was found to be unnecessary.
The method used bears some similarity to the non-iterative method used by Daley (1982)
to solve the balance equations.

(@) Discretization

The only prognostic variable is the potential vorticity 7= ({ + f)/®. Since it is
convenient to calculate £ and & at the same points, a D grid is used, with v calculated
a half gridstep east and u half a gridstep north of each ® point. The area covered by the
grid can be seen in Fig. 1. There are 40 X 26 points with a spacing of 2° X 2° on a rotated
latitude /longitude grid with a pole at 150°E 30°N.

The initial data are the (uninitialized) operational analyses of geopotential height
and winds at 500 hPa valid at 0000 utrc, 19 November 1986. The mean height calculated
from this analysis is 5439 m. The wind fields were interpolated from a C to a D grid.
Calculation of the vorticity £, and thence 71, at ® points gives us the starting values for
the integration.

(b)Y The Lagrangian timestep

The prognostic element of the slow system is Eq. (40), expressing conservation of
potential vorticity. To integrate this equation, we use a two-time-level semi-Lagrangian
technique. Thus, (40) is approximated by

g5t = IT, (43)

where the potential vorticity I7 at the gridpoint (Z,J) at time (n + 1)Ar is equal to its
value at a departure point, denoted by an asterisk, at time nAt. The departure point is
estimated using a technique described by McDonald and Bates (1987). This technique
uses centring in both time and space, and bilinear interpolation. With the departure point
thus estimated, the value of I7 at this point at time nAf is calculated by a bicubic
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Figure 1.  Analysed 500 hPa geopotential height (metres) valid at 00 oMmT, 19 November 1986.

interpolation, and by (43) this immediately gives us the value at point (I1,J) at the new

time. The semi-Lagrangian method is discussed more fully in Bates and McDonald
(1982).

(¢) Diagnostic steps
From (41) and the definition of IT, we get an equation for the geopotential:

(V2 = f2/®)® = =N, ~ f2 + flIl - (f/®)}o. (44)

The nonlinear right-hand terms are calculated using values at nAf, except for IT at
(n + 1)At. Note that the coefficient of ® on the r.h.s. is small, so that the resulting time
truncation error should also be small. Then ®”*! is obtained by solution of the Helmholtz
equation (44). We use SOR for simplicity, although faster methods are available (e.g.
see appendix of Temperton 1988). From I7"*! and &**! we immediately get "1,

The next step is to compute N¢ and Ng and then the right-hand side of (42) using
the most up-to-date values available. This Helmholtz equation is then solved for the
divergence 6"*1.

The winds at time (n + 1)Af must be retrieved from the vorticity and divergence
fields. This process requires the specification of a single wind component on the boundary.
In the method of Sangster (1960) the streamfunction and velocity potential are calculated
by solving two Poisson equations, and the wind is then deduced from them. A more
direct method (Lynch 1988), requiring the solution of only one Poisson equation, vields
equally accurate results and was used in this study.

Finally, the vorticity is recalculated in order to agree with the wind values specified
on the boundaries, and I7 is recomputed. Point values and global averages of various
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quantities, energy components and other diagnostics are calculated and stored at each
timestep. At the end of the integration the winds are transformed back to a C grid to
allow direct comparison with a primitive equation modei.

5. COMPARISON WITH A PRIMITIVE EQUATION MODEL

To assess the accuracy of the slow equations, a series of parallel runs using slow and
primitive equation models was carried out. The slow equation model ISE] is as described
in section 4 above. The primitive equation model (denoted [PE]) is a one-level version
of the model described by McDonald (1986). It uses a semi-Lagrangian advection scheme
and a semi-implicit adjustment step. The grids are identical for the two models, except
that [PE] uses a C grid, whereas [SE] uses a D grid, so that » and v points are interchanged.

As a reference run, we take the [PE] 24-hour forecast with a timestep Af of
10 minutes. The initial analysis of height is shown in Fig. 1, the 24-hour forecast in Fig.
2 and the difference in Fig. 3. To limit gravity wave noise in the primitive equation
model, a light divergence damping is applied, with a coefficient value 2x 10" m?® s™*, This
damps out the noise in about 12 hours.

Preliminary runs with the [SE] model differed significantly from the reference,
suggesting certain changes. The average divergence was too high, and there were large
differences between the runs near the western boundary. To counteract the first effect,
the divergence was set to zero on the boundary prior to the solution of (42). This resulted
in a reduction of the r.m.s. divergence from 1-8x107° s™* to a more reasonable value
5-7x107%s~1. The large differences near the western boundary were due to a discrepancy
in the treatment of the boundary conditions. To remove this, £ and IT were recalculated
after retrieval of the winds at each timestep. This led to more compatibility between the
two models.

After these adjustments, the differences between the reference run and the [SE]
model with a 10-minute timestep were very small. The difference between the height
forecasts had an r.n.s. value of only 5-9m and a maximum difference of 20m; the
difference field is shown in Fig. 4. The r.m.s. difference between the wind forecasts was
only 1-5ms~. These differences are comparable in magnitude to typical observational
errors.

Both models are capable of being integrated with long timesteps, since they both
use stable numerical schemes (the operational 3-D version of [PE] uses a timestep of
90 minutes). To investigate the time truncation errors, both [PE] and [SE] were run with
a one-hour timestep, and the results were compared with the corresponding runs with
At = 10 minutes. For [PE] the r.m.s, differences in height and winds were 5-8m and
0-9ms~' respectively. For [SE] the relevant figures were 3-6m and 0-5ms~!. These

differences are small enough to suggest that the errors associated with a one-hour timestep
are quite tolerable in both cases.

The effects of two different methods of retrieving the winds from the vorticity and
divergence were examined. We made two parallel 24-hour forecasts, using the method
of Sangster (1960) and the direct method of Lynch (1988) to retrieve the winds at each
timestep. The same normal boundary winds at the same gridpoints were used in each
case. The r.m.s. difference between the forecast wind fields after 24 hours was only
0-13ms'; the height fields differed by less than one metre. For all practical purposes,
the forecasts were identical. A full description of the two methods is given in Lynch
(1988).

The results of the comparison between the primitive and slow equation models
presented above indicate that the slow equations are capable of accurately modelling the
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low frequency rotational components of the flow, which are of primary meteorological
significance and interest. In the baroclinic case the separation between rotational and
gravity components is less distinct and there are convergence problems associated with
some initialization methods. Preliminary comparisons between baroclinic versions of the
slow and primitive equation models have been made. These indicate that the slow
equations are capable of accurately modelling baroclinic systems. However, the question
of how these equations may simulate small-scale systems, such as fronts, is of fundamental

importance and must be examined before the ultimate usefulness of the equations can
be gauged.

6. INITIALIZATION AND THE SLOW SYSTEM

The data for a primitive equation model must be initialized if spurious gravity wave
noise is to be avoided. In the [PE] model, the divergence damping reduces this noise
after about 12 hours, but there is a severe imitial shock and large unrealistic oscillations
during the early forecast hours. The slow equations have no solutions corresponding to
gravity waves, and are free from these problems. The diagnostic components of the
system automatically ensure that a balance between the mass and wind fields is maintained
at all times. In this sense, the slow equations are self-initializing. The [SE] model may
also be used to imitialize the data for the primitive equation model. However, the
evolution of the flow in the [SE] forecast is smoother than in [PE], even when the latter
starts from initialized data.

The different character of the flow evolution produced by the primitive and slow
models is clearly shown in Fig. 5. These graphs show the height at a central point
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Figure 6. Mean absolute divergence for the forecast produced by the primitive equation model [PE] (solid
line) and the slow equation model [SE] (dashed line).

(I = 19,J = 9) plotted against time. The noisy character of the [PE] forecast is abundantly
clear, and 1s in sharp contrast to the smooth curve resulting from the [SE] integration.
A similar plot of mean divergence, shown in Fig. 6, confirms the noisy character of the
[PE] run, and further demonstrates how the slow system produces a smooth evolution,
free from the initial shock and subsequent noise.
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The slow equations may be used to initialize the data for the [PE] model. This is
done by integrating the initial data, using [SE], for one or more timesteps, but with
At =0, 1.e. omitting the semi-Lagrangian step. This is completely equivalent to the
implicit normal mode method of imtialization (Temperton 1983; Juvanon du Vachat
1986). The number of ‘zero’ timesteps is equivalent to the number of iterations of the
normal mode technique. In practice, two iterations are sufficient to initialize the data.
Forecasts from uninitialized data are denoted by NIL, and those from data after two
zero timesteps are indicated by NL2.

The evolutions of the height field at a central point (/=26,J=12) for the [PE] model
without and with mitialization are shown in Fig. 7. The absence of an initial shock in the
NL2 run 1s clear. However, there is evidence that some high frequency oscillations
remain. In Fig. 8 the NL2 run is replotted with an expanded vertical scale (it is denoted
PRIM), together with the values forecast by the [SE] model (denoted SLOW ). It is clear
that the latter produces a smoother evolution. The residual noise in [PE] was not removed
by further iterations of the initialization. Use of a higher order scheme (Tribbia 1984)
might well remove this noise. However, there seems to be an inherent tendency for the
[PE] model to produce some high frequency components.

In Table 1 the differences between the uninitialized and initialized runs, at various
times during the forecasts, are presented. The differences after 24 hours are significantly
smaller than the initial changes. These results are broadly comparable to the results using
the Laplace transform techmque of initialization (Lynch 1985, Table 2).

The complete absence of high frequency noise from the [SE] forecast may be of
great advantage if the model 1s to be used for data assimilation. The insertion of
observational data which are not completely compatible with the forecast state may give
rise to large oscillations in a primitive equation model. The resulting noise causes
problems for subsequent data induction cycles. The slow equation model should be free

from these problems. A number of experiments in the assimilation of inserted data, using
the [|PE] and [SE] models, are discussed in detail in Lynch {1987).
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Fipure 7. Geopotential height forecast for a central point {7=26, J=12} for the primitive equation model

[PE] starting from uninitialized data (solid line) and data initialized with two nonlinear iterations {dashed line).
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Figure 8. Geopotential height forecast for a central point (/=26, J=12) for the primitive equation model
[PE] starting from data initialized with two nonlinear iterations (solid line} and for the slow equation model
[SE] with uninitialized data (dashed line).

TABLE I. ROOT-MEAN-SQUARE (AND MAXIM{IM) DIFFERENCES IN HEIGHT AND
WIND BETWEEN THE ORIGINAL AND INITIALIZED FIELDS (NI2 — NIL} AND
BETWEEN THE 12- AND 24-HOUR FORECASTS RESULTING FROM THESE FIELDS.

Z U e

Forecast (m) (ms~!) (ms™)
HH+00 536 2-11 2-08

(32-12) (12:35) (1377)
HH+12 4-29 0-75 0-64

{11.78) {4-52) (5-10)
HH +24 2-34 0-54 0-56

(8-52) (3:-12) {5-10)

7. CONCLUSIONS

A filtered system, the slow equation system, has been derived using the ideas of
normal mode initialization. The prognostic element of the system 1s an equation express-
ing conservation of potential vorticity. The remaining components, the balance and
imbalance equations, are diagnostic. The system models the low frequency rotational
motions and 1s free from gravity wave solutions.

The slow equations may also be derived by using scaling assumptions similar to those
used to obtain the general balance system. There is a difference at O{Ro?) between the
systems. The balance system has spurious unphysical solutions; the slow equations are

free from this problem.
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The slow system is equivalent to a filtering procedure originally proposed by
Hinkelmann (1969) in which diagnostic equations are derived by omission of the first and
second time derivatives of the divergence.

The slow system is ideally suited to the application of the semi-Lagrangian method,
since the only prognostic element is a pure conservation equation (the adjustment process
is diagnostic). Comparison runs show that barotropic integrations with the primitive and
slow equations give very similar results. Thus, the approximations made in deriving the
slow system result in negligible error.

The slow system is self-initializing. It may also be used to imitialize a primitive
equation model. This method is identical to the implicit normal mode method (Temperton
1985; Juvanon du Vachat 1986).

Since the slow system is noise-free, it may be used to advantage for data assimilation.
The balance equation is an inherent component of the slow system, and may conveniently
be used to ensure that inserted data project onto the rotational modes; the imbalance

equation ensures an appropriate divergence field. Data insertion experiments are dis-
cussed in detail in Lynch (1987).
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