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Initialization using Laplace transforms
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SUMMARY

The initialization of limited area models is complicated by the difficulty of determining the linear normal
modes and of allowing for general boundary conditions. A new methaod of initialization is devised. which does
not require explicit knowledge of the normal modes. The method is based on a filtering procedure which uses
a modified inverse Laplace transform. The efficacy of the method is demonstrated by application to a one-
dimensional model, and the rationale for application to a general forecasting model is discussed. The method
is closely related to the nonlinear normal mode method of initialization.

1. INTRODUCTION

The primitive equations used for numerical weather prediction have solutions rep-
resenting two distinct types of motion. The solutions of meteorological significance have
low frequencies, are generally close to geostrophic balance and have small divergence.
There are also very fast gravity—inertia wave solutions, with phase speeds of hundreds
of metres per second and large divergence; these do not interact strongly with the
rotational motions, and are generally regarded as noise. A subtle state of balance exists
in the atmosphere between the wind and pressure fields, ensuring that the gravity—inertia
waves have much smaller amplitude than the rotational part of the flow. Forecasts made
with the primitive equations generally contain large high frequency oscillations unless
the initial fields are adjusted to reflect this balance. The process of adjustment is called
initialization. The principal goal of initialization is to define the initial fields in such a
way that the gravity—inertia waves remain small throughout the forecast.

(a) Some initialization methods

In the early days of numerical weather prediction forecasts were made using gov-
erning equations which were modified in such a way that they filtered out gravity-inertia
waves altogether. However, the approximations made in deriving the filtered equations
are not always valid, and the primitive equations are now generally used. The first efforts
to control the high frequency motions consisted of defining various diagnostic relation-
ships between the mass and wind fields (Charney 1955; Phillips 1960). These static
initialization methods were only partially successful in reducing the noise and are unsat-
isfactory for a number of other reasons. An alternative approach to balancing the fields
is to use the forecast model to integrate in a forward-backward cycle with a damping
time-scheme (Miyakoda and Moyer 1968). This is known as dynamic initialization. The
method is computationally expensive, no irreversible processes can be included because
of the backward integrations, and the remaining noise is still a problem,

Recently, methods of initialization based upon the linear normal modes of the
forecast model have been proposed. The first approach was to analyse the initial
conditions mnto their slow rotational and fast gravity-inertia components and to set to
zero the coefficients of the latter (Dickinson and Williamson 1972). This was partially
successful but because of the nonlinearity of the equations the high frequency modes are
rapidly re-excited. A more sophisticated approach is to set the initial rate of change of
the fast modes to zero; this method is called nonlinear normal mode initialization (Baer
1977, Machenhauer 1977). It has been found to be superior to the simpler, linear method
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and is currently regarded as the most satisfactory mitialization method, despite certain
disadvantages. The method has been reviewed comprehensively by Daley (1981).

To apply the nonlinear normal mode method we must know the linear normal
modes of the model equations. For a global domain this is no particular problem: the
equations can be linearized in such a way that the spatial vanable dependencies are
separable and the horizontal boundary conditions are those of periodicity or regularity
of the solution. The vertical structure equation 1s easily solved for simple mean tem-
perature profiles. For forecasts over a limited area the situation is dramatically different.
Here the dependent variables are specified on the boundary of the forecast domain and
are allowed to vary in time. It is difficult, if not impossible, to define the normal modes
in a completely general way. If the area is of an irregular shape the horizontal variables
may not be separable. Non-separability also results if the Coriolis parameter is a function
of both variables, as in the case of a rotated latitude/longitude grid whose poles are not
on the earth’s axis.

Some progress has been made recently in adapting the normal mode approach to
limited area modelling. Briére (1982) has applied the method to a fine mesh model in
Cartesian coordinates with constant boundary conditions. Bijlsma and Hafkenscheid
(1983) have incorporated the effects of sphericity, and their method apparently allows
for variable boundary conditions. Both applications have been successful in reducing the
. noise in short range forecasts. However, in each case it has been necessary to make
simplifying assumptions i order to derive the linear normal modes: the analysis has
been done with a constant Coriolis parameter. It is not obvious if these assumptions can
be relaxed. Nor is it obvious whether or not they have a degrading effect on the
specification of the initial fields. Ballish (1979) has demonstrated that failure to include
the § term in the derivation of the linear normal modes may lead to noise problems.
Bourke and McGregor (1983) have developed a vertical mode initialization scheme for
a limited area model: they project the initial fields onto the model vertical eigenfunctions
and they set to zero either the tendencies of divergence and geopotential or the tendencies
of divergence and departure from linear balance for the modes with large equivalent
depths. Their method effectively suppresses spurious gravity wave activity; however,
since the meteorologically significant rotational components of the flow have non-van-
ishing divergence, the application of this filtering condition must modify them to some
degree. The extent to which this may affect the forecast i1s unclear. Thus, a totally
satisfactory resolution of the problem of initialization for limited area models is still
outstanding.

(b) A new approach:. The Laplace transform technique

In this report the following question is addressed: Given a nonlinear prediction
model, how can the initial conditions be specified in such a way that no component of
the flow will evolve with high frequency gravity—inertia type timescales? A general
technique is developed which provides the answer to this question. The technique
involves the use of a filtering method based on a modification of the inversion formula
for the Laplace transform. This filter is used in an iterative procedure which is applied
to a general nonlinear system with multiple timescales. Provided the procedure converges,
the result is a function which (i) satisfies the system equations and (i1) evolves slowly in
time. The initial value of this function provides the answer to the question posed above.

The practical implementation of the procedure necessitates some approximations:
(a) to reduce the computational effort; (b) to avoid numerical instabilities associated
with the Laplace transform inversion. If the nonlinear terms are small (a necessary
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condition for convergence anyway, and true for atmospheric motions) these approxi-
mations are quite acceptable, and lead to a simple initialization procedure. The procedure
15 seen to bear a close relationship to the linear and nonlinear normal mode initialization
methods. A point of vital practical importance is that the new technique does not require
knowledge of the linear normal modes of the system. Thus, it can be applied more
generally than the previously proposed methods.

The feasibility of the Laplace transform technique is demonstrated by application
to a simple one-dimensional model similar to that used by Baer (1977). A model run,
starting from geostrophically balanced initial conditions, results in large amplitude, high
frequency oscillations. These oscillations are most clearly seen in the evolution of the
divergent kinetic energy. Application of the first approximant of the new technique
(equivalent to linear normal mode initialization) reduces this noise considerably, but
some small oscillations remain. The nonlinear procedure, with just one iteration, leads
to virtually total extinction of the noise. These results are in complete agreement with
those obtained by Baer with his technique, and demonstrate that the present method
1 an effective means of controlling the high frequency oscillations in the simple primitive
equation model.

The application of the technique in the context of a general baroclinic (limited area
or global) primitive equation model is discussed. The proposed method is essentially the
same as that used in the case of normal mode initialization: the vertical and horizontal
structures are separated, and the horizontal structure functions are initialized separately
for each vertical mode or equivalent depth. The technique would appear to be as flexible
as normal mode methods in its ability to handle orography, model physics, etc. It 1s
more flexible insofar as it can also be applied to a limited area model, where the
horizontal variables need not be separable, where the boundary conditions may vary in
time and where the linear normal modes are unknown.

2. THEORETICAL DISCUSSION

We consider the following question: given a nonlinear system with multiple time-
scales, how can the imitial conditions be specified i such a way that the rapidly varying
components of the solution are completely supressed for all time? We formulate a general
procedure which, given convergence, provides a solution satisfying the original nonlinear
equation and evolving slowly in time. It is shown how this procedure may be applied in
an approximate form to specify initial conditions which guarantee a slowly evolving
solution.

(a) [Filtering with Laplace transforms
Consider a function f(¢) with components of various frequencies

£ = El a, exp(iwnt). (1)

Suppose we wish to isolate that part of f which varies with frequency less than y. Knowing
the expansion (1), it is trivial to set g, equal to zero whenever | w,| > y; the remaining
components provide the solution. Now suppose that f(¢) is unknown but that its Laplace
transform is given by

YO =F6) = 2 ai/(s — i), | )
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The filtering of f can again be done by setting g, = 0 when | w,| > ¥, and inverting the
sum of the remaining terms. | |
Next, suppose we know f(s) to be of the form (2) but do not know the precise

" values (a., w,). The original function f(¢) may be obtained from the inverse transform
(Doetsch 1971):

fO == | erf)ds ®

where C 15 a line parallel to the imaginary axis and to the right of all singularities of f.
The contribution to this integral from the pole of f(s) at iw, is just a, exp(iw,t). Without
knowing (a,, @,), we can still eliminate all components with frequencies greater than

¥ by changing the contour C in (3} to a circle C* of radius y centred at the origin of the
s plane (see Fig. 1):

£ = (=3¢ fs)ds @

The function £~ is just the sum of the components resulting from those poles which fall
within C¥, i.e. the components with frequency less than y. This is exactly what is required.

Thus, knowledge of the transformed function on the contour C* is sufficient to perform
the desired filtering.

S-plane

Tivg

| 0 _LVG

IVel< Y=<Vl

Figure 1. Contours in the s plane used for the regular and modified inverse T.aplace transform. The value
of ¥1s chosen to separate the rotational frequencies (3n) and the gravity wave frequencies (vg)-
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(b) Separation of scales in a general nonlinear system

Consider a system whose state at time  is specified by the vector X(f). For example,
X might comprise the values of the dependent variables at all the gridpoints of a forecast

model. We assume that the evolution of X is governed by a nonlinear equation of the
form

dX/dt + LX + N(X) = 0 ' (5)

where L is a constant linear operator and N is a nonlinear vector function of X. If the

system 1s in the state X, at r = 0 then the Laplace transform of this equation may be
written

MX -+ ﬁ = X(} | (6)
where we define the matrix M = M(s) = (sI + L), with I the identity matrix.
If the nonlinear terms in (6) are ignored the transformed solution is just

X=M"1X,. | (7)

Inverting this we recover the solution X(#). Suppose we are interested only in the slowly
evolving part of X, 1.e. that part which oscillates with frequency less than y. Then we
may apply the operator &* to obtain

X'() = SR)) o (8)
This will have the desired property. Alternatively, if we define |
X*(0) = L*{X(5)}:=o0 - - (9)

and use this as the initial state, the linear evolution of the system wﬂl again contain only
low frequency components.

If X*(0) is used as the initial state for the nonlinear equations (5) the high frequency
components will be re-excited immediately by the nonlinear term N(X). We wish to
avoid this happening by modifying the initial state. We can solve (6) for X by an iterative
procedure analogous to that used by Machenhauer (1977). We assume that the nonlinear
terms are small and take as the first approximant the linear solution

X, = M.-lx_{l- | | | (10)
The first estimate of the sl}owlyl varying solution is then'; - . | |
| Xi=e4%). (11)

When this is known the nonlinear term Nl = N(X{) can be obtained and its transform'
evaluated. Further approximations are gwen by the iteratwe procedure

Xpi1=M7X¥0) - N,] o (12)
Xpo=Roetd (13)

Suppose the procedure eenverges then we can write o N
K. =M7X2(0) -N.];  Xi=2+k.) (9

which, when inverted, shows that the vector X* = X* has the following properties: (a)
it satisfies the original equation (5); (b) it contains only slowly evolving eomponents
This is exactly the solution which was desired. We note in passmg that, if 87! is used
instead of £* above, the full solution to the nonlinear problem is obtained.
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(¢} Application to initialization

The procedure developed above is difficult to apply in practice for two reasons.
First, it involves the calculation of the Laplace transform of the nonlinear term at each
iteration, which implies a formidable amount of work. Second, the Laplace transform
15 notoriously difficult to invert numerically, because of the factor exp(st); this also
applies to the modified inverse transform, ¥*, We circumvent these problems by assuming
that the nonlinear term varies so slowly that it may be considered constant and its
transform approximated by

N, = N(X(0))/s. (15)

Furthermore, since we are interested in the appropriate initial values to use, the operator
&* need only be evaluated at time ¢ = 0. The approximate procedure is outlined below.

First approximant:

X;=M"X, (16)

X3(0) = 2%(X) |s=0 (17)
Iterative procedure:

N, = N{XX(0))/s (18)

X,-1=M7[X}(0) - K,] (19)

X 1(0) = 25 (Xn 11} e=0- (20)

The final iteration of Eq. (20) gives us the required initial conditions. In practice it is
found that one or two iterations are sufficient to reduce the amplitude of the high
frequency components to a negligible level. Note that the matrix M may be pre-calculated,

inverted and stored for a set of values of s lying on C*; thus, the method is reasonably
economiical.

(d) Relationship to normal mode initialization

From the definition (4) of the modified inverse Laplace transform, it is clear that
the first approximant in the above technique is equivalent to linear normal mode
initialization. That is, application of (16) and (17) with an appropriate value of v has the
same effect as spectral resolution into normal modes followed by removal of all modes

with frequency greater than y. Note that if the equations have been linearized about a
general mean flow u = u(@, Z) its effects are felt by the linear normal modes. The

eigenvalues may be complex and there may be a continuous spectrum in the case of a
varying mean flow (Dikiy and Katayev 1971).

The tull nonlinear technique yields a solution which evolves slowly for all time. The
essential approximation in the practical implementation of the method is the assumption
that the nonlinear terms evolve so slowly that they may be approximated by their initial
values (see Eq. (15)). This is the same as the assumption made by Machenhauer (1977)
(see his Eqgs. (14) and (15)). It is thus clear that the method proposed here is closely
related to that of Machenhauer. This relationship is examined in detail in the appendix.
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3. APPLICATION TG A ONE-DIMENSIONAL MODEL

(a) Formulation of the method

In order to test the feasibility of the Laplace transform method in the simplest
context 1t has been used to initialize the data for a one-dimensional model. The model
1s similar to that used by Baer (1977) and a full description is given in Lynch (1984a).
The basic equations are

G+ Wb+ fo+Bv=20 (21)
8+ (ud), — FE+ B +®L.=0 (22)
@, + (ud'), — fuv + 6= 0. (23)

Here x is distance eastward, 7 is time, # = u + u’ is the zonal velocity with ¢ the constant

mean wind speed, v the northward velocity, and ¢ = & + @' the geopotential. The
vorticity and divergence are ¢ = v, and 0 = u,. The Coriolis parameter fand its meridional

derivative § are assumed constant.
Energy equations are derived in the usual manner (see e.g. Pedlosky 1979). The

rate of change of eddy kinetic plus available potential energy is given by
g{[{%p(u’z + ) D + oD L dx = — f[;r:w{%(m’2 + ) + @' }ad/ayldx. (24)

Clearly, if the mean flow vanishes (z = @, = 0) the total eddy energy remains constant.
The eddy kinetic energy can be split into contributions due to the rotational and divergent
motions:

K=K,+K; K, = f%pﬁ@dx; K, = J‘%ﬁu’szdx.

The values of these are calculated at each timestep and give valuable information about
the dynamics of the motion being considered.

In order to clarify the relative magnitude of the various terms in the equations of
motion it is convenient to nondimensionalize the equations by defining characteristic
scales for length, time and velocity. It is also convenient numerically to have the principal
terms of order unity. We introduce length and velocity scales L and V and scale time
by f~! and geopotential by fLV. We define some nondimensional combinations:

Ro=(V/fL); Rps=(BLf)~ (Lja); Rr=®/(fL)*=(L#/L)"

Here Ro is the Rossby number; Rz is a measure of the importance of the f§ effect,
determined by the scale of the motion; Rris the reciprocal of the Froude number, and
relates the length scale of the motion to the Rossby radius of deformation, Lg =
(V' ®)/f. The equations of motion, (21), (22) and (23), may now be written in non-
dimensional form

{+ Ro(ul)y+ 8+ Rgv =0 (25)
&+ Ro(ud),— {+ Rgu' + by, =10 (26)
P, + Ro(u®’), — Roupv + Rpd= 0. (27)

The relationship between the velocities (u, v) and the prognostic variables (£, 0)
suggests that we specify them at alternate points of a grid staggered i space. The
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velocities are specified at ‘half-points’ and the vorticity, divergence and perturbation
geopotential at ‘whole points’:

v Mg}y Uy Cm,(sm,‘bm Um+3y Om+} Cm+156m+1:q)m+1
X & X O

m—3 m m -+ % m+1

Quantities not available directly are obtained by averaging. We define some finite
difference operators in the usual way:

(@m)e = (Gm+1 = qm-D/A% (Gm) = Hqm-1 T Gm+).

A consistent (spatial) finite difference approximation to the equations may now be
written as follows:

HUm)x/0t + (Um)x + Rp(Um) = —Ro{(uv ) m)x | (28)
a(um)x/at _ (Um)x + Rﬁ(a:n) + ((bm)xx = —-Ro {(u;x)m}x (29)
(P )/8t — Roug(vy) + Rp(Um)x = —Ro {(uD) ). (30)

All dependent quantities are assumed to have period (N - Ax). The state of the system
at any time is completely defined by the vector

X= (Uis iUy, (I)I:- e Um—p Um -4, q}my rea DN-B UN-} (I)N)

We assume in the following that the mean flow g vanishes; this assumption is made to
simplify the discussion and can easily be relaxed.

From the mitial velocities and geopotential we assemble the vector
Zo= (&1, 8, D1, .., G, O, B, . . ., LR, 8R, BR)

where &, =(vh+4 — v5-,)/Ax and similarly for &Y. Eqgs. (28), (29) and (30) are now
Laplace-transformed to give

$(B)x + (lm)x + Ro(Tm) = & — R[RoA(ut ) mk] (31)
$(m)x = (Om)s + Ro(a1n) + D= 8%, — LRo{(uit) )] (32)
(D) + Re(l)z = D% — L[Ro{(uD)mbi]. (33)

(The Laplace transform of f is denoted by f.) To cast this system into matrix form let
us define some 3X3 matrices as follows:

(—s/Ax + 1Ry) ~1/Ax 0
D= 1/Ax (—-s/Ax + $Rg) —2/Ax?
0 -RFXAX h
(s/Ax + iRp) 1/Ax 0
R=| -—1/Ax (s/Ax + #Rg) 1/Ax?
0 Ry/Ax 0
0 0 0

L={0 0 1/Ax?
00 0
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We assemble these into the periodic, block tri-diagonal matrix of order 3N:
DR® .. L | |

LDR...0O
M=|0LD...0

RO O ...DJ.
The system of equations (31)-(33) may now be written i the form
MX = =, ~ N(X). (34)

Here the nonlinear terms have been collected into FJ, which 1s a transformed nonhnear
vector function of the state vector X. Equation (34) is formally identical to Eq. (6} in

section 2 and the method of initialization described there can now be applied to the
present model.

(b)Y Computational results

A number of model runs were carried out, with various parameter values and initial
conditions. For all runs described here the nondimensional numbers had the following
values:

Ro =107, Rs=16x10""1 Rr=10.
The channel length was L = 10'm., where N;Ax = L with N, =20 and Ax = 500km.
One day forecasts were of duration NyAt = 10°s (=27-8 hours) where N7 = 1000 and
At = 100s. An Adams-Bashforth timestepping scheme was used. For the given par-

ameters the maximum Rossby wave frequency and minimum gravity wave frequency
can be calculated, and have the (nondimensional) values

| YR max = 0203; | vG|min = 2:224 .

Any value of y lying between these values should serve to separate the timescales. The
value ¥ = 1 was chosen; the matrices M(s) were calculated for the centre points (s¢) of
the sides (Asy) of a polygon inscribed in the unit circle and the integral in (4) was
approximated by a sum:

b fls)ds = 2 flse) Asi.

K was set to 24, althoﬁgh K = 12 was found to give virtually identical results.
The initial conditions were defined by setting

10
P, = 121 cos{(2aimAx/L) + ¢}
where the phases ¢; were chosen rahdomly, and deriving the geostrophic winds
00 = (@Y — % _)/Ax;  ul_,=0.
We consider three different cases of initialization as follows:

NIL.: No initialization geostrophic 1Cs as above
LLIN: Linear initialization ICs from (17)
NLI: Nonlinear initialization 1Cs from (20}, one iteration.
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The final values of the v and @ fields were very similar in all three cases. However,
without initialization (NIL) the time evolution at a central point had small, high frequency
fluctuations superimposed on the slow development. With linear initialization (LIN)
these disappeared. The evolution of @ is shown in Fig. 2(a) for the two cases. The zonal
wind field evolved noisily before, but smoothly after, initialization (Fig. 2(b)). The
divergence field behaved in a similar manner (not shown).

(o] GEOPOTENTIAL AT CENTRAL POINT

1.50
&
—
=
s
:
-0.25 ! } } i t t 1 t }
0 3 b ? 12 15 18 21 24~ 27
TIHE (HOURS)
s [B]  ZONAL WIND AT CENTRAL POINT
0.00
2
==
i
:
~
~0.03+
===  NIL
mwws  LIN
-0.06 t ) t l ; | t f 1
0 3 6 9 12 15 1B 21 24 27

TIME (HOURS)

Figure 2. Evolution of (A) the geopotential and {B) the zonal wind for a one-day forecast starting from
geostrophic initial winds (NIL, solid) and linearly initialized fields (LIN, dashed).

Since the gravity waves have relatively large divergence, we would expect the
divergent kinetic energy to be a good indicator of their presence (Baer 1977). In Fig.
3(a) the divergent energy, K, as a function of time is shown for the case of geostrophic
initial winds (NIL) and linear initialization (LIN). The oscillations in K, are extremely
large before initialization; the linear initialization reduces them dramatically, but does
not remove them completely. The linear case is reproduced in Fig. 3(b) with a much
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[A] OQIVERGENT KINETIC ENERGY
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Figure 3. Plot of the divergent kinetic energy v. time starting from: (A) geostrophic initial winds (NIL, solid)
and linearly initialized fields (LIN, dashed); (B) linearly initialized fields {LIN, solid} and nonlinearly initialized
fields, one nonlinear iteration {NLI, dashed).

expanded vertical scale. The gravity oscillations remaining after linear initialization (LIN)
are clear to see. Also shown 1s the evolution of K,, on the same scale, after a single
nonlinear iteration of the initialization (NLI). The gravity wave noise is almost completely
eliminated. This result is in full agreement with the results of Baer for his nonlinear
normal mode method, and demonstrates the effectiveness of the present method in
dealing with the problem of high frequency oscillations.

Several other model runs confirmed the efficacy of the method in controlling the
gravity wave noise. A number of ten day (10°s) forecasts showed that there is no tendency
for the noise to return during this period.

In all cases the convergence was very rapid, with little change after the first nonlinear
iteration. A small residue of noise is not removed by further iterations; presumably, this
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residue 1s associated with the approximation (15). Modification of (15) to allow N(X;)
to vary linearly in time did not lead to any significant improvement. However, the
residue is too small to cause any practical problems.

4. PRINCIPLES OF APPLICATION TO A GENERAL FORECASTING MODEL

The applhcation of the Laplace transform technique to a one-dimensional model
was straightforward. For a general baroclinic model the state vector might contain,
typically, about ten thousand elements. The inversion of the resulting gigantic matrices
M(s) 1s an almost impossible task on present-day computers. Therefore, the problem
must be formulated so as to produce matrices of manageable size.

Let us assume that initial fields are required for a limited area model with vertical
coordinate o= p/p,, where p, is the surface pressure. The vertical structure can be
separated out if we linearize about a motionless state with mean temperature T =
T(0). To perform the separatmn we introduce a new dependent variable, P =
@’ + RTIn p,, where @' is the perturbation geopotential {(see €.g. Kasahara and Puri
1981). If the model has K levels, the vertical structure equation yields K eigenvalues,
or equivalent depths, and K corresponding eigenfunctions, W,(ox). For each equivalent
depth, the horizontal structure is governed by a set of three equations for u, v and P
which are of the form of the Laplace tidal equations.

For global and many limited area models the horizontal structure is separable into
dependencies upon longitude A and latitude ¢. However, for a transformed longitude/
latitude grid, whose poles are removed from the earth’s axis, the Coriolis parameter is

a function of both horizontal variables, x and y, and separation of variables no longer
obtains. We constder a method of applymg the Lapiace transform initialization technique
in this case.

The Laplace transform of the horizontal equations, for a given equivalent depth,
D, may be written:

"'“fd';'\'‘|‘}f‘:'_m:a'.a!.a{}*‘I
sﬁ+fﬁ+ﬁy=u(]
Ehl?.?+sﬁ= Pﬂ_‘

w

(35)

(where & = (2Qa)*/gD). Let the domain be discretized into X J points and derivatives
approximated by finite differences in the usual way. For simplicity, we consider a
non-staggered grid where all prognostic variables are specified at all gndpoznts The
values of &, 6 and P on a single row (excluding end-points) are assembled in a vector

)

Xf = (ﬂzj, 132;', pz,f, sy ﬁij, 5;}, ij, SR ﬁf—l,j, 51—1,;3 Piml,j)
where &; = 4(x;, y;), etc. The system (35) may now be written formally as
Ajij—l + Bjﬁj + Cjﬁf+1 = Dj (36)

where A;, B;, C; and D; are block tridiagonal matrices and a column vector whose
elements depend upon the values of the coefficients of the equation. The lateral boundary
values uy;, fy;, etc. occur in the vector D;.

Lindzen and Kuo (1969) have described a reliable direct method for solving systems

of the form (36). We introduce a set of intermediate matrices and vectors, & and §;,
such that

X=X+ B (37)
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When (37) is used to eliminate X;_, from (36) a solution for o; and B; is apparent in the
form

a; = —(M;)7'C, (38)
Bi= —(Mf)wl(ﬁj Bi-1—D;)

where M; = (A;a;.; + B;). The boundary conditions for j=1 are used to obtain .
B and from (38) we then get «;, B;. The boundary conditions at j = J give us X; and
the solution X; is obtained from (37). The crucial point is that the matrices M; are
independent of the boundary values and of the forcing terms; therefore, they can be
inverted once for all and stored.

The first step in the initialization is now performed. The operator &%, with a suitably
chosen value of y, is applied to X; and the new initial values are obtained by inverting
the vertical separation of variables

K
(X* Ok = 2 L X)ili—o W, ().

For linear imitialization these are the required starting values.
The noniinear terms can be calculated using the new values. Usually, this is equivalent
to performing a single model timestep. We then form the combination

[X*(0) — N{X*(0)}/s]

and perform the vertical separation of variables again (assuming for simplicity that the
eigenfunctions W, are orthogonal (see Kasahara and Shigehisa 1983)}. We can now
calculate updated values for the vector D; in (36). The system (36) is solved as before
and the cycle repeated for the required number of iterations. Note that the matrices M;
do not change, so no further matrix inversion is required.

Since the operator * is applied separately for each vertical mode a different value
of y (the cutoff frequency) can be chosen in each case. Furthermore, not all the vertical
modes need be initialized.

v Although the above method seems to be computationally feasible, there may be
heavy storage requirements for the matrices M;. They are of order 3(1 — 2) and there
are J of them for each of K vertical modes. Thus, if § values of s are chosen on the
inversion contour C* the total storage is about 97°7KS. Assuming S = [ this is of the
same order as the requirement to store the normal modes when the horizontal structure
is nonseparable. Separability reduces the requirement by a factor I.

5. CONCLUDING REMARKS

The new method of initialization described above has been shown to be very effective
in controlling the gravity wave noise 1 a one-dimensional model. The methodology for
applying the method to a more general model has been outlined. The method 15 closely
related to the nonlinear normal mode method of initialization but has the advantage
that it does not require knowledge of the model linear normal modes. This allows it to
be applied 1n cases where the normal mode approach is difficult to use. The method
allows for incorporation of orography and model physics in the same way as the normal
mode method. The boundary conditions, which are included in the forcing terms, may
be specified in a completely general way.
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The Laplace transform technique is currently being applied to the initialization of
an operational limited area baroclinic forecasting model. Preliminary resuits with a
one-level version of the model (Lynch 1984b) are encouraging, and suggest that the
method may provide a satisfactory answer to the problem of initialization for limited
area models.

APPENDIX
The relationship between the Laplace transform technique and nonlinear normal mode
initialization
Suppose that the linear normal modes of the system governed by Eq. (5) are known

and that they span the space X. Then X may be expressed as a sum of these modes and
L becomes a diagonal matrix A:

A= diag(ﬁ,i, Az,.l3, . ) = (A*, AU

where the eigenfrequencies are arranged in order of ascending absolute value and split
into slow modes (A*) and fast modes (A?). We can define projection operators onto the
slow and fast subspaces of X (see e.g. Halmos 1958):

X=P'XOPX=X"DX'
P*=g*¢; P =9R=(RT1- P+P =1

and separate the solution into slow and fast parts:

*

X=P*X +PX =

X+
If the nonlinear terms are decomposed in the same way

N* (Xlll , XT)
N'(X*, X))

we can separate the system (35) into slow and fast parts:

-]

N(X) = P*N + P'N =

X*+ A*X*+N*=0

X'+ A'X"+N'=0. (A1)
The initialization is iterated by using Eq. (19), which here becomes
X,+1 = (sI + A)[XZ(0) — N,,/s]. (A2)
Using partial fractions to split the diagonal elements we can write the matrix inversion:
ST+ A) Ys=—(GI+ A)TATT+ A Ys, (A3)
Equation (A2) can then be written in the form
Xor1= I+ A {XX0) + AN, ] — AN, /5. (A4)

To get the new initial conditions we apply &* (at ¢ = 0) to (A4). Since the matrices are
diagonal, the components can be considered individually. For slow modes |A| < ¥, the
cutoff frequency, and all the terms in (A4) contribute to the solution. After cancellation
we find

X2 1(0) = XX(0). (AS5)
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Thus, the coefficients of the slow modes remain unchanged. For the fast modes
|A| > v and the terms in (A4) involving (sI + A)~! contribute nothing to the integral 2*.
Thus, we have

X}.1(0) = —(A) "IN} (A6)
This is precisely the iterative solution of the equation
ATXT+N'(X* X" =0

which is obtained by setting X! = @ in (A1). Equations (A5) and (A6) show the equiv-
alence between the Laplace transform technique and the nonlinear normal mode method
as formulated by Machenhauer (1977).

The relationship between the two initialization methods may be illustrated by a
simple example: consider a system with only one slow mode X* and one fast mode X"
satisfying the equations

X*+io"'X*+ N X* XN =0 (A7)

X'+io" X'+ N(X* XD =0

where |w'| > | w*|. In Machenhauer’s scheme the tendency of the fast mode, X, is set

to zero, resulting in the iteration process
Xpn1 = Xo

r:+1 1‘ o } (AS)

X1 = =N(X§, Xp)iw'.

If the nonlinear terms are assumed constant, the Laplace transform of (A7) may be
written

X*=(s+i0") X - N*(X* XD/s]
X' =(s +io") [ X{ - NT(X* X"5s]

where X§ and X are the initial values. Using partial fractions these may be rewritten
as

X*=[X3 + N X*XV)iw*)/(s +iw*) — [N*(X*, X)/iw*)s
X' =[X;+ N (X* XYio')/(s +io") — [NI(X* X)/io's.
Applying the operator &* iteratively (with | w*| < y < |e'|) yields
a+1 = X¢
X1 = —N'(X¢, X))/ io’

which are identical to the relations (AS8).
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