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Improving the Laplace transform integration method
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We consider the Laplace transform filtering integration scteme applied to the shallow
water equations, and demonstrate how it can be formulated as finite difference
scheme in the time domain. In addition, we investigate a moraccurate treatment of
the nonlinear terms. The advantages of the resulting algothms are demonstrated by
means of numerical integrations.
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1. Introduction The physical solution is recovered by applying an inverse
o _transform. As described in the appendix, a modified inversio
In Clancy and Lynch (2011), hereafter CL11, a time integrati operator may be used to filter components with frequencigsia
scheme based on a modified inversion to the Laplace transfafn a cut-off.... This operatorg*, involves a complex integral
(LT) was applied to a spectral shallow water model. The s&iesm around a circle. In CL11, a discretised form of the operatas w

designed to permit long time-steps for integrations andterbut  sed, denoted by, and defined in14) below. Using this we get
unwanted high frequencies. In terms of stability and aaurid  the solution:

was generally found to compare favourably with the widedgdi
semi-implicit method (Kwizak and Robert, 1971). The LT stiee N 1 X N
had the additional benefit of reduced phase error, which is a X' ™' = £y {X(s)} = Zef\}‘ 22X (sn)sn (4)
feature of the trapezoidal averaging in the semi-implipir@ach. n=1

In this note, we describe two improvements to the LT algamith ) ] ) )
We show how, in certain models, we can formulate it as a scherff@ether, equations3f and @) define a time-stepping scheme,
in the time domain without any explicit computations in th&/hich may be applied to any dynamical system ofEk}e fotyn (
domain of the complex transform variable. We also consider a/n the context of atmospheric models, thd — L)™ " term in
more accurate treatment of the nonlinear terms in the disece (3) corresponds to an elliptic equation which would need to be

model and compare with the scheme of CL11. solved at each of the points,, n =1,...,N; as an example,
Lynch (1991) usedN = 8. This extra computational effort
2. The Laplace transform integration method motivated the use of a spectral transform model in CL11, irtivh

the solution of the elliptic equation reduces to multiplioa by
We begin with a general dynamical system, which may arisenstants in spectral space. In the next section, we willnaut
after the spatial discretisation of the equations goverm@igiven some further improvements on this approach.
atmospheric model:
dX 3. Improvements to the time scheme
Fr LX + N(X) 1)
3.1. Spectral model
Here X is the state vector and we have split the right-hand side
forcing into linear and nonlinear terms. We take the Laplacghe shallow water equations may be written in the form
transform of this system, making use of the properties given
(10) in the appendix. As in CL11, we first consider the transform on

over the interva|(r — 1) At, (7 + 1) At]: the ‘initial condition’ is ot —Vav
then given byX™~! and the nonlinear terms are evaluated at the o6 9 9 V.V
centre valueN™ = N(X7). Thus, we have ot Ve = kVxnpV-V 21— 12) ®)
- - o9 -
XX LR+ INT 2 5 T = ~V.(?' - )V
S
Rearranging, we have an equation for the transform: Heren is the absolute vorticityj is the horizontal divergenca/
N ) L1 is the horizontal wind vector and is the sine of latitude. The
X(s)=(sI-L)"~ {XT* +2 NT} (3) free surface geopotential height has been writtef® as® + @',
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2 P. Lynch and C. Clancy

where® is constant. The geopotential of the orography is givedentities in (L3) below to write the solutions as

by Ds. 741 myT—1
In CL11, the equations were discretised using the spectrai '} = H(wy) cos (2w At) {07}
transform model of Hack and Jakob (1992), in WhIC.h the fietds a + iH(w) sin (2w At) R
expanded as truncated series of spherical harmonics; dongle, we
with a triangular truncation, " % [(1 — H(wp) cos (2w A8)] ((fa-; 1) (FrT @)
¢
JimA pm {@Z"}T'H = H(wy) cos (2wyAt) {@2”}7_1
N\t Z Z g (£ Py (1) )
(=0 m=—" + w—éH(wg) sin (2w At) Q
For the spectral transform method, the nonlinear terms en th — LQ [(1 — H(wp) cos (2w At)] ——= E(EJF D) o{D"}"
right-hand side of §) are computed in physical space and the Wy
product is expanded in a series. Orthogonality of the sphkri ©)

harmonics can then be used to obtain a series of equatiotisefor e system §—(9) provides a means of advancing the
spectral coefficients. We are left with a set of ordinaryatéhtial jntegration without any explicit computations in the coepk-

equations of the form plane. Itis simpler than the method discussed in CL11, aoitiav
the errors associated with the numerical inversion usifg
d S = N There is a further benefit of analytical inversion, relatiog
dt stability. Equation (10) of CL11 gives a stability critemidor
igm — EM* 1) Y + D (6) the LT discretisation, which may be limiting for large. and
de’ a? small values ofN. Using the analytic inversion, i.eV — oo,
d = = -0 + F) removes this constraint. Stability is then governed by treliion
dt associated with the discretisation of the nonlinear terms.

where N, D" and F;* are the spectral coefficients of the3o>  Nonlinear terms

nonlinear terms. Note that thE)" are the spectral coefficients of

the perturbation geopotenti@’; the prime has been dropped forUntil now, we have been using a leapfrog scheme, in which

ease of notation. the nonlinear terms are treated at their centred valuesthef
We now take the LT of the systeri)( as described in Section discretisation in Z). The three time levels used in the leapfrog

2 above. The resulting decoupled system can be solved to giveintroduces a spurious computational mode. Traditionallgen
using the semi-implicit leapfrog scheme, a time filter hasrbe

~ r—1 added to suppress this noise (Asselin, 1972), althoughishis
e =35 {W } + 2 {Nf } known to cause a reduction in accuracy (Williams, 2011).

A a1 14(4 + 1) We would like to have a more accurate treatment of nonlinear
ot =d (3{52 } +R+ 3 {Fe"}" ) (") terms in the LT scheme. A number of single-stage methods
. o - . were tested, including a third-order Adams-Bashforth swhe
ot =d (3 {er'}  +o- E‘I’ {D"} ) Durran (1991) previously showed that this scheme is unstabl
when coupled with a trapezoidal averaging of the linear sama
semi-implicit. This also proved to be the case when couplid w

—

where
the LT approach.
B 1 Clancy and Pudykiewicz (2013a) tested a number of two-
52 4+ w? stage semi-implicit methods, in which the nonlinear terms
((( 1) . are discretised in time using a predictor—corrector method
R={Dy"}" + {®" One in particular, labelled T-ABT, uses an implicit trapieizo

(T) averaging for the linear terms, with an Adams-Bashforth
Trapezoidal (ABT) method (Kar, 2012) for the nonlinear
_ terms. WithX? denoting the intermediate, predicted level, the
and w, = \/L({+1)®/a? is the frequency of the-th gravity discretisation for the systeri)(is then
mode (cf. CL11, Eqn. (15) rewritten in a different form).

In CL11, we used the inversion operatdf; to compute the

- . S At 2 2 2 2

spectral coefficients at the new tinte + 1) A¢, which is at a 41 .
time 2 At after the beginning of the time interval. However, by X=X lLXrﬂ i lLXT n le n lNT
inspection of the form of7), it is apparent that we can apply the At 2 2 2 2
analytical operato£*, as defined ini2) in the appendix, to obtain Although this is also a three time-level scheme, the contjoutal

the solution The right-hand side of the vorticity equation hagnode is heavily damped and a filter is not needed.
poles at the origin, so it inverts to We can use this approach in the LT scheme. For the predictor

stage, the LT of systeni) is given by

={F7"y —@{52”}771

P _ T
X -X lLXp + lLXT + §NT _ lNTfl

my7+1 myT—1 my T
= 2At ~ ~
i’} "y + 280N sXK-X" —LX+1 ENT*%NFI}
S

This is equwalent to the con\_/en_tlonal Iegpfrog scheme. As usual, we solve foX and invert to getX”. The second,
The divergence and continuity equations have poles=ald . rector stage is then
and also ats = +iw,. Depending on whether, < we or wy >
e ; S s 171 1
we, these are within or outside the contatif. We can use the sX-X =LX+ - [—N” n —NT}
s L2 2

“Nick Byrne, personal communication. Again, we solve and invert to give the solutif +!.
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asX10° ‘ the longer 3-hour cut-off. This corresponds to a lower dbit-o
T 1aBT frequencywe; i.e. the radius of the contour for inversion with
4f | ——LTN=8 £* is smaller and we are filtering more frequencies. The armalyti
——LT N=16 . . . .
350 | —o—LT analytic ] inversion has a sharp, step-function filter response, velsere
e LT-ABT the response of the numerical inversion (given &) (in the
appendix) distorts modes near the cut-off. Referring agaihe
right-hand panel of Figurg, this effect is clearly lessened when
N is increased to 16, and disappears in the analytic cases.

5. Discussion

In this note we have outlined some improvements to the Laplac
transform time integration scheme developed in Clancy and
a8 72 95 10 1aa 108 192 ze a0 Lynch (2011) and tested these modifications with numerical
hours simulations. In the original formulation of the LT scheme used
a numerical inversion to compute the physical solution.eiar
Figure 1. Norma[ised@m errors for the unsteady flow case. The cut-off period fob_ spectral transform shallow water model, we have shown that
the LT schemesis 1 hour. . . . ..
this may be replaced by an analytic inversion, thus requira
explicit integration in the complex transform space. Testh the
4. Numerical tests model show improved results.
One important advantage of the LT method of time integration
The various time integration schemes will now be tested @ tlis the more accurate phase speed of the linear modes. Thesianal
spectral transform model described in the previous secfien of CL11 showed the phase error to B¢At”Y ), compared with
mentioned, the model is based on that of Hack and Jakob (1982)\¢?) for a trapezoidal discretisation used in semi-implicit
used in CL11. Here we use a version written in Matlab, usieg tichemes. The analytic inversion represents Ahes co limit.
spectral routines of Drake and Guo (2001). In this case we have exact treatment of linear modes and the
All cases shown use a T119 spectral resolution, correspgndalgorithm is among a class of exponential integration nestho
to a grid of approximately 110km at the equator. The timg-stéBeylkin et al., 1998; Clancy and Pudykiewicz, 2013b).
used throughout is 900 s. Three different LT schemes aredest The approach described in this study will not always be
the original from CL11 using a numerical inversion with=8 practical, because it requires a simple representationeolinear
andN = 16; the new version with the analytic transform; and theerms. However, it is particularly convenient for applioat to
LT with the ABT treatment of the nonlinear terms, denoted LTspectral and pseudo-spectral eulerian models. The nuaheric
ABT, as described in the previous section. The analyticrsiea experiments show that we can increase the accuracy with a
is also used in the LT-ABT. For comparison, results with theas  better treatment of the nonlinear terms; previously theseew
implicit T-ABT are also shown. discretised with a centred, leapfrog scheme. The predictor
We focus on two test cases. The first is described in Laui@rrector approach used here increases the computational
gélilt'io(ﬁo'?'ﬁ)e%%?iszlgtnstgvag dl"sn;[]edaggofrl)%"t"e‘r’]"t?;?grga;\;?] %nalygverhead as a result of the two-stage solution. Of course, th
' burden is shared by the corresponding semi-implicit appr@ad
w(\, ¢, t) =ug(sin 6 sin ¢ (cos A cos Qt — sin Asin Qt) + cosfcos¢) IS not due to the LT treatment. The trade-off between the twin
v(\, ¢, t) = — ug sin 0 (sin A cos Qt + cos Asin Qt) increases in accuracy and cost will depend on the model and
application.

DN, @, t) = — %[uo(sine cos ¢ (— cos A cos Qt + sin A sin Q)
1 Acknowledgements
+ cos Osin ¢) + aQsin @] + 3 (a2 sin ¢)? + k1

1 We are grateful to Nick Byrne for his observation that thetesys
®s(X, ;) =5 (aQsin)” + ko in spectral space can be inverted analytically.

, ) . This work was partly completed while the second author
.Herea and ) are thg Earths radius and angular velocity. A§vas at the Atmospheric Weather Prediction Research section
in Clancy and Pudykiewicz (2013a), we takg = 2ra/12 (0ne of Environment Canada, funded by the Visiting Fellowship

circuit of the EQartQ in twelve gayf)’ and choose parametereea .,y -amme of the Natural Sciences and Engineering Research
k1 = 133681m=s™ =, ko = 10m”s™ = andf = = /4. Council of Canada.

In Figure 1 we show the normalised, height errors over 10
simulated days. For the LT schemes, the cut-off frequency Appendix
corresponds to a period of 1 hour. The solutions from theftegp
based LT schemes are very similar, regardless of whetheisae tlere we present the basic theory of Laplace transforms which
a numerical or analytic inversion. Moving away from the lieag is relevant to this work. Further theory and applications/rba
to the LT-ABT, there is a dramatic improvement and this saherfound in Doetsch (1971).

shows better scores than the T-ABT. Given a functionf(¢) for ¢t > 0, the Laplace transform (LT) is
The second case we consider is Case 5 of the suite dsffined as -

Williamson et al. (1992), consisting of zonal flow interactiwith fls)=&{f} = / e Str(t)dt

an isolated mountain. As this case has no known analyti¢isolu 0

we compute errors relative to a reference solution from @ti@x The variables is complex. It is clear that is a linear operator.

third-order Adams-Bashforth scheme witi = 90s. The results In addition, the following results may be readily found frahe

are shown in Figur@. On the left we have the same cut-off aslefinition of £:

before for the LT algorithms, corresponding to a 1 hour mkrio

On the right, a 3 hour period is used. £ {
In general, the LT solutions outperform the semi-implicit

here but differences between the various schemes appédar wit £{c}

df -
U= sie-10

g for constant (20)
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Figure 2. Normalised/ ., errors for the mountain case. The cut-off period for the LAesnes is 1 hour (left) and 3 hours (right).
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Here,s, are equally-spaced points around the ciitlende?; is
the Taylor series of the exponential function, truncately terms.
Further details of this operator are given in CL11.

Properties analogous td3) hold for £3: the cos and sin
functions are replaced by their truncated Taylor series thed
numerical filter response is given by

1
1A (iw/we)N
As N — oo, this limits to the step functiof/ (w).

Hy(w) (15)
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