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ABSTRACT

A method of diabatic initialization is described in which a nonrecursive digital filter is applied to both the
backward (adiabatic) and forward (diabatic) steps. It has clear advantages over previously proposed schemes:
the initialization requires significantly less computation time and the resulting changes in the analyzed fields
are consistently smaller. Despite these smaller increments, the suppression of spurious high-frequency noise is
at least as effective as for the earlier schemes.

1. Introduction

Digital filtering has been shown to be an effective
means of initializing data for numerical weather pre-
diction. In Lynch and Huang (1992, hereafter LH92) a
simple filter was applied to a sequence of values cen-
tered on the initial time t 5 0; these values were gen-
erated by two short adiabatic model integrations, one
forward and one backward from t 5 0. It was found
that a total span of 6 h was required for effective elim-
ination of high-frequency noise. Huang and Lynch
(1993, hereafter HL93) showed, by means of an optimal
filter, that equally effective noise control could be
achieved with a span of only 3 h. They also described
a means of incorporating diabatic effects: the backward
adiabatic integration (of length 1.5 h) is followed by a
diabatic forecast of twice the length, and the values
generated by the diabatic integration are processed by
the filter.

In Lynch and Huang (1994, hereafter LH94), recur-
sive filters were applied to the initialization problem.
Several schemes were investigated; in one, designated
RAD—recursive adiabatic-diabatic—in LH94, the
backward adiabatic integration was processed with a
recursive filter, and the terminal output value was used
to initiate a forward diabatic integration, to which re-
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cursive filtering was again applied. The application of
filtering to both the reverse and forward integrations is
also possible using a nonrecursive filter. In this note we
examine the advantages of this idea.

2. A simple conceptual model

Let us consider a function of time x(t) governed by
the oscillation equation

dx
2 iv x 5 0 (1)0dt

with the initial value x(0). The solution is x(0) exp(iv0t).
Suppose this solution is filtered by convolution with an
impulse response function h(t):

`

x̄(t) 5 h∗x(t) 5 h(t)x(t 2 t) dt.E
2`

Substituting the solution x(0) exp(iv0t) into the integral,
it follows immediately that

x̄(t) 5 H(v0)x(t),

where the frequency response function H(v) is the Fou-
rier transform of h(t). Now let us use a value of the
filtered solution y(0) 5 x̄(0) as an initial value for a
solution of the inhomogeneous equation

dy
2 iv y 5 f (t). (2)0dt
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FIG. 1. Schematic illustration of original and modified filtering
procedures. Thin lines indicate backward adiabatic integrations; thick
lines indicate forward diabatic integrations. (a) Scheme of Huang and
Lynch (1993): adiabatic step is not filtered. (b) Modified scheme:
both steps are filtered.

The solution is easily obtained by Laplace transfor-
mation or otherwise. For sinusoidal forcing, f(t) 5 f0

3 exp(iv1t) (v0 ± v1), it may be written

exp(iv t) 2 exp(iv t)0 1y(t) 5 y(0) exp(iv t) 1 f . (3)0 0 [ ]i(v 2 v )0 1

If this is filtered, the result is

iv t iv t0 1H(v )e 2 H(v )e0 12ȳ(t) 5 [H(v )] x(t) 1 f , (4)0 0 [ ]i(v 2 v )0 1

whereas starting from the unfiltered value x(0), as in
HL93, it would be

iv t iv t0 1H(v )e 2 H(v )e0 1ȳ(t) 5 [H(v )]x(t) 1 f . (5)0 0 [ ]i(v 2 v )0 1

Let us consider that (1) corresponds to the adiabatic
model and (2) to the diabatic model, with physical forc-
ing represented by f(t). Suppose now that the adiabatic
model is integrated and the solution x(t) is filtered to
give x̄(t). This is used to define initial data y(0) for an
integration of the diabatic model (2). The resulting so-
lution y(t) is again filtered, producing ȳ(t). Then (4)
shows that the adiabatic part of the solution is effectively
filtered twice, while the diabatic part is filtered once. If
the amplitude f0 of the forcing is sufficiently small, a
single filtering of the diabatic component should be ad-
equate to reduce its high frequency components to an
acceptable level.

The initialization scheme described in HL93 is illus-
trated schematically in Fig. 1a. The thin line represents
the reverse adiabatic integration of duration T. This is
not filtered; its terminal value, depicted by an open cir-
cle, is used to initiate a forward diabatic integration (the
thick line) that is then subjected to filtering. This in-

tegration must be of duration 2T to ensure that the output
of the symmetric filter is valid at t 5 0. The modified
scheme, to be analyzed here, is illustrated in Fig. 1b.
The reverse adiabatic integration (thin curve) is filtered,
yielding an output valid at t 5 2T/2. This value, de-
picted by the black spot, is used to initiate a forward
diabatic integration (thick curve) of duration T, centered
on the initial time t 5 0.

Considering the adiabatic component of the solution,
we see that the HL93 scheme involves a single appli-
cation of a filter of span 2T; the modified scheme in-
volves two applications of a filter of span T. Comparison
between the schemes can be made by considering the
relationship between the magnitude of the response
function, zH2T(v)z, of the filter with the longer time span
and the squared response function zHT(v)z2 of the filter
with the shorter time span.

The diabatic initialization schemes apply filtering to
trajectories that do not correspond, at time t 5 0, to the
original analysis. Let us suppose that both v0 and v1

are low frequencies, so that we may assume H(v0) ø
H(v1) ø 1. Thus, the filtering does not substantially
affect these components. The result of a backward ad-
iabatic integration of length T followed by a forward
diabatic integration of the same length may easily be
deduced: integrate (1) backward from x(0) to time t 5
2T to get x(2T) 5 x(0) exp(2iv0T); use this value to
initiate a forward integration of (2) from t 5 2T to t
5 0 to obtain

exp(iv T) 2 exp(iv T)0 1y(0) 5 x(0) 1 f . (6)0 [ ]i(v 2 v )0 1

For short time spans (v0T and v1T small), assuming the
filter response is unity, we have

ȳ(0) ø x(0) 1 f0T. (7)

This differs from the original value x(0) by the diabatic
discrepancy f0T, which is proportional to the amplitude
f0 of the diabatic forcing and also to the time span T.
Since the span of the new scheme is typically half that
of the old scheme, the effect of this discrepancy is re-
duced. Of course, the problem of diabatic discrepancy
disappears when using a finalization or launch technique
as described in Fillion et al. (1995) and LH94, respec-
tively; but then the filtered fields are not applicable at
the initial time.

3. Some examples of filters

The filter used in HL93 was an optimal filter having
pass-band and stop-band edges with periods tp 5 15 h
and ts 5 3 h (recall that the period is given by t 5 2p/
v 5 2pDt/u). The total span was 2T 5 3 h and the time
step was Dt 5 360 s. As shown in Lynch (1997), the
Dolph–Chebyshev filter with a stop-band edge ts 5 3
h and the same time span (3 h) is a simple optimal filter
with virtually the same frequency response. We will
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FIG. 2. Frequency response (dB) for Dolph filters with ripple ratio
r ø 0.1. Solid line: filter order N 5 2M 1 1 5 37; d 5 20 log zH(u)z
plotted. Dashed line: filter order N 5 2M 1 1 5 19; d 5 20 log
zH(u)z2 plotted.

FIG. 3. Amplitude response for Dolph filters as in Fig. 2 above.
Solid line: filter order N 5 2M 1 1 5 37; zH(u)z plotted. Dashed
line: filter order N 5 2M 1 1 5 19; zH(u)z2 plotted.

FIG. 4. Frequency response (dB) for Dolph filters with ripple ratio
r ø 0.1. Solid line: filter order N 5 2M 1 1 5 13; d 5 20 log zH(u)z
plotted. Dashed line: filter order N 5 2M 1 1 5 7; d 5 20 log zH(u)z2
plotted.

therefore use simple Dolph–Chebyshev filters for the
comparison below. We choose a time step Dt 5 300 s
so that M 5 T/Dt 5 18 is an even number. Let us recall
that the frequency response of a Dolph–Chebyshev filter
with us as stop-band edge frequency is

u
cos

2
H(u) 5 rT , (8)2M us1 2cos

2

where T2M(x) is a Chebyshev polynomial of order 2M
and the total time span is 2T 5 2MDt. The ripple ratio
r measures the maximum response in the stop band (zuz
. us) and is determined by requiring H(0) 5 1:

1 1 1
215 T 5 cosh 2M cosh (9)2Mr u us sF G1 2 1 2cos cos

2 2

(see Lynch 1997).
In Fig. 2, two response functions are shown. The

ordinate is the filter attenuation, d 5 20 logzH(u)z (dB).
The solid curve is the response of a Dolph–Chebyshev
filter (denote it H2T) of total span 2T 5 3 h; the stop-
band edge is ts 5 3 h and M 5 18. The dashed curve
is the squared response of a Dolph–Chebyshev filter
( ) of total span T 5 1.5 h; thus, M 5 9. The stop-2HT

band edge ts 5 2.5 h has been chosen by experiment
so that the total attenuation in the stop band was about
the same in both cases: 221.3 dB for the filter with the
longer span and 221.2 dB for the squared response of
the filter with the shorter time span. A more systematic

means of choosing ts will be described below. The am-
plitudes of the frequency responses of the two filters are
shown in Fig. 3 with the u axis expanded for clarity:
the responses are very similar, but the pass band of the
squared short filter is somewhat broader.

If a semi-Lagrangian advection scheme is used, rel-
atively long time steps are possible. We consider a com-
parison between filters H2T and having the same stop2HT

bands and total spans as above, but with a time step Dt
5 900 s. Thus, M 5 6 for H2T and M 5 3 for HT. The
frequency responses are shown in Fig. 4. Once again,
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the attenuation in the stop band is similar for both filters
(221.6 dB in each case) and the pass band of the squared
short filter is slightly broader. The responses in the pass
band for filters with the longer and shorter time steps
were compared (by rescaling the u axis) and were found
to be very similar: thus, effective frequency discrimi-
nation is achievable with the longer time step.

4. Choosing the filter parameters

Methods of ensuring that singly and doubly applied
filters have the same level of damping for high fre-
quencies will now be described. Let unprimed and
primed quantities refer to the filters with the longer and
shorter time spans, respectively.

First, let us assume that the shorter span is exactly
one-half of the longer one. We now determine the pa-
rameters for a filter with one-half of the span, having a
ripple ratio r9 5 r, so that its squared response willÏ
have the same high frequency attenuation as the longer
filter. Its stop-band edge is determined by inversionu9s
of (9) with appropriate parameter values:

21
1 1

21 21u9 5 2 cos cosh cosh . (10)s 1 2[ ]M Ïr

It was found in the above examples that was some-u9s
what larger than us. It must be ascertained in each case
whether is small enough to provide the required fre-u9s
quency selectivity.

Numerical tests using (10) revealed that, in some
cases, the widening of the stop band for the shorter filter
was unacceptable. An alternative approach, which en-
sures that both filters have the same stop-band edge,
will now be described. First we note that, if us and r
are specified, the required filter span can be deduced
from (9): we have T 5 2MDt with

21cosh (1/r)
2M 5 .

us21cosh 1 cos1 @ 22

Noting that, for small e, cosh21(1/cos e) ø e, as may
be easily verified by standard Taylor expansions, and
recalling that us 5 2pDt/ts, we find that

1 1
21T ø cosh t , (11)s1 2p r

provided us K p or 2Dt K ts, which is always true in
practice.

Now assume that the longer and shorter spans are T
5 2MDt and T9 5 2M9Dt, respectively, and that both
filters have the same stop-band edge us. The response
functions are

u
cos

2
H(u) 5 rT ,2M us1 2cos

2

where r 5 1/T2M(1/cosus/2) for the longer filter, and

u
cos

2
H9(u) 5 r9T ,2M9 us1 2cos

2

where r9 5 1/T2M9(1/cosus/2) for the shorter one. Since
the filter with the shorter span is to be applied twice,
we require r9 5 r to ensure that the stop-band atten-Ï
uation is equivalent in both cases. Thus, from (11) we
have

1 1
21T9 ø cosh t . (12)s1 2p Ïr

Taking typical values ts 5 3 h and r 5 0.05 we find
from (11) that the filter applied only once must have a
span at least equal to 3.52 h, whereas (12) implies that
the filter applied twice achieves the same high-frequen-
cy damping with a span of only 2.08 h. This leads to a
substantial reduction in computation time.

5. Application to a forecast model

The new initialization scheme has been evaluated by
application to the limited-area spectral model ALADIN
(partially described in Bubnová et al. 1995). This model
is run quasi-operationally at Météo-France and coupled
with the global spectral NWP model ARPEGE. Hori-
zontal representation of the variables is achieved by
double Fourier series. A nonhydrostatic version of the
model has been developed, but the results presented
below are for the hydrostatic version (application to the
nonhydrostatic version would simply involve filtering
of the two additional prognostic variables). The grid-
size here is approximately 18.3 km and there are 27
vertical levels. The time step is Dt 5 450 s. It was found
to be necessary to use a smaller time step, Dt 5 225 s,
for the backward adiabatic integration to ensure stabil-
ity. The geographical area covered may be seen later in
Fig. 7.

ALADIN does not have its own analysis scheme. The
initialized analysis produced by the global spectral mod-
el ARPEGE is transformed to the resolution required
for ALADIN. This transformation introduces spurious
noise that must be removed by initialization on the lim-
ited domain. Four forecasts were performed starting
from analyses valid at 0000 UTC 21 January 1996. One
was from the transformed analysis without any subse-
quent initialization. The other three forecasts followed
digital filtering initialization in three versions.

1) A Lanczos filter with span 6 h and a cutoff tc 5 6 h.
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FIG. 5. The frequency response of the filters used in the three
schemes described in the text. Solid line—scheme 1, Lanczos filter
applied once; dashed line—scheme 2, Dolph–Chebyshev filter applied
once; dotted line—scheme 3, Dolph–Chebyshev filter applied twice.
Note that for scheme 3 the square of the response function is plotted.

FIG. 6. Evolution of the mean absolute surface pressure tendency
for the first six forecast hours, starting from uninitialized data (solid)
and from data filtered with schemes 1 (dotted), 2 (dashed), and 3
(dot–dashed).

A backward integration of 3 h was followed by a
6-h diabatic forecast. Filtering was applied once
only, to the forward integration.

2) A Dolph–Chebyshev filter with span 4.5 h and stop-
band edge ts 5 3 h. Filtering was again applied once
only, to the forward integration.

3) A Dolph–Chebyshev filter with span 2.25 h and stop-
band edge ts 5 3 h. Filtering was applied twice, to
both the backward and forward integrations. This is
the new scheme.

The frequency responses of the filters used in the three
schemes are shown in Fig. 5. Note that for the new
scheme it is the square of the response function that is
plotted since the filter is applied twice. The Lanczos
filter is precisely that used in LH92 and is known to be
effective. Note that the abscissa is the period t. It is
clear that the responses of the three filtering schemes
are very similar. The time spans used here are longer
than those considered in section 3 and allow a better
damping of high frequencies, with a ripple ratio lower
than 0.05 instead of 0.10 for Dolph–Chebyshev filters.
At the same time, the attenuation of periods longer than
12 h remains small. Note that the constraints on the
filters are not as strong in this case as might be required
for a global model (as discussed in Fillion et al. 1995)
or a limited-area model with its own assimilation cycle.

The evolution of the absolute tendency of surface
pressure averaged over the forecast domain is shown in
Fig. 6. The excessive noise present in the uninitialized
forecast (solid curve) is successfully removed by all the
filtering schemes, and they appear to be equally effective
in this regard. There is a small amount of residual noise
but it is not of sufficient amplitude to cause concern.

The average absolute surface pressure tendency is an
indicator of the level of noise in the external gravity
wave components. It is also necessary to study the im-
pact of filtering on spurious internal gravity wave en-
ergy. For this purpose, the 500-hPa vertical velocity at
the initial time was examined for the four forecasts (re-
sults not shown). It was found that large amplitude,
small-scale noise in the uninitialized run, particularly in
the region of the Alps, was effectively removed by all
the filtering schemes.

The changes induced by the three filtering schemes
were examined and compared. It was found that the new
scheme consistently led to smaller changes than either
of the schemes involving single filtering. The impact on
the 500-hPa temperature analysis is shown in Fig. 7.
Figures 7a,b,c show, respectively, the increments due
to filtering schemes 1, 2, and 3. It is clear that the
changes brought about by the new scheme are signifi-
cantly smaller than those of the alternatives. Notwith-
standing this, the noise reduction is equally effective.
It is reasonable to ascribe the reduction in initialization
increments for the new scheme to the reduced diabatic
discrepancy associated with the shorter span since, as
we have seen, the filter frequency response is virtually
identical for the three schemes.

The saving in computation time for the new scheme
may easily be estimated. Let DtB and cB be the time step
and cost per time step for the backward adiabatic run,
Dt and c the corresponding values for the forward dia-
batic run, and 2T the total time span. We may suppose
DtB 5 Dt/2 and cB 5 c/2. Then the cost of the old
schemes (single filtering) is



AUGUST 1997 1981N O T E S A N D C O R R E S P O N D E N C E

FIG. 7. Impact on the 500-hPa temperature analysis: (a), (b), and (c) show the increments due
to filtering schemes 1, 2, and 3. The contour interval is 0.2 K.

T 2T 3Tc
C 5 c 1 c 5 .BDt Dt DtB

If the filter span of the new scheme is half as long, the
cost is

T T 2Tc
C 5 c 1 c 5 ,BDt Dt DtB

which results in a saving of 33%. This was the case in
the above example: the computation time (seconds of
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CPU usage) for scheme 1 was 1292 s; for scheme 2 it
was 955 s; and for scheme 3 it was 662 s. The reduction
is of practical benefit in an operational context.

The above results demonstrate that a significant gain
in efficiency can be made by means of the new scheme.
This scheme results in smaller increments to the initial
fields but is equally effective in reducing high frequency
noise in the forecast. The new scheme with Dolph–
Chebyshev filters has been implemented in the opera-
tional ALADIN-LACE suite (focusing on central and
eastern Europe) and in the preoperational ALADIN-
FRANCE suite at Météo-France. It has also been im-
plemented in the global system ARPEGE, in the frame-
work of incremental initialization, so as to further reduce
the diabatic discrepancy and preserve tidal modes (as
suggested in LH94). In order to reasonably damp the
large-scale gravity components introduced by analysis,

a more selective Dolph–Chebyshev filter has been used
(with ts 5 5 h as the stop-band edge).
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