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1 Introduction

The spectrum of atmospheric motions is vast, encompassing phenomena having periods ranging
from seconds to millennia. The motions of interest to the forecaster typically have timescales of a
day or longer, but the mathematical models used for numerical prediction describe a broader span
of dynamical features than those of direct concern. For many purposes these higher frequency
components can be regarded as noise contaminating the motions of meteorological interest.
The elimination of this noise is achieved by adjustment of the initial fields, a process called
initialization.

The natural oscillations of the atmosphere fall into two groups (see e.g. Kasahara (1976)).
The solutions of meteorological interest have low frequencies and are close to geostrophic balance.
They are called rotational or vortical modes, since their vorticity is greater than their divergence;
if divergence is ignored, these modes reduce to the Rossby-Haurwitz waves. There are also very
fast gravity-inertia wave solutions, with phase speeds of hundreds of metres per second and large
divergence. For typical conditions of large scale atmospheric flow (when the Rossby and Froude
numbers are small) the two types of motion are clearly separated and interactions between them
are weak. The high frequency gravity-inertia waves may be locally significant in the vicinity of
steep orography, where there is strong thermal forcing or where very rapid changes are occurring;
but overall they are of minor importance.

A subtle and delicate state of balance exists in the atmosphere between the wind and pressure
fields, ensuring that the fast gravity waves have much smaller amplitude than the slow rotational
part of the flow. Observations show that the pressure and wind fields in regions not too near the
equator are close to a state of geostrophic balance and the flow is quasi-nondivergent. The bulk
of the energy is contained in the slow rotational motions and the amplitude of the high frequency
components is small. The existence of this geostrophic balance is a perennial source of interest;
it is a consequence of the forcing mechanisms and dominant modes of hydrodynamic instability
and of the manner in which energy is dispersed and dissipated in the atmosphere. For a recent
review of balanced flow, see McIntyre (2003). The gravity-inertia waves are instrumental in the
process by which the balance is maintained, but the nature of the sources of energy ensures that
the low frequency components predominate in the large scale flow. The atmospheric balance is
subtle, and difficult to specify precisely. It is delicate in that minor perturbations may disrupt
it but robust in that local imbalance tends to be rapidly removed through radiation of gravity-
inertia waves in a process known as geostrophic adjustment.

When the basic equations are used for numerical prediction the forecast may contain spurious
large amplitude high frequency oscillations. These result from anomalously large gravity-inertia
waves which occur because the balance between the mass and velocity fields is not reflected
faithfully in the analysed fields. High frequency oscillations of large amplitude are engendered,
and these may persist for a considerable time unless strong dissipative processes are incorporated
in the forecast model. It was the presence of such imbalance in the initial fields which gave rise
to the totally unrealistic pressure tendency of 145 hPa/6h obtained by Lewis Fry Richardson in
the first-ever objective numerical weather forecast (Richardson, 1922; Lynch, 2006).

Although they have little effect on the long-term evolution of the flow, gravity waves may
profoundly influence the way it changes on shorter time-scales. Fig. 1 schematically depicts the
pressure variation over a period of one day. The smooth curve represents the variation due to
meteorological effects; its gentle slope (dotted line) indicates the long-term change (Phillips,
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Figure 1: Schematic illustration of pressure variation over a 24 hour period. The thick line is
the mean, long-term variation, the thin line is the actual pressure, with high frequency noise.
The dotted line shows the rate of change, at 12 hours, of the mean pressure and the dashed line
shows the corresponding rate of change of the actual pressure (after Phillips, 1973).

1973). The rapidly varying curve represents the actual pressure changes when gravity waves
are superimposed on the meteorological flow: the slope of the oscillating curve (dashed line)
is precipitous and, if used to determine long-range variations, yields totally misleading results.
What Richardson calculated was the instantaneous rate of change in pressure for an atmospheric
state having gravity wave components of large amplitude.

If the fields are not initialized, the spurious oscillations which occur in the forecast can lead
to various problems. In particular, new observations are checked for accuracy against a short-
range forecast. If this forecast is noisy, good observations may be rejected or erroneous ones
accepted. Thus, initialization is essential for satisfactory data assimilation. Another problem
occurs with precipitation forecasting. A noisy forecast has unrealistically large vertical velocity.
This interacts with the humidity field to give hopelessly inaccurate rainfall patterns. To avoid
this spin-up, we must control the gravity wave oscillations.

2 Early Initialization Methods

The Filtered Equations

The first computer forecast was made in 1950 by Charney, Fjørtoft and Von Neumann (1950).
In order to avoid Richardson’s error, they modified the prediction equations in such a way as
to eliminate the high frequency solutions. This process is known as filtering. The basic filtered
system is the set of quasi-geostrophic equations. These equations were used in operational fore-
casting for a number of years. However, they involve approximations which are not always valid,
and this can result in poor forecasts. A more accurate filtering of the primitive equations leads
to the balance equations. This system is more complicated to solve than the quasi-geostrophic
system, and has not been widely used.
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Static Initialization

Hinkelmann (1951) investigated the problem of noise in numerical integrations and concluded
that if the initial winds were geostrophic, high frequency oscillations would occur but would
remain small in amplitude. He later succeeded in integrating the primitive equations, using a
very short timestep, with geostrophic initial winds (Hinkelmann, 1959). Forecasts made with the
primitive equations were soon shown to be clearly superior to those using the quasi-geostrophic
system. However, the use of geostrophic initial winds had a huge disadvantage: the valuable
information contained in the observations of the wind field was completely ignored. Moreover,
the remaining noise level is not tolerable in practice. Charney (1955) proposed that a better
estimate of the initial wind field could be obtained by using the nonlinear balance equation.
This equation — part of the balance system — is a diagnostic relationship between the pressure
and wind fields. It implies that the wind is nondivergent. It was later argued by Phillips (1960)
that a further improvement would result if the divergence of the initial field were set equal to
that implied by quasi-geostrophic theory. Each of these steps represented some progress, but
the noise problem still remained essentially unsolved.

Dynamic Initialization

Another approach, called dynamic initialization, uses the forecast model itself to define the
initial fields (Miyakoda and Moyer, 1968). The dissipative processes in the model can damp out
high frequency noise as the forecast procedes. We integrate the model first forward and then
backward in time, keeping the dissipation active all the time. We repeat this forward-backward
cycle many times until we finally obtain fields, valid at the initial time, from which the high
frequency components have been damped out. The forecast starting from these fields is noise-
free. However, the procedure is expensive in computer time, and damps the meteorologically
significant motions as well as the gravity waves, so it is no longer popular. Digital filtering
initialization, described below, is essentially a refinement of dynamic initialization. Because it
used a highly selective filtering technique, is is computationally more efficient than the older
method.

Variational Initialization

An elegant initialization method based on the calculus of variations was introduced by Sasaki
(1958). We consider the simplest case: given an analysis of the mass and wind fields, how
can they be minimally modified so as to impose geostrophic balance? This problem can be
formulated as the minimization of an integral representing the deviation of the resulting fields
from balance. The variation of the integral leads to the Euler-Lagrange equations, which yield
diagnostic relationships for the new mass and wind fields in terms of the incoming analysis.
Although the method was not widely used, the variational method is now at the centre of modern
data assimilation practice. In §6 below we discuss the use of a digital filter as a weak constraint in
four-dimensional variational assimilation (4DVAR; Talagrand variational assimilation chapter).

3 Atmospheric Normal Mode Oscillations

The solutions of the model equations can be separated, by a process of spectral analysis, into
two sets of components or linear normal modes, slow rotational components or Rossby modes,
and high frequency gravity modes. We assume that the amplitude of the motion is so small that
all nonlinear terms can be neglected. The horizontal structure is then governed by a system
equivalent to the linear shallow water equations which describe the small-amplitude motions
of a shallow layer of incompressible fluid. These equations were first derived by Laplace in his
discussion of tides in the atmosphere and ocean, and are called the Laplace Tidal Equations.
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The simplest means of deriving the linear shallow water equations from the primitive equations
is to assume that the vertical velocity vanishes identically.

The Laplace Tidal Equations

Let us assume that the motions under consideration can be described as small perturbations
about a state of rest, in which the temperature is a constant, T0, and the pressure p̄(z) and
density ρ̄(z) vary only with height. The basic state variables satisfy the gas law and are in
hydrostatic balance: p̄ = Rρ̄T0 and dp̄/dz = −gρ̄. The variations of mean pressure and density
follow immediately:

p̄(z) = p0 exp(−z/H) , ρ̄(z) = ρ0 exp(−z/H) ,

where H = p0/gρ0 = RT0/g is the scale-height of the atmosphere. We consider only motions
for which the vertical component of velocity vanishes identically, w ≡ 0. Let u, v, p and ρ
denote variations about the basic state, each of these being a small quantity. The horizontal
momentum, continuity and thermodynamic equations, with standard notation, are (see chapters
on modelling - Rood, and meteorology and dynamics - Lahoz et al.)

∂ρ̄u

∂t
− f ρ̄v +

∂p

∂x
= 0 (1)

∂ρ̄v

∂t
+ f ρ̄u+

∂p

∂y
= 0 (2)

∂ρ

∂t
+ ∇·ρ̄V = 0 (3)

1

γp̄

∂p

∂t
−

1

ρ̄

∂ρ

∂t
= 0 (4)

Density can be eliminated from the continuity equation, Eq. 3, by means of the thermody-
namic equation, Eq. 4. Now let us assume that the horizontal and vertical dependencies of the
perturbation quantities are separable:







ρ̄u
ρ̄v
p







=







U(x, y, t)
V (x, y, t)
P (x, y, t)







Z(z) . (5)

The momentum and continuity equations can then be written

∂U

∂t
− fV +

∂P

∂x
= 0 (6)

∂V

∂t
+ fU +

∂P

∂y
= 0 (7)

∂P

∂t
+ (gh)∇ · V = 0 (8)

where V = (U, V ) is the momentum vector and h = γH = γRT0/g. This is a set of three
equations for the three dependent variables U , V , and P . They are mathematically isomorphic
to the Laplace Tidal Equations with a mean depth h. The quantity h is called the equivalent
depth. There is no dependence in this system on the vertical coordinate z.

The vertical structure follows from the hydrostatic equation, together with the relationship
p = (γgH)ρ implied by the thermodynamic equation. It is determined by

dZ

dz
+

Z

γH
= 0 , (9)

the solution of which is Z = Z0 exp(−z/γH), where Z0 is the amplitude at z = 0. If we set
Z0 = 1, then U , V and P give the momentum and pressure fields at the earth’s surface. These
variables all decay exponentially with height. It follows from Eq. 5 that u and v actually increase
with height as exp(κz/H), but the kinetic energy decays.
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Vorticity and Divergence

We examine the solutions of the Laplace Tidal Equations in some enlightening limiting cases.
Holton (1992) gives a more extensive analysis, including treatments of the equatorial and mid-
latitude β-plane approximations. By means of the Helmholtz Theorem, a general horizontal
wind field V may be partitioned into rotational and divergent components

V = Vψ + Vχ = k×∇ψ + ∇χ .

The stream function ψ and velocity potential χ are related to the vorticity and divergence by
the Poisson equations ∇2ψ = ζ and ∇2χ = δ. It is straightforward to derive equations for the
vorticity and divergence tendencies. Together with the continuity equation, they are

∂ζ

∂t
+ fδ + βv = 0 (10)

∂δ

∂t
− fζ + βu+ ∇2P = 0 (11)

∂P

∂t
+ ghδ = 0 . (12)

These equations are completely equivalent to Eqs. 6–8; no additional approximations have yet
been made. However, the vorticity and divergence forms enable us to examine various simple
approximate solutions.

Rossby-Haurwitz Modes

If we suppose that the solution is quasi-nondivergent, i.e., we assume |δ| ≪ |ζ|, the wind is
given approximately in terms of the stream function (u, v) ≈ (−ψy, ψx), the vorticity equation
becomes

∇2ψt + βψx = O(δ) , (13)

and we can ignore the right-hand side. Assuming the stream function has the wave-like structure
of a spherical harmonic, Y mn (λ, φ) = Pmn (sinφ) exp(imλ), we substitute the expression ψ =
ψ0Y

m
n (λ, φ) exp(−iνt) in the vorticity equation and immediately deduce an expression for the

frequency:

ν = νR ≡ −
2Ωm

n(n+ 1)
. (14)

This is the celebrated dispersion relation for Rossby-Haurwitz waves (Haurwitz, 1940). If we
ignore sphericity (the β-plane approximation) and assume harmonic dependence ψ(x, y, t) =
ψ0 exp[i(kx+ ℓy − νt)], then (13) has the dispersion relation

c =
ν

k
= −

β

k2 + ℓ2
,

which is the expression for phase-speed found by Rossby (1939). The Rossby or Rossby-Haurwitz
waves are, to the first approximation, non-divergent waves which travel westward, the phase
speed being greatest for the waves of largest scale. They are of relatively low frequency —
Eq. 14 implies that |ν| ≤ Ω — and the frequency decreases as the spatial scale decreases.

To the same degree of approximation, we may write the divergence equation, Eq. 11, as

∇2P − fζ − βψy = O(δ) . (15)

Ignoring the right-hand side, we get the linear balance equation

∇2P = ∇·f∇ψ , (16)

a diagnostic relationship between the geopotential and the stream function. This also follows
immediately from the assumption that the wind is both non-divergent (V = k×∇ψ) and
geostrophic (fV = k×∇P ). If variations of f are ignored, we can assume P = fψ. The wind
and pressure are in approximate geostrophic balance for Rossby-Haurwitz waves.
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Gravity Wave Modes

If we assume now that the solution is quasi-irrotational, i.e. that |ζ| ≪ |δ|, then the wind is
given approximately by (u, v) ≈ (χx, χy) and the divergence equation becomes

∇2χt + βχx + ∇2P = O(ζ)

with the right-hand side negligible. Using the continuity equation to eliminate P , we get

∇2χtt + βχxt − gh∇4χ = 0 .

Seeking a solution χ = χ0Y
m
n (λ, φ) exp(−iνt), we find that

ν2 +

(

−
2Ωm

n(n+ 1)

)

ν −
n(n+ 1)gh

a2
= 0 . (17)

The coefficient of the second term is just the Rossby-Haurwitz frequency νR found in Eq. 14
above, so that

ν = ±
√

ν2
G + (1

2νR)2 − 1
2νR , where νG ≡

√

n(n+1)gh
a2

,

Noting that |νG| ≫ |νR|, it follows that

ν± ≈ ±νG ,

the frequency of pure gravity waves. There are then two solutions, representing waves travelling
eastward and westward with equal speeds. The frequency increases approximately linearly with
the total wavenumber n.

4 Normal Mode Initialization

The model equations can be written schematically in the form

Ẋ + iLX + N (X) = 0 (18)

with X the state vector, L a matrix and N a nonlinear vector function. If L is diagonalized, the
system separates into two subsystems, for the low and high frequency components (LF and HF,
respectively):

Ẏ + iΛYY + N (Y,Z) = 0 (19)

Ż + iΛZZ + N (Y,Z) = 0 (20)

where Y and Z are the coefficients of the LF and HF components of the flow, referred to
colloquially as the slow and fast components respectively, and ΛY and ΛZ are diagonal matrices
of eigenfrequencies for the two types of modes.

Let us suppose that the initial fields are separated into slow and fast parts, and that the
latter are removed so as to leave only the Rossby waves. It might be hoped that this process of
“linear normal mode initialization”, imposing the condition

Z = 0 at t = 0

would ensure a noise-free forecast. However, the results of the technique are disappointing: the
noise is reduced initially, but soon reappears; the forecasting equations are nonlinear, and the
slow components interact nonlinearly in such a way as to generate gravity waves. The problem
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Figure 2: Pressure variation over a 24 hour period for forecasts from uninitialized data (solid
lines, both panels), LNMI data (dashed line, left panel) and NNMI data (dashed line, right
panel). LNMI = linearly initialized data; NNMI = nonlinearly initialized data. From Williamson
and Temperton (1981).

of noise remains: the gravity waves are small to begin with, but they grow rapidly (see Daley,
1991, Ch. 9).

Machenhauer (1977) examined gravity wave dynamics in simple systems and found that the
amplitude of the high-frequency components is quasi-stationary. To control the growth of HF
components, he proposed setting their initial rate-of-change to zero, in the hope that they would
remain small throughout the forecast. Baer (1977) proposed a somewhat more general method,
using a two-timing perturbation technique. The forecast, starting from initial fields modified
so that Ż = 0 at t = 0 is very smooth and the spurious gravity wave oscillations are almost
completely removed. The method takes account of the nonlinear nature of the equations, and
is referred to as nonlinear normal mode initialization:

Ż = 0 at t = 0 .

The method is comprehensively reviewed in Daley (1991).
In Fig. 2, we show the evolution of surface pressure for three 24 hour forecasts (Williamson

and Temperton, 1981). The solid lines (in both panels) are the pressure variation for forecasts
from uninitialized data. Forecasts from linearly initialized data (LNMI) are shown by the dashed
line in the left panel. Forecasts from data that is nonlinearly initialized (NNMI) are shown by
the dashed line in the right panel. It is clear that LNMI is ineffective in removing spurious
oscillations. NNMI is excellent in this regard.

5 Digital Filter Initialization

Normal mode initialization, or NMI, has been used in many NWP centres, and has performed
satisfactorily. Its most natural context is for global models, for which the horizontal structure
of the normal modes corresponds to the Hough functions, the eigenmodes of the Laplace Tidal
Equations. For limited area models, normal modes can also be derived, but the lateral boundaries
force the introduction of simplifying assumptions. An alternative method of initialization, called
digital filter initialization (DFI), was introduced by Lynch and Huang (1992). It was generalised
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f(t)
=⇒

∗h(t)
f∗(t) = f(t) ∗ h(t)

F ⇓ F−1 ⇑

F (ω)
H(ω)

=⇒
F (ω) ·H(ω)

Figure 3: Schematic representation of the equivalence between convolution and filtering in
Fourier space.

to allow for diabatic effects by Huang and Lynch (1993). The latter paper also discussed the
use of an optimal filter. A much simpler filter, the Dolph-Chebyshev filter, which is a special
case of the optimal filter, was applied to the initialization problem by Lynch (1997). A more
efficient formulation of DFI was presented by Lynch, Giard and Ivanovici (1997).

Digital filter initialization (DFI) uses filters similar to those arising in signal processing. The
selection principle for these is generally based on the frequency of the signal components. There
are a number of ideal types — lowpass, highpass, bandpass and bandstop — corresponding to
the range of frequencies which pass through the filter and those which are rejected. In many
cases the input consists of a low-frequency (LF) signal contaminated by high-frequency (HF)
noise, and the information in the signal can be isolated by using a lowpass filter which rejects
the noise. Such a situation is typical for the application to meteorology discussed below.

The method of digital filter initialization has significant advantages over alternative methods,
and is now in use operationally at several major weather prediction centres (see Numerical
Weather Prediction chapter - Swinbank). In DFI there is no need to compute or store normal
modes; this advantage becomes more pronounced as the number of degrees of freedom of the
model increases. There is no need to separate the vertical modes; NMI requires the introduction
of an auxiliary geopotential variable, and partitioning of its changes between the temperature and
surface pressure involves an ad hoc assumption. DFI is free from this problem. There is complete
compatibility with model discretization, eliminating discretization errors due to grid disparities.
DFI is applicable to exotic grids on arbitrary domains, facilitating its use with stretched or
irregular model grids. There is no iterative numerical procedure which may diverge; therefore,
all vertical modes can be initialized effectively. The simplicity of the method makes it easy to
implement and maintain. The method is applicable to all prognostic model variables; thus, DFI
produces initial fields for these variables which are compatible with the basic dynamical fields.
Last but not least, DFI filters the additional prognostic variables in non-hydrostatic models in
a manner identical to the basic variables. The DFI method is thus immediately suitable for
non-hydrostatic models (Bubnová et al., 1995; Chen and Huang, 2006).

5.1 Design of Nonrecursive Filters

Consider a function of time, f(t), with low and high frequency components. To filter out the
high frequencies one may proceed as follows:

[1] Calculate the Fourier transform F (ω) of f(t);

[2] Set the coefficients of the high frequencies to zero;

[3] Calculate the inverse transform.
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(See Fig. 3). Step [2] may be performed by multiplying F (ω) by an appropriate weighting
function H(ω).

Suppose that f is known only at discrete moments tn = n∆t, so that the sequence
{· · · , f−2, f−1, f0, f1, f2, · · ·} is given. For example, fn could be the value of some model variable
at a particular grid point at time tn. The shortest period component that can be represented
with a time step ∆t is τN = 2∆t, corresponding to a maximum frequency, the so-called Nyquist
frequency, ωN = π/∆t. The sequence {fn} may be regarded as the Fourier coefficients of a
function F (θ):

F (θ) =

∞
∑

n=−∞

fne
−inθ, (21)

where θ = ω∆t is the digital frequency and F (θ) is periodic, F (θ) = F (θ + 2π). High frequency
components of the sequence may be eliminated by multiplying F (θ) by a function H(θ) defined
by

H(θ) =

{

1, |θ| ≤ |θc|;
0, |θ| > |θc|,

(22)

where the cutoff frequency θc = ωc∆t is assumed to fall in the Nyquist range (−π, π) and H(θ)
has period 2π. This function may be expanded:

H(θ) =
∞
∑

n=−∞

hne
−inθ ; hn =

1

2π

∫ π

−π
H(θ)einθdθ. (23)

The values of the coefficients hn follow immediately from Eqs. 22 and 23:

hn =
sinnθc
nπ

. (24)

Let {f⋆n} denote the low frequency part of {fn}, from which all components with frequency
greater than θc have been removed. Clearly,

H(θ) · F (θ) =

∞
∑

n=−∞

f⋆ne
−inθ.

The convolution theorem for Fourier series now implies that H(θ) · F (θ) is the transform of the
convolution of {hn} with {fn}:

f⋆n = (h ∗ f)n =

∞
∑

k=−∞

hkfn−k. (25)

This enables the filtering to be performed directly on the given sequence {fn}. In practice the
summation must be truncated at some finite value of k. Thus, an approximation to the low
frequency part of {fn} is given by

f⋆n =

N
∑

k=−N

hkfn−k. (26)

A more sophisticated method uses the Chebyshev alternation theorem to obtain a filter
whose maximum error in the pass- and stop-bands is minimized. This method yields a filter
meeting required specifications with fewer coefficients that the other methods. The design of
nonrecursive and recursive filters is outlined in Hamming (1989), where several methods are
described, and fuller treatments may be found in Oppenheim and Schafer (1989).
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Figure 4: Mean absolute surface pressure tendency for three forecasts. Solid: uninitialized
analysis (NIL). Dashed: Normal mode initialization (NMI). Dotted: Digital filter initialization
(DFI). Units are hPa/3 hours.

5.2 Application of a Nonrecursive Digital Filter to Initialization

An initialization scheme using a nonrecursive digital filter has been developed by Lynch and
Huang (1992) for the HiRLAM (High Resolution Limited Area Model) model. The uninitialized
fields of surface pressure, temperature, humidity and winds were first integrated forward for three
hours, and running sums of the form

f⋆F (0) =
1

2
h0f0 +

N
∑

n=1

h−nfn, (27)

where fn = f(n∆t), were calculated for each field at each gridpoint and on each model level.
These were stored at the end of the three hour forecast. The original fields were then used to
make a three hour ‘hindcast’, during which running sums of the form

f⋆B(0) =
1

2
h0f0 +

−N
∑

n=−1

h−nfn (28)

were accumulated for each field, and stored as before. The two sums were then combined to
form the required summations:

f⋆(0) = f⋆F (0) + f⋆B(0). (29)

These fields correspond to the application of the digital filter Eq. 26 to the original data, and
will be referred to as the filtered data.

Complete technical details of the original implementation of DFI in the HiRLAM model
may be found in Lynch, et al., (1999). A reformulation of the implementation, with further
testing and evaluation, is presented in Huang and Yang (2002).

5.3 Initialization Example

A detailed case study based on the implementation in HiRLAM was carried out to check
the effect of the initialization on the initial fields and on the forecast, and to examine the



Initialization 11

Figure 5: Vertical velocity at 500 hPa over western Europe and the eastern North Atlantic.
(Left) Uninitialized analysis (NIL); (Right) after digital filtering (DFI).

efficacy of DFI in eliminating high frequency noise. The digital filter initialization was compared
to the reference implicit normal mode initialization (NMI) scheme, and to forecasts with no
initialization (NIL). Forecasts starting from the analysis valid at 1200 UTC on 10 February,
1999 were compared.

We first checked the effect of DFI on the analysis and forecast fields. The maximum change
in surface pressure due to initialization was 2.2 hPa, with an rms change of about 0.5 hPa. The
changes to the other analysed variables were in general comparable in size to analysis errors,
and considerably smaller in magnitude than typical changes brought about by the analysis
itself: the rms change in surface pressure from first-guess to analysis was about 1 hPa. The
rms and maximum differences between the uninitialized 24 hour forecast (NIL) and the filtered
forecast (DFI) for all prognostic variables were examined. When we compare these values to
the differences at the initial time they were seen to be generally smaller. The changes made by
DFI are to the high frequency components; since these are selectively damped during the course
of the forecast, the two forecasts were very similar. After 24 hours the maximum difference in
surface pressure was less than 1 hPa and the rms difference was only 0.1 hPa.

The basic measure of noise is the mean absolute value of the surface pressure tendency

N1 =

(

1

N

) N
∑

n=1

∣

∣

∣

∣

∂ps
∂t

∣

∣

∣

∣

n

.

For well-balanced fields this quantity has a value of about 1 hPa/3h. For uninitialized fields
it can be an order of magnitude larger. In Fig. 4 we plot the value of N1 for three forecasts.
The solid line represents the forecast from uninitialized data: we see that the value of N1 at the
beginning of the forecast is about 12 hPa/3h. This large value reflects the lack of an effective
multivariate balance in the analysis. It takes about six hours to fall to a reasonable value. The
dashed line is for a forecast starting from data initialized using the implicit normal mode method
(NMI). The starting value is about 3 hPa/3h, falling to about 1.5 hPa/3h after twelve hours.
The final graph (the dotted line) is for the digitally filtered data (DFI). The initial value of N1

is now about 1.5, and remains more-or-less constant throughout the forecast. It is clear from
this measure that DFI is more effective in removing high frequency noise than NMI.

The measure N1 indicates the noise in the vertically integrated divergence field. However,
even when this is small, there may be significant activity in the internal gravity wave modes.
To see this, we look at the vertical velocity field at 500 hPa for the NIL and DFI analyses.
The left panel in Fig. 5 shows the uninitialized vertical velocity field, zoomed in over western
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Europe and the eastern North Atlantic. There is clearly substantial gravity wave noise in this
field. In fact, the field is physically quite unrealistic. The right panel shows the DFI vertical
velocity. It is much smoother; the spurious features have been eliminated and the large values
with small horizontal scales which remain are clearly associated with the Scottish Highlands,
the Norwegian Mountains and the Alps. Comparison with the NMI method (see Lynch et al.

(1999), for details) indicates that DFI is more effective than NMI in dealing with internal gravity
wave noise. It is noteworthy that stationary mountain waves are unaffected by digital filtering,
since they have zero frequency. This is a desirable characteristic of the DFI scheme.

5.4 Benefits for the Data Assimilation Cycle

In Lynch et al. (1999), a parallel test of data for one of the FASTEX (Fronts and Atlantic
Storm Track EXperiment) intensive observing periods showed that the DFI method resulted
in slightly improved scores compared to NMI. As it is not usual for an initialization scheme
to yield significant improvements in forecast accuracy, some discussion is merited. We cannot
demonstrate beyond question the reason for this improvement. However, the comparative results
showed up some definite defects in the implicit normal mode initialization as implemented in
the reference HiRLAM model. It was clear that the NMI scheme did not eliminate imbalance
at lower model levels. Moreover, although the noise level indicated by the parameter N1 fell to
a reasonable level in six hours, there was still internal gravity wave noise, not measured by this
parameter. Any noise in the six hour forecast will be carried through to the next analysis cycle,
and will affect the quality control and assimilation of new observational data. It is believed that
the DFI scheme, with its superior ability to establish atmospheric balance, results in improved
assimilation of data and consequently in a reduction of forecast errors.

6 Constraints in 4DVAR

We conclude with a discussion on the application of a digital filter as a weak constraint in
four-dimensional variational assimilation (4DVAR; see chapter on variational data assimilation
- Talagrand). The idea is that if the state of the system is noise-free at a particular time, i.e.,
is close to the slow manifold, it will remain noise-free, since the slow manifold is an invariant
subset of phase-space (Leith, 1980). We consider a sequence of values {x0, x1, x2, · · · xN} and
form the filtered value

x̄ =

N
∑

n=0

hnxn. (30)

The evolution is constrained, so that the value at the mid-point in time is close to this filtered
value, by addition of a term

Jc = 1
2γ||xN/2 − x̄||2

to the cost function to be minimized (γ is an adjustable parameter). It is straightforward to
derive the adjoint of the filter operator (Gustafsson, 1992). Gauthier and Thépaut (2001) applied
such a constraint to the 4DVAR system of Météo-France. They found that a digital filter weak
constraint imposed on the low-resolution increments efficiently controlled the emergence of fast
oscillations while maintaining a close fit to the observations. As the values required for input to
the filter are already available, there is essentially no computational overhead in applying this
procedure. The dynamical imbalance was significantly less in 4DVAR than in 3DVAR. Wee and
Kuo (2004) included a Jc term in the MM5 4DVAR. They found that the weak contraint not
only reduces the dynamic imbalance in the 4DVAR solution, but also improves the quality of
the analysis and forecast significantly.

To illustrate the impact of the Jc constraint, experiments are carried out using the WRF
(Weather Research and Forecasting) 4DVAR system (Huang et al., 2009), (a) without and (b)
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Figure 6: Cost functions for experiment (a) without Jc and (b) with Jc in the mininmization.

with the penalty term in the minimization. The cost functions (Jo, Jb and Jc) are shown in
Fig. 6. In both panels, Jc is computed with γ = 0.1. It is clear that the unconstrained 4DVAR
analysis contains a significant amount of noise, with Jc large, and the weak constraint Jc is
able to control the noise level. In most of our experiments, Jc also helps the convergence of the
miminimization.

To further demonstrate the noise control effect of Jc, we computed N1 during the forecasts
from WRF 4DVAR analyses using different γ. The results from five experiments are shown in
Fig. 7. NoJcDF: forecast start from a WRF 4DVAR analysis without Jc or γ = 0. JcDF(0.1):
forecast start from a WRF 4DVAR analysis with Jc and γ = 0.1. JcDF(1): forecast start from
a WRF 4DVAR analysis with Jc and γ = 1. JcDF(10): forecast start from a WRF 4DVAR
analysis with Jc and γ = 10. FGS: forecast start from firstguess, which is a 3 h forecast from
prevous analysis cycle and can be considered as a noise free forecast. The larger the weight we
assign to Jc in the 4DVAR minimization, the lower the noise level becomes in the subsequent
forecast. However, a larger weight in Jc may compromise the fit to observations (a larger Jo at
the end of minimization). The tuning of γ is necessary.

7 Conclusion

We have described several methods of eliminating noise from the forecast by removal of spuriously
large-amplitude gravity-wave components from the initial data. This is essential for practical
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Figure 7: Mean absolute surface pressure tendency for 5 forecasts.

reasons and, in particular, for avoidance of problems in the assimilation cycle. The benefits of
initialization are clear. However, it is noteworthy that modern variational assimilation methods
are capable of producing fields in good balance, so that a separate initialization stage is less
important now. Constraints to ensure good balance can be incorporated directly into variational
assimilation schemes. The digital filter method is particularly attractive in this respect, and is
a natural choice for variational analysis.
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