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ABSTRACT

The Laplace transform technique of initialization is used to initialize the data for a barotropic forecasting
model over a limited area. The initialization is successful in suppressing high-frequency oscillations during
early forecast hours. It has negligible effect upon the resulting 24-hour forecast.

A variation of the linearization, wherein the Coriolis parameter is held constant, is investigated. It is found
that the fields which result after a single nonlinear iteration of the modified scheme are almost identical to

those resulting from the tnore general scheme.

1. Introduction

Initialization for limited-area models is a topic of
considerable current interest. The nonlinear normal
mode method (Machenhauer, 1977; Baer, 1977) pro-
vides a very effective method of defining initial con-
ditions for global and hemispheric models. Adaptation
of this method for limited-area models poses serious
difficulties; it is difficult to determine appropriate
normal modes, especially if the horizontal variables
do not separate, and to allow for general boundary
conditions. An aiternative method, which uses a
modified inversion formula for the Laplace transform,
was proposed by Lynch (1985) and was shown to be
effective in controlling high-frequency oscillations in
a simple one-dimensional model with periodic
boundary conditions. Although the method is equiv-.
alent to nonlinear normal mode initialization its
application does not require explicit knowledge of
the model normal modes.

In the present study the new initialization method
is applied in the context of a one-level model over a
limited area. The shallow water equations which
govern the flow have linear solutions of both low-
frequency rotational and high-frequency gravity-in-
ertia wave types. The initial data for the model is
taken from the standard 500 mb analysis. Since this
analysis normally contains spuriously large gravity-
wave components, the resulting forecast exhibits large
amplitude high frequency oscillations during the early
forecast hours. These oscillations are gradually dissi-
pated by a light diffusive damping which is applied
near the boundaries of the forecast area.

To control the initial spurious oscillations the
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analysis (at 500 mb) is initialized using the Laplace
transform method. The forecast from the balanced
initial fields evolves very smoothly, without any initial
shock or subsequent large oscillations. In the specific
case considered, the analysis for 0000 GMT 22
November 1982, the rms (root-mean-square) differ-
ence between the original and balanced analysis is
about 10 m, with a maximum difference of less than
40 meters. The rms difference in wind speed is about
2!, m s™!, The 24-hour forecasts resulting from the
two analyses are virtually identical: the maximum
differences in height and wind are 4 m and ' m s™.
Thus, the initialization process does not affect the
final forecast, but it controls the high frequency
oscillations by removing spuriously large gravity-wave
components from the analysis.

The initialization scheme is varied by holding the
Coriolis parameter constant in the linearization and
including its variation with the nonlinear terms. The
results after one nonlinear iteration are almost iden-
tical to those for the original linearization. Since the
modified linear equations have separable horizontal
variables, a considerably more economical scheme
can be formulated using this linearization.

2. Formulation of the Laplace transform technique

a. Outline of the method

A description of the theoretical basis of the Laplace
transform technique of initialization can be found in
Lynch (1985) and only an outline is given here. We
define a modified inverse Laplace transform operator

L[} = 5;—, ic, e fls)- ds §))
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where C* is a circle of radius r centered at the origin
of the s-plane and fis the Laplace transform of f. As
shown in the Appendix, the operator L*.L, acting
on a time-varying function f{(¢), filters out all com-
ponents with frequency greater than r. This filter may
be used to formulate an initialization procedure.
Consider a system whose state X(7) is governed by
the nonlinear vector equation

dX

dt

where L is a constant linear operator and N is a
nonlinear vector function. We wish to adjust the
initial conditions X° to ensure the slow evolution of
the system. As a first approximation the nonlinear
terms are ignored and the Laplace transform of (2) is
written

+LX+NX)=0 )

X = (sI + L)"'X°.

Applying .L* with ¢ = 0 we get the first estimate of
the balanced initial conditions X,°. Now let X,° be
the nth estimate; we approximate the nonlinear term
by N(X,°), assumed constant; then, the next estimate
of the transformed solution is given by

X1 = (s + L)7'[X,°0 — N(X,%)/s] 3)

and the (n + 1)th estimate of the balanced initial
conditions is

Xn+10 = L*{Xn+10} li=o

with the value of r chosen to lie between the low
frequencies which we wish to preserve and the high
frequencies which we wish to eliminate. Normally
only one nonlinear iteration is required in the case
of a one-level model.

The contour C* is approximated by an inscribed
polygon and the integral in (1) is calculated by
evaluating the integrand at the center, s, of each side
As, and forming a sum as follows

N
f;,f(s)-dsz 2 A(sn)- As,.

n=1

C))

A constant ¢ has Laplace transform c¢/s. It is
straightforward to show that the approximation (4)
with f(s) = ¢/s overestimates ¢ by a factor

x = tan(r/N)/(%/N)

where N is the order of the polygon. This is significant
for small N, so we therefore correct the sum in (4)
by dividing by «. This gives excellent results with as
few as eight points around C* (an octogon). A

When the original function f{) is real we have f(5)
= f(s) and it is easy to show that

1 A 1 .
%ﬁ_f(s)-ds—;j;llm[ﬂs)-ds] (5

where Im[ - ] is the imaginary part and C, is the upper
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half of C*, traversed anticlockwise. Since the depen-
dent variables X(¢) are real in the present problem,
the use of (5) halves the work required, and only four
evaluations of the transformed function on C, are
needed to give satisfactory results.

b. Description of the forecasting model

The model equations can be written in the form

%%z + (1/e)V-V = =N, (6)
ou 0P
= ot =N, Y
ov od
— — = =N,.
% + fu+ 3 (8)

They have been nondimensionalized using length-
and time-scales g and (292)”'. The nonlinear terms
Ns, N, and N, have been collected on the right hand
side, ¢ = (2Qa)?/® and all other notation is conven-
tional. The mean height of the 500 mb surface is
chosen as 5560 m, so that ¢ = 15.7.

The equations are integrated over a limited area
with a transformed latitude/longitude coordinate sys-
tem: the North Pole of the transformed grid is at
30°N, 150°E, obtained by rotating the geographic
grid through Ay = —30° about the geographic polar
axis and then through ¢, = 60° in the plane of
30°W-150°E. In the transformed (), ¢) coordinates
the Coriolis parameter is of the form

J = (cosgp) sing + (singy) COSA cosp

and is thus a function of both coordinates of the new
system. This seriously complicates the linear analysis
by making the horizontal variables nonseparable.
(Equations relating the regular and transformed lati-
tude/longitude can be found in, for example, Verkley,
1984).

The integration area is spanned by 81 X 51 grid-
points, with geopotential and winds being specified
at alternate intersections of a 1° X 1° mesh (Arakawa
E-grid). Thus, the grid spacing between like points is
157 km at the model equator. The area covered can
be seen by reference to Fig. 1.

The timestep is fixed at Ar = 450 s for both
advection and adjustment terms; this ensures stability
of the gravity waves. A split explicit method is used
to integrate the equations: the advection is handled
using a multiply-upstream semi-Lagrangian scheme
with biquadratic interpolation (Bates and McDonald,
1982); a forward-backward scheme is used for the
gravity wave terms and a trapezoidal (pseudo-) implicit
scheme for the Coriolis terms (Mesinger and Arakawa,
1976). The variables on the outermost boundary line
are held constant and those on the first inner line are
evaluated at each timestep by linear interpolation
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FIG. 1. (a) Original 500 mb analysis valid at 0000 GMT 22 November, 1982; (b), (c) 12 and 24 hour forecasts starting from
this analysis; (d) Initialized minus original analysis; (e), (f) differences at 12 and 24 hours between forecasts from original and

initialized analyses. (Units are meters).

from the four surrounding points. Bilinear interpo-
lation is also used for the Lagrangian advection
scheme on the next three lines, which results in some
damping. In addition, light diffusive damping is ap-
plied over the five outermost lines of the grid.

¢. -Application of the initialization method

The Laplace transform of (6)-(8) may be written

s® + (1/V-V = 3° — N, )
si—fdo+ &, =u®—N, (10)
sh+fil+ &, =0°—N, (1

where & denotes the Laplace transform of ®, etc. We
discretise the domain and replace spatial derivatives
by centered differences in the usual way. The values
of ®, u and v on the “kth row” of the grid are
collected in the vector

Xk = (Qlks Utks Vtks « + «» @Mka UM ka)

and the transformed vector X is defined in a similar
manner. Because of the grid staggering, some bound-
ary points are included in X;. We assume that these
are constant and that points adjacent to the boundaries
are defined by interpolation from the surrounding
points. The system (9)-(11) may now be written in
the form of a set of matrix equations
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AXi- + BX; + CXpyy = Dy (12)
where A, B, and C, are block-tridiagonal matrices
whose elements depend upon the coefficients of the
equations and D, is a column vector of initial values
plus transformed nonlinear terms. The lateral bound-
ary values u,;, Upy, etc. also occur in the vector Dy.
The system (12) is solved using the method proposed
by Lindzen and Kuo (1969). The first (linear) step in
the initialization is performed after setting the nonlin-
ear terms in Dy to zero. The system (12) is solved for
X,(s) and this is inverted on the modified contour C*
to give X,°, the linearly initialized fields. The nonlinear
terms are evaluated either directly from these fields
or by making a single timestep forecast. They are
incorporated in the forcing vector D, and the initial-
ization cycle is repeated as often as required. In the
case of a barotropic model a single nonlinear iteration
is normally sufficient for convergence.

3. Results

Several test runs have been made with varying grid
resolutions and other parameter values. The results
described below are for the 500 mb analysis valid at
the initial time 0000 GMT 22 November 1982. The
grid resolution is 1° X 1° (E-grid). The cutoff fre-
quency for the inversion integral (1) is chosen by
setting r = (.5; this corresponds to eliminating all
components with period less than 24 hours. One
linear and one nonlinear iteration of the initialization
procedure are applied; it is found that the changes
due to a second nonlinear iteration are very small
(presumably further iterations would be needed in
the baroclinic case where the equivalent depths are
progressively smaller). The nonlinear terms may be
evaluated directly within the initialization or by mak-
ing a single timestep forecast of the model. In the
present case it was found to be simpler to calculate
them directly.

TABLE 1. Root-mean-square (and maximum) changes to the geo-
potential height and wind fields due to each iteration of the initial-
ization, and to the linear and first nonlinear iterations combined.

z u v

(m) (ms™) (m s™")

LIN ms 16.9 2.56 2.68
(max) (77.5) (15.33) (12.72)

NLI rms 10.9 0.23 0.11
(max) (46.9) (0.85) (0.32)

NL2 rms 0.5 0.02 0.02
(max) (1.9) 0.12) (0.09)

LIN rms 9.5 2.53 2.64
+ NLI (max) (38.9) (15.32) (12.78)
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TABLE 2. Root-mean-square (and maximum) differences in the
geopotential height and wind fields between the original and initialized
fields (NL1 minus NIL) and between the 12 and 24 hour forecasts
resulting from these fields.

Fore- z u v
cast Difference (m) (ms™) (ms™)
HH + 00 ms 9.5 2.53 2.64
(max) (+38.9) (—15.32) (+12.78)
HH + 12 ms 6.1 0.25 0.21
(max) (—22.3) (—-0.97) (—0.78)
HH + 24 rms 1.0 0.11 0.09
(max) (+4.1) (—0.55) (+0.37)

In Table 1 we show the rms changes (and maximum
changes) to the geopotential height and wind fields
due to each iteration of the initialization and to the
linear and first nonlinear iterations combined. The
changes of the height field are quite large for the
linear (LIN) and first nonlinear (NL1) iterations; the
overall change due to the two (LIN + NLI1) is
somewhat less. The winds change markedly during
the linear step but very little thereafter. In all cases
there is hardly any change due to the second nonlinear
iteration (NL2); therefore, the results presented below
refer to the case of a single nonlinear iteration (LIN
+ NL1). (NIL indicates results without any initializa-
tion).

Figure la shows the initial 500 mb height analysis
and Figs. 1b and ¢ are the HH + 12 and HH + 24
hour forecasts resulting from this analysis. In Fig. 1d
we show the changes to the height field due to the
initialization (LIN + NL1), and Figs. le and f show
the differences, at 12 and 24 hours, between the
forecasts starting from the two analyses (initialized
minus original). The changes to the analysis, and also
after 12 hours, are quite significant. The similarity
between the two 24-hour forecasts is remarkable: the
maximum height difference is only 4 m, and for
practical purposes the forecasts are identical. Further
results are presented in Table 2, and they confirm
the convergence between the two forecasts.

The effect of initialization on the evolution of the
flow is indicated by several diagnostics. In Fig. 2 we
show the geopotential at a central point (indicated by
a cross in Fig. 6b) resulting from the initial fields and
after linear and nonlinear initialization. The reduction
of the initial oscillations in the linear case (LIN) is
dramatic, and the evolution after NL! is very smooth.
Similar graphs of the evolution of the divergence (at
the same central point) tell much the same story: the
divergence fluctuates wildly if the initial fields are out
of balance (Fig. 3); this fluctuation is controlled by
initialization.

The rms divergence and global mean divergent
kinetic energy give good overall measures of the noise
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FIG. 2. Geopotential height (m) at the gridpoint I = 37, J = 19
for the first 12 hours of the forecast starting from uninitialized
fields (solid), linearly initialized fields (dashed) and nonlinearly
initialized fields (dotted).

in the evolution of the flow. The effects of the
initialization upon these quantities are shown in Figs.
4 and 5. In both cases there is a dramatic reduction
of the noise in the forecast when the fields are initially
balanced.

All the above diagnostics confirm that the initial-
ization (LIN + NLI) is successful in removing spu-
rious oscillations from the early forecast and results
in a noise-free evolution of the flow. The remarkable
agreement between the 24-hour forecasts before and
afier (Fig. 1f) demonstrates that the process is doing
precisely what is required: removing high-frequency
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FIG. 3. Divergence at a central point, J = 37, J = 19 (units X10°
s™") for the first 12 hours of the forecast starting from uninitialized
fields (solid), linearly initialized fields (dashed) and nonlinearly
initialized fields (dotted).

FIG. 4. Root-mean-square divergence (units X10° s™') for the
first 12 hours of the forecast starting from uninitialized fields (solid)
and nonlinearly initialized fields (dotted).

gravity waves without perturbing the development of
the meteorological flow.

4. A simplified linearization

The development of the present method of initial-
ization was guided by an intuitive feeling that it is
important to include the full variation of the Coriolis
parameter (the B-effect) in the linearized equations.
Ballish (1979) showed, in the context of a one-
dimensional model, that the omission of the 3-terms
from the eigenvector analysis leads to larger oscilla-
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FIG. 5. Root-mean-square divergent kinetic energy per unit mass
(m? s7%) for the first 12 hours of the forecast starting from
uninitialized fields (solid) and nonlinearly initialized fields (dotted).
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tions than if they are included. It seemed likely that
this would also be true for a more general model.
The question is examined below.

The initialization procedure was modified in the
following way: The Coriolis parameter f occurring in
the linear terms of (7) and (8) was replaced by its
mean value f;, and its variation was accounted for
by including the factors —(f — fo)v and +(f — fo)u in
the nonlinear terms N, and N, of these equations.
Thus, the nonlinear equations to be solved are un-
changed, but they are split into linear and nonlinear
parts in a different way.

The difference between the original (f = f(\, ¢))
and simplified (f = fy, constant) initialization schemes
can be seen from Fig. 6. In Fig. 6a we show the
difference in the 500 mb analyses resulting from the
original and simplified schemes after linear initializa-
tion. Since the linear equations used in the two cases
differ, it is hardly surprising that the two analyses
differ by as much as 30 m, with an rms difference of
10 m. In contrast to this, Fig. 6b shows that after a

(a)LIN 22 Nov 1982 07 HH+00

FG. 6. Difference between the initialized 500 mb analyses
resulting from the original and simplified (fconstant) schemes, (a)
after linear initialization and (b) after one nonlinear iteration.
(Units are meters).
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single nonlinear iteration the two schemes produce
very similar analyses: the maximum difference is 1.6
m, and the rms difference only 0.5 m. The maximum
difference in the corresponding wind analyses is only
0.14 m s™'. For practical purposes the two analyses
are identical. The noise profiles produced by the
forecasts from the two analyses are indistinguishable.

The simplified scheme gives results equivalent to
the original method, and results in linearized equations
in which separation of the horizontal variables obtains.
It is therefore possible with this scheme to develop a
more efficient initialization procedure. Furthermore,
the amount of disk storage should be considerably
reduced. It seems highly probable that the equivalence
of the two methods will also hold in the case of a
baroclinic model. However, the geographical extent
of the analysis area must be taken into account. For
example, it is not clear how important the inclusion
of the B-terms in the linear equations may become if
the area extends to or straddles the equator.

5. Summary

The Laplace transform technique has been applied
in the context of a one-level limited-area model. The
results have shown that the method is capable of
removing spurious gravity-wave noise without having
any adverse affect on the resulting forecast. There do
not appear to be any problems associated with the
boundaries. The simplification of the linearization,
in which the Coriolis parameter is taken as constant,
is found to produce results which are almost identical
to those obtained with the more general scheme.

APPENDIX
Laplace Transform Theory

The basic definitions and properties of Laplace
transforms needed in this study are summarized, and
the method of filtering is described. A good compre-
hensive guide to the theory, from a practical viewpoint,
is Doetsch (1971).

The Laplace transform of a function f{) of time ¢
is defined as:

L0y =79 = [ fwera 4y
and is a function of the associated complex variable
s. Thus, a constant a transforms to a/s. The complex
exponential function representing a wavemotion is
transformed to an algebraic function

L{e“'} = 1/(s — iw). (A2)
Since L is linear, the superposition of a number of
waves may be transformed component-wise:
J

J
L{ E ajei“’f'} =

Jj=1 Jj=

a,-/(s - iw,-). (A3)
1
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The higher the frequency w;, the further the corre-
sponding pole s = iw; lies from the origin.

If the transform of f{¢) is f(s) then the time-
derivative, f(¢), transforms as

L{f0)} = s- /) = f0) (Ad)

where f(0) is the initial value of f{¢). Thus, differen-
tiating in f-space corresponds to algebraic operations
in s-space. This is the power of the Laplace transform
method: it lowers the level of transcendence of func-
tions and operators. Ordinary differential equations
transform to algebraic ones.

A modification of the Fourier theorem gwes us the
complex inversion formula for the Laplace transform:

W) = L) = 51; fc Aspetds (A5

where the contour C is parallel to the imaginary axis,
and to the right of all singularities of f(s). We assume
that f(s) is meromorphic, that is, analytic except for
isolated poles; and that the contour C can be com-
pleted by an asymptotically large semicircular arc in
the left half plane.

The contributions to f(¢) in (AS) come from the
poles of f(s). Since the high-frequency components
correspond to poles far from the origin, they can be
eliminated by shrinking the contour to a circle C* of
radius r centered at the origin. This is the motivation
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for the definition of the operator .L* [Eq. (1), Section
2a)], and we see that L*.L acting on f{) will select
the components with frequency w < r and filter out
the high-frequency components of f(z).
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