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ABSTRACT

Digital filters, originally developed in the context of Discrete-time Signal Processing
(DSP), have recently been used for the analysis and solution of problems in geophysics.
In the field of numerical weather prediction these filters have been applied to the prob-
lems of initialization and objective analysis, and they have considerable potential for

other applications in NWP.

The theory of digital filters is presented in this report, with the interests of
atmospheric modellers in mind. Both non-recursive and recursive filters are discussed,
and applications of both of these to initialization are described. The purpose of the
report is to provide a gentle introduction to digital filtering, with emphasis on the
aspects thought to be most important for NWP applications. The report should give
the reader easier access to the more recondite treatments of filtering available in the

DSP literature.

Note: Figures not included. Please contact author (Peter.Lynch@met.ie) for a complete

paper copy of this report.
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1. INTRODUCTION

Digital Signal Processing (DSP) plays a central réle in modern telecommuni-
cations, music recording and reproduction, television, speech and image processing,
medical diagnosis and remote sensing. Digital filters (DFs) are now ubiquitous, being
found in wrist-watches, CD players, touch-tone telephones, speech and music synthe-
sizers, CAT scanners, doppler radars and virtually all modern measuring instruments.
More recently, these filters have been used for processing geophysical data, and they

have considerable potential for application in the area of numerical weather prediction.

In the field of NWP, digital filters have been applied to the problems of initializa-
tion (Lynch and Huang, 1992; Huang and Lynch, 1992) and objective analysis (Lorenc,
1992). They may also provide a means of systematically constructing frequency-selective
integration schemes (Lynch, 1991b). They provide a promising means of imposing con-
straints in four-dimensional data assimilation, and have potential for application in a

number of other areas.

Simple analog filters are considered in §2, and the key ideas of filtering are intro-
duced. The basic theory of Digital Filters (DFs) is reviewed in §3. Design methods for
non-recursive filters are presented in §4, and an application to initialization is described
briefly. One great advantage of a non-recursive filter is the possibility to make its phase
linear in frequency. This implies distortion-free output, delayed in time by half the span.
But this can also be a drawback: the non-recursive filter cannot provide output valid
at an extremity of the input span. This, coupled with the irreversibility of a diabatic
integration, makes application to diabatic initialization problematical. A recursive filter
may be devised which circumvents this problem. The basic design methods for recursive
filters are presented in §5, and an application to initialization of a barotropic model is

described in §6. Some concluding remarks are found in §7.

An extensive literature on digital filters exists in Digital Signal Processing pub-
lications. A selection of references to the DSP books which have been found to be most

helpful can be found at the end of this report.
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2. BACKGROUND: ANALOG FILTERS

2.1 The Fundamental Idea of Filtering

The process of filtering involves the selection of those components of an assem-
blage having some particular property, and the removal or elimination of those compo-
nents which lack it. A filter is any device or contrivance designed to carry out such a
selection. We are primarily concerned with filters as used in signal processing. The se-
lection principle for these is generally based on the frequency of the signal components.
There are a number of ideal types (lowpass, highpass, bandpass and bandstop) corre-
sponding to the range of frequencies which pass through the filter and those which are
rejected. In many cases the input consists of a low-frequency (LF) signal contaminated
by high-frequency (HF) noise, and the information in the signal can be isolated by using
a lowpass filter which rejects the noise. Such a situation is typical for the applications

to meteorology discussed below.

Filter theory originated from the need to design electronic circuits with pre-
cise frequency-selective characteristics, for radio and telecommunications. These analog
filters were constructed from capacitors and inductors, and acted on continuous time
signals. More recently, discrete time signal processing has assumed prominance, and
the technique and theory of digital filtering has evolved. Analog filters are usually re-
alized as electronic circuits; digital filters may also be implemented in hardware using
integrated curcuits, but are more commonly realized in software: the input is processed

by a program designed to perform the required selection and compute the output.

2.2 A Simple Example

The basic ideas and (relevant) jargon of filtering can be conveniently introduced
by means of a simple example. Let us consider the linear second order o.d.e. governing

a forced, damped harmonic oscillator:
i+ 200§ + (03 + wd)y = 2(0). (2.1)

The coefficient gg > 0 determines the damping, and wy is the natural frequency of the
system. We call z(t) the forcing, stimulus or excitation, or simply the input , and y(t)
the response or output . The solution of the equation tells us the output y(¢) for a given

input z(t). In the simple but important case of a sinusoidal forcing z(t) = exp(iwt), a
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particular (forced) solution is given by
yr(t) = H(iw) - exp(iwt)

where the response function, transfer function or system function, H (iw), is

1
(0% + wi — w?) + 2iopw’

H(iw) =

This function depends on the system parameters oy and wy and on the forcing frequency
w. Its complex character indicates that both the magnitude and phase of the output
are changed relative to the input. For an undamped oscillator (69 = 0) we have the
possibility of unbounded response for w — wy. With weak positive damping (¢ < wp)
there is resonance: the amplitude of the output is maximum for forcing near the natural
frequency, w ~ wg. With stronger damping (oo > wp) the magnitude of H(w) is maxi-
mum at w = 0. In addition to the particular solution forced by z(t), the homogeneous

form of (2.1) has a characteristic solution
yr(t) = e~ 7 (Cy exp(iwot) + C_ exp(—iwpt)).

The coefficients C are determined by the initial conditions. For finite damping (o¢ # 0)
yr(t) dies out exponentially with time and is called the transient solution. The full

response is y(t) = yr(t) + yr(t), comprising forced plus transient components.

Equation (2.1) models a number of basic mechanical
and electrical systems. For example, if v(¢) is the input voltage
applied to a series RLC circuit, and ¢ is the charge on the

capacitor, Kirchhoft’s voltage law implies

Li+ Rg+ (%) g =v(t).

This equation is isomorphic to (2.1) with the identifications z — v/L, y — ¢ and

_(BY oL (RY
90 =\3r )’ o= 1zc  \aL
2 2

For wi > 0 the transient solution is oscillatory or under-damped; for wj < 0 it is

exponential or over-damped; the case w2 = 0 is called critical damping and is the value

for which the transient solution decays fastest.
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Further analysis of (2.1) is facilitated by introducing the Laplace transform (see,

e.g., Doetsch, 1971). The transform of the equation is
(5% + 2005 + (00 +wg)) i (s) = &(s) + (s + 200)y(0) + §(0) (2.2)
(hats denote transforms). The solution of this algebraic equation is
§(s) = H(s)[2(s) + (s + 200)y(0) +5(0)]. (2.3)

where the transfer function H(s) is given by

1
H(s) = s2 + 2005 + (0§ + wi) (24)
For wg > 0 this function has two complex conjugate poles in the s-plane:
H(s) = L — (2.5)
(s —sp)(s—3p)
where s, = —og +iwp. The positions of the poles are determined by the system param-

eters oy and wgp, and the character of the transient solution depends on them. But the
forced response is also strongly influenced by the location of these poles. Using the con-
volution theorem for the Laplace transform, the solution y(¢) is obtained by inverting
(2.3): .

y(t) = e~ 7 (C4 exp(iwot) + C— exp(—iwpt)) + /0 h(r)x(t —7) dr (2.6)

where h(t) is the inverse transform of H(s) and the coefficients C'y are determined from
the initial conditions y(0) and 3(0). We do not need explicit expressions for Cy, noting
only that the transient component decays with an e-folding time 1/, and focus on the

forced response represented by the integral term.

For an impulse input, z(t) = 6(t), the integral may be evaluated by inspection
and is equal to h(t). Thus, the impulse response is the inverse transform of the transfer

function:

h(t) = E_I{H(s)} _ (exp(spt) — exp(spt)) .

Sp — Sp
For a sinusoidal input, z(t) = exp(iwt), the evaluation of the integral is more awkward,
but elementary, and the response is

(8p — iw) exp(spt) — (sp — iw) exp(Spt) + (sp — 5p) exp(iwt)
(sp = 5p)(sp — 1w)(5p — iw) -
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Ignoring the evanescent components, the steady-state response is

1

Gy — i) 5y —iw)] &~ 1) (),

Thus, the pure sinusoidal input gives rise to an output of the same frequency, whose
amplitude and phase are determined by H (iw), the transfer function evaluated on the
imaginary axis of the s-plane.

1
(5 —sp)(s —5p) ‘

The response function (2.5) has the character of a low-pass filter. How can we

2.3 Analysis of the Transfer Function H(s) =

see this? Its value at the low-frequency limit w = 0, the so-called dc gain, is

1

HO) =2

(2.7)

For large |s|, H(s) behaves like s~2, so its amplitude tends to zero as w — 400, and

high frequency inputs are effectively damped.

The behaviour of the transfer function on the imaginary axis is of particular

interest. We can write H (iw) in terms of its amplitude and phase:
H(iw) = M(w) - exp(ip(w))

and expressions for M (w) and ¢(w) follow from (2.5):

M(w) = !
Vot @Il @t )T

w@):—mmfl(w_um)—tmfl(w+um). (2.9)

oo g0

(2.8)

We will examine three properties of the transfer function H(s) which are crucial for
understanding the suitability of such filters for applications: (a) Cut-off frequency, (b)

Phase-error and Delay and (c) Transient response and Start-up time.
(a) Cut-off frequency: Prototype Filters

Since H(s) tends to zero for large |s|, there exists a contour in the s-plane outside

which its magnitude-squared is less than half the value |H(0)|2. The point iw,. where

this contour intersects the imaginary axis is called the cutoff frequency:

H (iwe)[* = 3|H(0)|>. (2.10)
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It is the half-power frequency, or 3-deciBel point, since the attenuation at w, is

2

H (iw.) = 10log2 ~ 3 dB.

H(0)

H (iw,)
H(0)

—201og ‘

= —1010g‘

Using (2.7) and (2.8) in (2.10) yields a relationship between the parameters oy and wp:
2(08 + wd)? = (02 + wi — w?)? + 402w? (2.11)

It is convenient to consider prototype filters, for which w. = 1; the general case is

recovered by the the transformation s — s/w.. Then (2.11) becomes
(03 +wd)?> =2(0% —wd) + 1. (2.12)

This is the equation of a curve in the s-plane. It is a particular case of a family of curves
called Cassinian ovals (see Fig. 2.1). The general equation for these curves, in more

familiar cartesian notation, is
(@* +9°)? = 2(a® — y*) + (a* - 1),

The value a? = /2 corresponds to (2.12).

Since all prototype filters (of the type under consideration) have parametes
00,wp) lying on the curve (2.12), there is in effect one free parameter: we are free to
g

impose one further condition on the filter. Three special choices will be considered:

(i) The Butterworth (BW) filter has an amplitude response which is maximally flat
in the pass-band

(ii) The Bessel or Flat-delay (FD) filter has a phase response which is as near linear

as possible in the pass-band

(iii) The Quick-start (QS) filter has a transient response which decays as rapidly as
possible.

First consider the magnitude response. The first derivative of M (w) with respect to w
vanishes at w = 0 for all choices (o, wp). The imposition of the condition

d*M (w)

72 =0 at w=0 (2.13)
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implies that the amplitude response is as flat as possible at the low-frequency limit.
This is the definition of the Butterworth filter. It leads immediately to the requirement
that wg = +0¢, which, together with (2.12) implies

1
\/57

Thus, the representative point for the Butterworth filter lies where the curve (2.12)

opg = Wo = + (214)

intersects the unit circle (Fig. 2.2).
(b) Phase-error and Group Delay
The response to a sinusoidal input z(t) = exp(iwt) is
y(t) = H(iw)z(t) = M (w) exp[i(wt + p(w))].

The case of linear phase ¢ = —tow is especially important, since it corresponds to delay

in time for all components of the input irrespective of frequency:
y(t) = M (w) expliw(t — to)].

The time delay is given in this case by tgp = —dgp/dw. Generalising this idea, we define
the group delay, J, as the derivative of the phase response (2.9) with respect to frequency:

5= do 00 n a0
 dw o2+ (w—wo)? o+ (wHw)? S’
We will refer to the value of 0 at w = 0 simply as the delay:

20’0

8o = (2.15)

ol +w?’
A straightforward calculation shows that dé/dw = 0 is automatically satisfied
at w = 0. The condition
d25—0 at w=0 (2.16)
dw? B )
implies that the phase response is as near linear as possible in the pass-band. We

take (2.16) as the definition of the Flat-delay (FD) filter. The condition (2.16) implies
wo = F00/+/3 which, in conjunction with (2.12) yields

3
gpg = ny, wO:ﬂ:\/g, (217)
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where v = (14 v/5)/2. Devotees of Fibonacci (1175?-1250?) will recognise this as the
golden ratio, which pops up in the most surprising places. The representative point for
the FD filter is shown in Fig. 2.2. The Flat-delay filter is a special case of a Bessel
filter (see Kuo, 1966), a filter whose phase response is maximally flat and which can be

constructed using Bessel polynomials.
(¢) Transient Decay and Start-up Time

The transient response of the filter decays with an e-folding time 1/0g. Thus, the most
rapid decay obtains for the largest possible value of gy3. This is obviously the point

where the curve (2.12) intersects the horizontal axis, with coordinates

1
oo=\V2+1= . wp=0 2.18
0 Jis1 0 (2.18)

(see Fig. 2.2). The output of the filter based on this choice should reach a steady state

faster than for any other prototype filter. It corresponds to the case of critical damping
for a harmonic oscillator. We shall call the filter based on this choice the Quick-start

(QS) filter (no more respectable name having been found in the literature).

The time-constant 1/0¢ is a measure of the decay-rate of the transient response

of a filter. We shall define this to be the start-up time
TO = 1/0’0. (219)

In time Ty, the transient is reduced by 1/e, or to 37% of its initial value. By 2T} it
has decayed to 14%, and after 3Ty to 5% of its starting value. The delay and start-up
times for the three special filters which we have discussed are tabulated below. Note
that, while the delay times are roughly the same for all three filters, the start-up times
are very different. For the QS filter the start-up time is equal to half the delay.
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We define the non-dimensional ratio of the start-up and delay times:

_ Start-up _ Tp

Delay 6o

For application to initialization it is desirable that I' be as small as possible, so as to
achieve maximum attenuation of the transient within the delay period. The minimum

value I' = % is attained by the Quick-Start filter.

The amplitude response and group delay of the three special prototype filters
(BW: Butterworth, FD: Flat-Delay, QS: Quick-Start) are shown in Fig. 2.3. The flat
amplitude response of the BW filter is an attractive feature, but is counter-balanced
by a group delay which is far from constant. The FD filter clearly has the most nearly
constant delay in the pass band, but its amplitude response is poorer than for BW. The
QS filter amplitude response is similar to that of FD; its group delay is not as good,

but is more nearly constant than that of the BW filter for low frequencies.

2.4 From Analog to Digital Filters

For a general analog filter the output is a weighted sum of derivatives of the input
and output signals. Such a filter can be described by a constant-coefficient differential

equation

Z a2 dtk Zbkdd'z,(f). (2.21)

If we assume an input of the form z(¢) = exp(st) and seek a solution y(t) = H(s)z(t)

for the output, the transfer function H(s) must be of the form

K
H(s) = —22k=0 ars"

=N . (2.22)
! Zk:l kak

This is a ratio of polynomials, or a rational function of s. It may be expressed as

_/'1\(1:—4-2\- (Q_Cﬂ\, 2.23
G(\s— j(s—pzj (8—pN ( )

determined completely by the gain G and the positions of the zeros ¢; and poles p;.

There are two means of converting a filter from analog to digital form, i.e., of
going over from continuous time to discrete time. We can discretise the differential

equation (2.21) or transform the response function H(s) to the discrete domain. The
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two possibilities are closely related, as we shall now show. For simplicity, we consider
the first order filter
¥+ by = cx. (2.24)

The transfer function can be written down by inspection:

C

H(s)= ——, 2.25
()= -2 (225)
so that, for an input z(t) = exp(st), the output is

c

t) =
y(t) P

(t), (2.26)
Discretising (2.24) in time with centred approximations, yields

Yk — Yk—1 Iy Yk T Yk—1 . Tk + Tp—1
At 2 2 ’

This enables the output yx to be expressed in terms of inputs and previous outputs:

cAt 2 — bAt
— _ .. 2.2
Yk (2+bAt> (@ +2p-1) + <2+bAt) Yk—1 (2.27)

We can define advance and delay operators Z and Z~! by
ZTk = Tkl Z7 g = w4

and write (2.27) in the form

B cAt
24 bAL

2 — bAt

—1
s oAl Uk

(14 Z Yy +

Yk

This can be solved immediately for y; in the following form:

c
v (g—;}) +b
This is formally similar to (2.26) if we make the identification
s = = (E) . (2.29)
At \Z+1

Thus, instead of starting from the differential equation (2.24), we can start with the

analog transfer function (2.25) and make the substitution of Z for s using the bilinear
transformation (2.29). It is normally much easier to work with transfer functions than
with differential equations. The bilinear transformation will be discussed further in the

following sections.
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3. DIGITAL FILTERS

In this section the definitions and basic properties of digital filters are presented.
The simplest DFs are non-recursive—the input is processed to produce the output. In
contrast, recursive DF's involve feedback of the output, which enables them to achieve
higher performance for given computational expenditure. Both types of DF are dis-

cussed in this section.

Numerous accounts of digital filters are available in publications on digital signal
processing; a number of the most useful books on the subject are listed at the end of
this report. The book by Williams (1986) is an excellent elementary introduction. The
work of Oppenheim and Schafer (1989) is very comprehensive, at a more advanced level.

Hamming’s book (1989) comes somewhere in between.

3.1 Definition of Digital Filters

Given a discrete function of time {xn} a nonrecursive digital filter is defined by

N
Yn = Z AkTn—- (3.1)
k=—N

The output y,, at time nAt depends on both past and future values of z,,, but not on

other output values. A recursive digital filter is defined by

N L
Yn = Z ApTn—k + Z bkyn—k- (32)
k=K k=1

The output ¥, at time nAt in this case depends on past and present values of the input
(for K = 0), and also on previous output values. (Occasionally, future input values are
also used (K < 0), in which case the recursive filter is non-causal). Recursive filters
are more powerful than non-recursive ones, but can also be more problematical, as the

feedback of the output can give rise to instability.

The response of a nonrecursive filter to an impulse d(n) is zero for |n| > N,
giving rise to the alternative name finite impulse response or FIR filter. Recursive
filters have longer memories: since the response of a recursive filter to an impulse input
can persist indefinitely, it is known as an infinite tmpulse response or IIR filter. For

example, the response of the simple filter

Yn+1 = IB-Tn + ayn (yO = 0)



Digital Filters 15

to the unit pulse input d(n) is the geometric progression

ylzﬂa ’!J2:/3017 y3:ﬂa27 ’!/4:,3&37

The response continues indefinitely; for |a| < 1 the response is bounded; for |a| > 1 it

grows without limit and the filter is unstable.

The frequency response of a digital filter is easily found: let z,, = exp(inf) and
assume an output of the form y,, = H () exp(inf); substituting into (3.2), the transfer
function H () is

N .
Z ake—zkﬁ
H(0) = =5 . (3.3)
1- Z bke_ikg
k=1

For nonrecursive filters the denominator reduces to unity. This equation gives the
response once the filter coefficients ar and b; have been specified. However, what is
really required is the opposite: to derive coefficients (and as few as possible) which will
yield the desired response function. This inverse problem has no unique solution, and
a great variety of techniques have been developed. Only the most elementary design

techniques will be considered below; for further information see the DSP references.

Recursive filters generally have superior performance to nonrecursive filters with
the same total number of coefficients. This may be explained by noting that the transfer
function (3.3) can be written

N

3 apzk
H(z)="=K (3.4)

L
1-— Z bkz_k
k=1

where z = exp(if). For a nonrecursive filter this is a polynomial in 1/z; for a recursive
function it is a rational function in 1/z, and is more capable of fitting a specified
function having sudden changes or narrow features. Against this, the recursive filter
will obviously cause problems if the denominator vanishes. It can be shown that a

recursive filter is stable if the roots of the characteristic polynomaial

L
2F - E bzt k=0
k=1

are inside the unit circle |z| < 1.



16 Peter Lynch

3.2 Transient and Steady-State Solutions

The output of the nonrecursive filter (3.1) for an input z,, = 2™ is of the form

yn = HZz™, where H is easily derived by substitution of the assumed forcing and solution:
H = (ao +a1z Va2 4+ aNz_N).

This agrees with the general expression (3.4). For a nonrecursive filter, the response
function has only zeros. There are no poles, and the possibility of an unstable response
does not arise. No initial values of y are required. There are several design techniques
for choosing the coefficients {an} (see Huang and Lynch, 1992, Appendix A). For a
given choice, the degree of filtering depends sensitively upon the span of the filter,
which is proportional to the filter length N. The situation for recursive filters is more
complicated. Here the effectiveness of the filter is influenced not only by the forced
response, but also by transient components whose rate of decay determines when a

steady state response is reached.

The recursive filter (3.2) can be written as a difference equation of order L:

L N
Yn — Zbkyn—k: = Z ApTp—k- (35)

For simplicity, we restrict attention to the second-order filter

Yn — D1Yn—1 — baYn—2 = (@0Zp + A1%p—1 + Q2Zp—2 ) = fp. (3.6)

The general solution can be constructed from two distinct parts, a transient component
and a forced component. The transient component is a solution of the homogeneous
equation

Yn — blyn—l - ben—Z =0. (37)

Assuming a solution of the form ¥, = 2™ leads to the characteristic equation
2’2 - blz - b2 =0 (38)

which has a pair of solutions z = z; and z = z9, either both real or complex conjugates

if the coefficients b; and by are real. Thus, the transient solution takes the form

yf = C’lz? + CQZS’ (39)
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Clearly the term transient is appropriate only if 21| < 1 and |z2| < 1. This is identical to
the requirement for the filter to be stable, and we assume it to be fulfilled; the transient
then decays exponentially with increasing n. Next, consider the case of exponential
forcing, x, = 2", and seek a response of the form y, = Hz". Substitution in (3.6)

yields

ag + alz_l + a22_2

1—byz7l —boz—2"’

H = (3.10)

in agreement with the general expression (3.4). The complete solution is the sum of the

transient and forced response
Y = (C12] + Co2y)+H2". (3.11)

The constants C; and C5 are determined by the starting values yo and y;, which must

be supplied.

A filter with response of the form (3.10) is known as a biquad, since H is
quadratic in both numerator and denominator. These filters are fundamental building
blocks, and higher-order filters can be constructed by combining biquad components in
cascade (series) or parallel. The response of a cascade is the product of the responses

of the components; the response of a parallel combination is the sum:

Hcascape = kﬁlHk ; HpARALLEL = kf:lﬂk-

For a stable filter the transient component dies away exponentially. But how
quickly? The rate of decay depends on the distance of the poles z;, zo from the unit
circle, that is on |z1| and |z2|. Therefore, ceteris paribus, we should arrange for the
poles to have the smallest possible moduli; this is the idea which was used to devise the
Quick-Start analog filter, and the same approach may be used in the digital domain.
In the application to initialization we are interested in the forced response, and would
like to eliminate the transient altogether; but this can be done only if we know the
initial values which imply C'; = C3 = 0, and we have no idea how to choose these. One
possible solution is to apply the filter iteratively over a short span 0 < n < N, using
the same forcing x,, each time but taking the final output yy as a starting value for
the next iteration. This technique will be used in the application below. For a fuller

discussion of transient decay, see Hamming (1989, §13.12).
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4. NON-RECURSIVE (FIR) DIGITAL FILTERS

4.1 Design of Nonrecursive Filters

Consider a function of time, f(t), with low and high frequency components. To
filter out the high frequencies one may proceed as follows:

[1] calculate the Fourier transform F'(w) of f(t);

[2] set the coefficients of the high frequencies to zero;

[3] calculate the inverse transform.

Step [2] may be performed by multiplying F(w) by an appropriate weighting function
H_.(w). Typically, H.(w) is a step function

_ L el < fwel;
Hc(w)—{o’ ol > ol (4.1)

where w, is a cutoff frequency. These three steps are equivalent to a convolution of f(t)

with h(t) = sin(w.t)/7t, the inverse Fourier transform of H.(w). This follows from the

convolution theorem

F{(h+))} = F{h} - F{f} = He(w) - F(w) (4.2)

Thus, to filter f(¢) one calculates
+o0o
FO=0snO= [ b= (4.3

For simple functions f(t), this integral may be evaluated analytically. In general, some

method of approximation must be used.

Suppose now that f is known only at discrete moments ¢, = nAt, so that
the sequence { <oy foa, f=1, fo, f1, f2, - } is given. For example, f,, could be the value
of some model variable at a particular grid point at time ¢,,. The shortest period
component which can be represented with a time step At is 75 = 2At, corresponding
to a maximum frequency, the so-called Nyquist frequency, wy = m/At. The sequence

{f} may be regarded as the Fourier coefficients of a function F(6):

F(g): io: fne—inﬂ’

where 0 = wAt is the digital frequency and F(0) is periodic, F(f) = F(0 + 27). High

frequency components of the sequence may be eliminated by multiplying F'(f) by a
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function Hy(0) defined by

1, (01 < 0.l
Hd(e)‘{o, 0> 10, (4.4)

where the cutoff frequency 0. = w.At is assumed to fall in the Nyquist range (—, )
and H4(0) has period 2. This function may be expanded:
i b b= [ H a(0)e™’do. (4.5)
’ o

The values of the coefficients h,, follow immediately from (4.4) and (4.5):

B = sin nHC. (4.6)

nm

Let { I } denote the low frequency part of { fn}, from which all components with

frequency greater than 6, have been removed. Clearly,

Hd Z f* —inb )

n=—oo

The convolution theorem for Fourier series now implies that H;(6)-F () is the transform

of the convolution of {hn} with { fn}:

fr=(h*fn Z i fr— - (4.7)

k=—o0

This enables the filtering to be performed directly on the given sequence { fn}. It is the
discrete analogue of (4.3). In practice the summation must be truncated at some finite

value of k. Thus, an approximation to the low frequency part of { fn} is given by

N
= > hifok (4.8)
k=—N

Comparing (4.8) with (3.1), it is apparent that the finite approximation to the discrete

convolution is formally identical to a nonrecursive digital filter.

As is well known, truncation of a Fourier series gives rise to Gibbs oscillations.
These may be greatly reduced by means of an appropriately defined “window” function.
The response of the filter is improved if h,, is multiplied by the Lanczos window

o — sin(nr/(N + 1))
" am/(N+1)
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The transfer function H(#) of a filter is defined as the function by which a
pure sinusoidal oscillation is multiplied when subjected to the filter. For symmetric
coefficients, hy = h_g, it is real, implying that the phase is not altered by the filter.
Then, if f,, = exp(inf), one may write fr = H(0) - f,, and H(0) is easily calculated by
substituting f, in (4.8):

N
H(H) = Z hke_ika =
k=—N

N
ho + 2 Z hy cos k@] . (4.9)
k=1

The transfer functions for a windowed and unwindowed filter are shown in Fig. 4.1.
These were calculated for the cutoff period 7. = 6 hours, span Ty, = 2NAt = 6 hours
and timestep At = 360 s (as used in the application to initialization described below).
The parameter values are therefore N = 30 and 6, = /30 = 0.1. It can be seen that the
use of the window decreases the Gibbs oscillations in the stop-band |6| > |0.|. However,
it also has the effect of widening the pass-band beyond the nominal cutoff. For a fuller

discussion of windowing see e.g. Hamming (1989) or Oppenheim and Schafer (1989).

The simplest design method for nonrecursive filters is the expansion of the de-
sired filtering function, H(#), as a Fourier series, and the application of a suitable
window function to improve the transfer characteristics. A more sophisticated method
uses the Chebyshev alternation theorem to obtain a filter whose maximum error in the
pass- and stopbands is minimized. This method yields a filter meeting required speci-
fications with fewer coefficients that the other methods. Such filters are called optimal
or equi-ripple filters. The frequency response of four filters is shown in Figure 4.2. Two
of the filters are constructed using a Lanczos window and two by means of the optimal
design technique (for full details, see Huang and Lynch, 1992). The solid graph is for a
Lanczos filter with a nominal cutoff of 6 hours and a span Ty = 6 hours (the filter used
in L&H). The dotted curve is for the optimal or equiripple filter with a span Ts = 3
hours. It can be seen that the behaviour in the transition region is quite similar for
these two filters. However, the optimal filter has sidelobes with amplitude of about 0.1
(determined by the value of §) in the stop-band. The remaining two curves in Figure
4.2 are for the Lanczos filter with nominal cutoff of 6 hours and span T, = 3 hours
(dashed line) and the optimal filter with a span Ts = 2 hours (dot-dash line). These
two filters have similar response in the pass and transition bands. The optimal filter

has equiripple oscillations in the stop-band. What is clear from these curves is that, if



22 Peter Lynch

the stop-band ripples can be tolerated, the optimal filters have the required response in

the pass band with shorter span than that required by the Lanczos filters.

The time required for filtering is proportional to the filter span. Thus, a 50%
reduction is achieved by replacing the Lanczos filter with 6 hour span by an optimal
filter with a 3 hour span. It is shown in Huang and Lynch (1992) that the optimal
filter applied to initialization of the HIRLAM model yields results comparable to those
obtained with the Lanczos filter.

4.2 Application of an FIR: Initialization using a Nonrecursive Filter

An initialization scheme using a nonrecursive digital filter has been developed
by Lynch and Huang (1991) for the HIRLAM model. The value chosen for the cutoff
frequency corresponded to a period 7. = 6 hours. With the time step A¢{ = 6 minutes
used in the model, this corresponds to a (digital) cutoff frequency 6. = 7/30. The
coefficients were derived by Fourier expansion of a step-function, truncated at N = 30,

with application of a Lanczos window, and are given by

h [sin(mr/(N—l—l)) <sin(nﬁc))'

nw/(N +1)
The frequency response was depicted in Fig. 4.1. The central lobe of the coefficient

function spans a period of six hours, from ¢t = —3 hours to ¢ = +3 hours. The summation
in (4.8) was calculated over this range, with the coefficients normalized to have unit sum
over the span. Thus, the application of the technique involved computation equivalent

to sixty time steps, or a six hour adiabatic integration.

The uninitialized fields of surface pressure, temperature, humidity and winds

were first integrated forward for three hours, and running sums of the form

1#0) = Shofo + Xnoy honfu, (4.10)
where f,, = f(nAt), were calculated for each field at each gridpoint and on each model
level. These were stored at the end of the three hour forecast. The original fields were

then used to make a three hour ‘hindcast’, during which running sums of the form

f50) = 3hofo+ 32 1 honfn (4.11)
were accumulated for each field, and stored as before. The two sums were then combined

to form the required summations:

f7(0) = f#(0) + f5(0). (4.12)
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These fields correspond to the application of the digital filter (4.8) to the original data,
and will be referred to as the filtered data.

Fig. 4.3 shows the evolution of N;, the areally averaged surface pressure ten-
dency, for a 24 hour forecast starting from uninitialized data (solid curve) and from the
digitally filtered fields (dashed curve). For comparison, the result of applying a normal
mode initialization is also shown (dotted curve). It is clear that the filtering of the
initial fields results in removal of the spuriously large tendencies which are found in the
uninitialized run. The difference between the two forecasts was remarkably small: the
rms surface pressure difference was only 0.07 hPa. For further details, see Lynch and

Huang (1992).

In Fig. 4.4 the results of applying four different filters to diabatic initialization
are shown. The result of NMI is also depicted. It is seen that the evolution of the
quantity N7 is less noisy for all these filters than in the case of normal mode initialization.
In particular, the results for the optimal filter with three hour span (dotted curve) are
acceptably close to that obtained with the six hour span Lanczos filter, enabling the

integration time to be reduced by 50%.

Diabatic initialization with a nonrecursive filter is implemented by performing
a backward adiabatic integration for half the span, and using the resulting fields as
starting values for a forward diabatic integration for the full span. This is necessary due
to the irreversibility of the diabatic processes. The results of Huang and Lynch (1992)
show that the technique works satisfactorily. However, the forward diabatic integration
will not coincide, at time ¢t = 0, with the original analysis. Thus, we are filtering
values on a trajectory which does not pass through the initial data. Naive attempts
to compensate for this (minor) effect were unsuccessful. What is required is a filtering
method which enables us to deduce initialized starting values from a one-sided diabatic
integration, i.e. from a forward integration starting from the analysis time. This is

possible with a recursive filter.
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5. RECURSIVE (IIR) DIGITAL FILTERS

5.1 Design of Recursive Filters

The design of recursive or IIR filters is more difficult than that of nonrecursive
or FIR filters. Several techniques are described in the DSP references at the end of this
report. Only one such method will be described below: in this approach, a classical
analog lowpass response is specified; a transformation of variables then converts this to

discrete time in such a way that the required filter coefficients may be deduced.

5.1.1 Classical Analog Filter Response

There are numerous classical filter functions which may be used as a basis for digital
filter design. They are determined by the manner in which the ideal lowpass filter
response is approximated in the pass- and stop-bands. If a Taylor series approximation
truncated at N terms is applied at w = 0 and w = oo, the result is a Butterworth filter.
The Chebyshev (type I) filter uses a minimax approximation across the passband and
a Taylor series at w = co. The inverse, or type II, Chebyshev filter uses a Taylor series
expansion at w = 0 and a minimax approximation across the stopband. The elliptic
filter involves a minimax approximation in both the passband and the stopband. The
Bessel filter is derived by continued fraction approximation of an exponential, to achieve

a phase response which is as near to linear as possible.

It is important to choose the type of filter appropriate to the problem. All
the classical types are optimal in one sense or another. The Butterworth filter has an
amplitude response which is as flat as possible at the low-frequency limit w = 0. The
Chebyshev filter gives the smallest maximum error over the passband of any filter having
similar Taylor series accuracy at w = oo. In a complimentary way, the inverse Chebyshev
filter minimizes the maximum deviation from zero in the stopband. The elliptic filter
involves four parameters (passband ripple, transition width, stopband ripple and filter
order) and for given values of any three minimizes the fourth. The Bessel filter has a

group delay that is as near constant as possible for a given filter order.

The transfer function for the Butterworth filter of order N has a particularly
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simple form; for cutoff frequency w, it is
1
|H(iw)|” = T/ (5.1)
As a function of s, the parameter appearing in the Laplace transform, the response of
the prototype filter (with cutoff frequency w. = 1) is such that
B 1
1+ (—s2)NV’

This function has 2NN poles evenly spaced around the unit circle. To ensure stability of

H(s)- H(~s) = |H(s)|” (5.2)

the filter, the NV poles in the left half-plane are selected for H(s); H(—s) will then have
the remaining poles. There is a simple formula for the poles s = ug + tv:

(2k;j—vl)7r] (2k2}1)7r]

with £ = 0,1,2,..., N — 1. The Butterworth filter is called maximally flat, since the

up = —sin [ , Vg = COS [ (5.3)

first 2N — 1 derivatives vanish at w = 0.

The response function of the N-th—order Bessel filter takes the form

By (0)
H(s) = 5.4
)= ot (5.4
where By (s) is a Bessel polynomial, defined by the recursion formula
Bo=1 Bi=s+1 .-+ B,=2n—1)B,_1+s’B,_,.
In particular, the second-order Bessel filter is
H(s) = 5o (55)
52435+ 3’ '

and the normalised prototype version (with cutoff frequency w. =1 and H(0) = 1) is

Y
s2+3vs+xy

where v = (1 + /5)/2. This filter has a phase response which is as near linear as

H(s) = (5.6)

possible, and thus a delay which is maximally flat, for a second-order filter. We also

refer to it as the Flat-Delay filter.

The N-pole filter whose transient solution decays most rapidly corresponds to

a critically damped oscillator; it has all its poles on the negative real axis, at s, = —o:
G

H(s) = —. 5.7

5) = G a7F (57)

The prototype version (w. = 1) corresponds to the value o = /1/(21/N —1). This is
what we propose to call the N-th—order Quick-Start filter.
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5.1.2 Conversion of Analog to Digital Filter

There are several methods of deriving a digital transfer function from one of the classical
analog expressions. They all involve some mapping from the s-plane to the z-plane,
chosen to preserve properties such as optimality of the filter. The matched Z-transform
design procedure is conceptually the simplest (although not the most effective). Poles
and zeros of the transfer function H(s) are mapped directly to poles and zeros of H(z)

by a simple substitution. Consider the inverse transform of a simple pole

E‘l{ ! }:exp(at). (5.8)

s—a
If this is sampled at intervals At and the Z-transform calculated, one has:

1

Z{exp(anAt)} = 1 caht,—1- (5.9)

(the definition and elementary properties of the Z-transform are given in Lynch, 1991a; a
comprehensive treatment may be found in Oppenheim and Schafer, 1989). Now assume
that H(s) is rational and is split into factors (s — «). The relations (5.8) and (5.9)
suggest the substitution (s — a) — (1 — exp(aAt)/z). Allowance for a general cutoff
frequency is made by the change s — s/w.. Combining these, the transformation from

prototype analog to general digital transfer function is achieved by
(s — a) — (1 — etz (5.10)

mapping the analog pole or zero at s = « to the digital pole or zero at z = exp(aw:At).
This produces a transfer function H(z) which is a rational function of 1/z. The filter
coefficients can then be ascertained by comparison of H(z) with the general expression
for the response function of an IIR filter:

> —k

H(z) = e 5.11
&= st (5.11)

The matched Z-transform procedure is very easy to apply, but has the disadvan-
tage that an all-pole analog filter becomes an all-pole digital filter, with no zeros to help
shape the frequency response. A more powerful technique is the bilinear transforma-
tion. The theory behind this procedure can be found in the literature on digital signal

processing; the basic idea was introduced via a simple example in §2.4. The definition
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of the bilinear transform is as follows: the mapping from the s-plane to the z-plane is

o=~ [Z_l} (5.12)

- E z+1
where p. = tan(6./2) with 0, = w.At = 2rAt/7. defining the cutoff frequency. Under

given by

this transformation the imaginary axis s = iw of the s-plane maps into the unit circle

z = exp(if) in the z-plane
_ tan(6/2)
Y= tan(0./2)

in such a way that w = 1, the cutoff frequency of the prototype analog filter, corresponds
to 6. (this is the reason for the factor u. in (5.12)). Conversion from a prototype analog
filter to a digital filter with cutoff frequency 6. is implemented by the substitution of
(5.12) into the transfer function H(s) to obtain a function of z. The coefficients are

deduced by comparing the result with the general expression (5.11).

5.2 Some Examples of Recursive Filter Design

The above theory may be made clearer by consideration of a few concrete exam-
ples. We first compare the two alternative transformations (5.10) and (5.12), applied to
the second order Butterworth filter. From (5.2), this has a squared amplitude response

) ] e s

The first term has two poles in the left half-plane so, to ensure stability of the filter,
H(s) is defined in terms of these:

O e e Rl [l (5:14)

where s; = (=1 +14)/v/2 and sy = (=1 — i)/\/2. If the matched Z-transform approach
is used, H(s) is converted to H(z) by means of (5.10), resulting in

Z2

[z — exp(s10.)][z — exp(s26.)]

H(z) = (5.15)

with 6, = w.At. This has two poles within the unit circle, and a double zero at the
origin. Defining z; = exp(s16.) and zo = exp(s20.), it may be written

22 1

[(z — )z — ZZ)} - [1 — (71 + 22)2~ L — (—2122) 22

H(z) = (5.16)
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This response function corresponds to a filter of the form
yn+1 — aox"+1 + (b1y" + bzyn—l)
where, by comparing (5.16) with (5.11), the coefficients can be read off:

Qg = 1 bl = (21 + 2’2) b2 = —2Z122.

Alternatively, if the bilinear transformation (5.12) is applied to (5.14), the re-

sulting transfer function is

pa(z+1)°
(z = 1)+ V2pc(22 — 1) + p2(z +1)?

H(z) = (5.17)

where pu. = tan(6./2). Since there is a (double) zero at z = —1, the highest frequency
is completely annihilated, which is a desirable feature for a lowpass filter. The transfer

function corresponds to a filter of the form
yn—i—l — (Cl()il?n+1 + alxn + a2xn—1) + (bly" +b2yn—1)

where, once again, the coefficients can be deduced by expressing (5.17) in the same form

as (5.11), yielding

_ p2 by — 2(1 - p2) b2:_1—\/§uc+u§
1+ V2 + p? 1+ V2 + p? 1+ V2 + p2

1
ag = §a1 = a2

The magnitude of the response for the two filters (5.16) and (5.17) is shown in
Fig. 5.1. Both filters have flat response curves for the lowest frequencies, which is a
desirable reflection of the character of the analog filter on which they are based (see Fig.
2.3(top)). The bilinear transform filter (Fig. 5.1(a)) ensures complete removal of the
highest frequency. For nominal cutoff frequency 6, > 7/4 the matched Z-transform filter
(Fig. 5.1(b)) amplifies some frequencies (assuming response normalized by H(0) = 1);
this is generally unacceptable, and is a distortion of the character of the original analog
filter. The filter based on the bilinear transform is free from this defect; for this reason
and also for its alias-free nature, the bilinear transform is the preferred choice. [Note:
Fig. 5.4(c) in Lynch 1991b is erroneous; the correct version appears in Fig. 5.1(a) of

the report you are reading.]
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The amplitude response and group delay for three filters (BW: Butterworth;
FD: Flat Delay; QS: Quick-Start) are shown in Fig. 5.2. These are derived from the
prototypes discussed in §2 by means of the bilinear transformation. The parameter
values are At = 360s and 7. = 12h, which imply . = 7/60. The close similarity
between the analog and digital forms can be seen by comparing Fig 5.2 with Fig. 2.3.

5.3 Relationship between Analog and Digital Filter Parameters

The definition of the bilinear transformation is such as to ensure that the (dig-
ital) cutoff frequency 6. maps to the value w. = 1, the cutoff of the prototype analog

filter. The transformation is

§=—
pe Lz +1 1 — pes

1 {z—l} R [1+uc3} (5.18)

with p. = tan(f./2). For pure imaginary values s = iw it becomes (with z = exp(if))

w= tan/(iﬂ , so that w=1]=[0 =10, (5.19)

We must also investigate the effect of this mapping on the other filter parameters.

The group delay of the digital filter is defined by

d arg H) = —d—wi(argH) = d—‘*’&.

A=l d0 dw do

The delay Ay is simply the value at the LF limit § = 0; using (5.19), the (dimensional)

value of the delay is

At At T,

= ~ —0p=(=—] do- 2
2 % 0. % (2%) % (5.20)

Ao

The start-up time was defined arbitrarily as the time for the transient to decay by a
factor 1/e. It is determined by the position of the pole of greatest modulus of the transfer
function. For the second order filters under consideration, the two poles z, and z, have
equal moduli. The pole z, of the digital filter is related to the pole s, = —og+iwp of the
prototype analog filter by (5.18). We require the value v such that |z,|* = e~*, which
means v = —1/log|z,|. Assuming |pu.sp| < 1 it is easily shown that log |z,| ~ —2u.00

from which it follows that the (dimensional) start-up time is

VAL ~

Q

At At Te  _ (TC>T0

o (5.21)

2uco0 000 - 2mog

where Ty = 1/0y is the start-up for the prototype analog filter.
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5.4 Biguads and Higher-Order Filters

In §2 we studied the properties of an all-pole filter having a transfer function

1

H) = G5

The bilinear transformation converts this to a digital filter with transfer function

(z+1)?

(2 — 2p)(z — Zp)’

H(z)=G

where G is a constant chosen so that H(0) = 1. No increase in complexity of the digital

filter results if we consider the more general analog filter

(5 — 50)(s — 50)

H) = o =)

which becomes, under the bilinear transformation, the biquad

H(Z) — G(z - ZO)(’Z - %0)

(2 = 2p)(2 — %)

This is the most general second-order filter having real coefficients. Components of a
particular period 79 may be eliminated by setting zo = exp(ifly) where 6y = 2w At/ 7.
If 6y is in the stop-band the phase in the pass-band is not changed. Fig. 5.3 shows the
amplitude and phase response for two filters with At = 360 s and cutoff period 7. = 12 h.
The solid curve derives from an all-pole filter, and is the same as the QS filter response
in Fig 5.2. The dashed curve is for a filter chosen to annihilate the component having
a period 7o = 2h (the abscissa is f = /2w, the zero is at fo = At/79 = %) Note that
the phase in the pass-band is the same for both filters; for the filter with a zero, there

is a phase-jump of 7 as the zero is crossed.

Biquads are important as they may be combined in cascade or parallel to form
more complex filters. The poles and zeors of a general filter are combined in complex
conjugate pairs to form biquad components. Data to be processed by the general filter
are then passed through the biquad components serially (if they are cascaded) or simul-
taneously (if they are in parallel). If the order of the filter is odd, a single first-order
component also occurs. Analysis of a filter into biquad components can result in smaller

numerical errors than if the high-order filter is implemented directly.
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6. INITTALIZATION WITH A RECURSIVE FILTER

The initialization technique based on a nonrecursive filter, which has been de-
scribed in §4, has been found to give satisfactory results. However, in the case of diabatic
initialization, the diabatic trajectory starting from the backward adiabatic run does not
pass through the initial data. A number of modifications of the technique were made
to allow for this discrepancy, but they were found to be unsuccessful and even counter-
productive. It would be ideal if balanced initial fields could be deduced from a diabatic
integration forward from the initial data. Nonrecursive filters have linear phase-error
and produce output which is valid at the center of the span; thus, such a filter applied

to a forward integration yields data applicable at half the span.

Recursive filters (IIR filters) have more complex phase-errors. Their use in
initialization depends upon a simple but crucial idea: if a filter with a group delay 6 is
applied for an integration over a time-span Ty = 6, the output at t = Ty may be assumed
to apply at the initial time t = 0. This is what is required for initialization, and we will

present evidence in the following section in support of this idea.

6.1 The Validity of the Delay Idea

A simple example of the effect of filter delay can be seen in Fig. 6.1. The input
is a single component oscillation with a period of 24 hours. The filter used is a second-
order Butterworth filter, digitized with the bilinear transformation. In the top panel
the cutoff of the filter is 7. = 6 h; in the bottom panel it is 7. = 12h. In each case the
oscillation is passed by the filter without undue attenuation. However, it is subject to
a phase change which varies with the cutoff. The delay of the filter with 7. = 6h is
1.35 hours; the delay of that with 7. = 12h is 2.7 hours (these values follow from (2.15)
and (5.20)). It is clear from Fig. 6.1 that the output is delayed relative to the input,
and that this delay is greater for the filter with the longer cutoff period. Measurement
of the actual delay shows it to be in good agreement with the theoretical value. Note
in particular that, for a time equal to the delay, the output is effectively frozen at its

initial value. The solution more-or-less marks time for a period t =~ .

To confirm the idea of a delayed solution in a more realistic context, a barotropic
model was used to integrate forward from an initial state for various spans, and the

difference between the (QS) filter output and the initial data was calculated. The
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initial field was the output of a 24 hour forecast, which had reached a state of balance
and was essentially free from high frequency (HF) components. Thus, since there were
no HF components to be filtered out, the only effect of the filter should be a phase shift
of the LF input. For comparison, the forecast change for each span was also computed.
Let X (n) be the model state at time nAt, and Y (n) the filter output at that time. The
quantity

Arorecast = [X(n) — X(0)]

is the forecast change over a span Ty, = nAt. This is plotted as a function of span in
Fig. 6.2(a) and (b) (solid curve, the same in each graph). This forecast change increases

approximately in direct proportion to the time. The quantity
Arirer = [Y(n) — X(0)]

is also plotted, for two values of the filter cutoff. For Fig. 6.2(a) the cutoff is six hours,
for Fig. 6.2(b) it is twelve. It is clear that for short spans the output of the filter at time
T, differs little from the initial state. With a 6 hour cutoff (Fig. 6.2, top panel) the rms
difference between the filter output and the initial data remains below 2 m for over 1.5
hours. The theoretical delay for this filter is 1.23 h, indicated by the vertical line (this
follows from (2.15) and (5.20)). When the filter cutoff is 12 hours (bottom panel) the
rms difference does not reach the 2m level until about 2.5 hours, which is about equal
to the theoretical delay, 2.46 h (indicated by the vertical line in Fig. 6.2(b)). This rms
difference is much smaller that the rms forecast change occurring during this interval
(about 7.25 m). Clearly, provided the span is short enough, the filtered output can

reasonably be assumed to be valid at the initial time.

6.2 Iteration of the Filter

In order that the output should be applicable at the initial time, the span over
which the filter is applied cannot exceed the delay. If the transient response has been
adequately damped within this span, the requisite filtering is achieved. It is evident
that the Quick-Start filter, whose transient response is as short as possible, should be
attractive for this application. Even so, it is found that insufficient damping is achieved
within a span equal to the delay. One solution is to iterate the filtering, using the final
output values from one iteration as starting values for the next, but with the same input

each time. Generally, two or three iterations are sufficient.
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Fig. 6.3 shows an input signal comprising a HF oscillation (period 7, = 1h) and
the output after each iteration of filtering over a span Ty = NAt¢ = 2.5h (cutoff period
Te = 12h, QS filter (top panel) and BW filter (bottom). The input for each iteration is

(27mAt>
X, = COS )

1
The filter should virtually eliminate this signal, since it period is much shorter than the
cutoff period. However, there is a transient response which takes some time to die out.
Since we want output valid at the initial time, the filter span is bounded above by the
delay. The response after one iteration of the QS filter (dashed line, top panel) is still
about 40% of its initial value; thus, it is necessary to iterate the filtering process. The
initial values for the first iteration are yy = y; = xg; for the p-th iteration, the final

value y% " of the (p — 1)-th iteration is used:

The process is seen to converge: the initial values for the filter improve with each
iteration, and the amplitude of the transient response decreases relentlessly. After three
iterations it has fallen to below 10% of its initial amplitude. The same behaviour is
found for the Butterworth filter (bottom panel, Fig. 6.3) but the rate of decay of the

transient is slower, in accordance with theory.

It is possible to use a first-order filter (with an appropriate cutoff frequency)
to deduce y; from yy and the input values z,,. Then only the single initial value yq is
required. In practice it was found that such a procedure was no better, and in some
cases worse than the simple ruse of putting y; = yo. After all, it is the slowly varying
solution which interests us, so the first two output values should be close in magnitude.
The real problem is the choice of a value 3¢ which will induce the smallest possible

transient response. This is the purpose of the iterative procedure.

6.3 Application of an IIR Filter to Initialization

The recursive QS filter was used to initialize data for a barotropic forecast model.
The model uses a semi-implicit, semi-Lagrangian differencing scheme. The initial data
was the 500 hPa analysis for 00Z, 22 Nov., 1982. The uninitialized geopotential analysis
and the 24 hour reference forecast from it are shown in Fig. 6.4. For the experiments

reported below, the timestep was set at At = 360s, although the numerical scheme



Digital Filters 43

used permits a much larger value. The results of two techniques will be described. In
the first the filter is applied repeatedly, as described in §6.2. In the second the filter is

applied once only, but to the analysis increment rather than to the whole field.

6.3.1 Initialization by Iterated Filtering

A short forecast was made and used as input to the filter. The time-series of values of
each dependent variable, at each gridpoint and each model level, were filtered indepen-
dently; the spatial structures of the fields and the balance relationships between them
are implicitly taken into account by the filtering process. The cutoff period of the QS
filter was set at 7. = 12 h, and the filter was applied over a span Ty = 2h. The delay of
this filter is Ay = 2.46h (longer than the span). The output of the filter was assumed

to be valid at the initial time, and was used as initial data for a parallel forecast.

It was found that a single application of the filter reduced the noise significantly
but insufficiently, so repeated iterations were made as described in §6.2. The noise
levels in the forecasts made from data after one, two and three iterations of the filter
can be seen in Fig. 6.5. The top panel shows how the geopotential at a central point
evolves during the first six forecast hours. The noise level decreases with each additional
iteration. The bottom panel in Fig. 6.5 shows the mean absolute divergence, a global
measure of high frequency activity. Once again, the level of noise is reduced by repeated

filtering. With three iterations the level is more-or-less constant for the six hours.

Table 6.1 lists the rms and maximum changes in height and winds after each
iteration (all figures relative to the reference analysis). In Table 6.2 the corresponding
figures after 24 hours are shown. The values are, in all cases, much smaller than those
in Table 6.1, confirming the convergence between the forecasts. Thus we can see that
the filtering succeeds in eliminating the noise without having a major impact on the
forecast. However, the rms difference of 2.22 m between the reference forecast and that
resulting from the analysis after three iterations of the filter, while not inordinately
large, is indicative of some systematic change. To study this, the differences between
the 24 hour forecast from filtered data and the twenty-five hour (yes, 25 h!) reference
forecast were computed, and are tabulated in Table 6.3. Our suspicions are confirmed

by comparing Tables 6.2 and 6.3: three iterations of the filter yield a forecast which
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differs by only 0.75 m (rms) from the 25 hour reference. The obvious deduction from
this is that the output of the thrice-iterated filter is valid not at the analysis time but
one hour later. The delay effect discussed in §6.1 is modified by iteration of the filter;

the output after three iterations can no longer be assumed to refer to the initial time.

We conclude that the iterated filter is successful in eliminating HF noise, but
produces output valid somewhat later than the data time. This is problematic if we
wish to have balanced fields valid at the initial time. It is not an obstacle if our aim is
to produce a smooth integration: the filter is applied and followed by a slightly shorter

forecast (23 hours in the above example).
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6.3.2 Initialization by Incremental Filtering

In all cases examined it has been found that to adequately eliminate the noise with a
single application of the filter the span must exceed the delay. But the consequence of
this is that the filter output refers to a time somewhat later than the analysis time. A
means of circumventing this problem will now be described: instead of filtering the full
fields, only the analysis increments need be filtered, since the preliminary fields (first
guess fields) may be assumed to be in balance. This idea springs from the incremental

nonlinear normal mode initialization technique developed by Ballish, et al., 1992.

The Quick-Start filter was applied over a short range forecast as before, with

the parameter values chosen as follows:
At = 360s T.=6h T, =2h.

Note that the theoretical delay for these parameters is Ay = 1.23 h, which is less than

the span. The filter coefficients take the following values:
ap = .00567 a; =.01134 ay = .00567 by =1.69881 by = —0.72149

We first consider the effect of filtering the full fields. The evolution of the geopotential
height at a central point, for the forecasts from the original analysis X 4 (solid curve)
and from the filtered data X% (dashed curve) are shown in Fig. 6.6(a) (the dotted curve
will be discussed presently). The HF oscillations are greatly reduced and, in particular,
the initial tendency for the filtered forecast is realistic. Corresponding graphs of mean
absolute divergence ||d]|; for the two forecasts are shown in Fig. 6.6(b). Clearly, the
filtering of the initial data removes the bulk of the noise from the forecast. However,
the rms difference of height relative to the reference 24-hour forecast was o0z = 3.18 m;
rms and maximum differences of height and wind components for full-field initialization

are shown in Table 6.4.
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The difference in height between the 1-day forecasts from X 4 and X7 is shown
in Fig. 6.7(a); the maximum of 14 m is larger than would be expected from simple
elimination of HF components and suggests that there is a time-shift resulting from the
filtering. This is also to be expected as the span exceeds the delay (Ts = 2h, Ay =
1.23h). To reduce the phase-error due to filtering, we may apply the filter only to the
analysis increment (cf. Ballish, et al., 1992). Let Xp be the first-guess, typically a
6-hour forecast; then the analysis is X4 = Xp + [X4 — Xp|. Let X7 be the result of

filtering the (full) analysis field; then the incremental filtering is defined as
X3 =Xp+ [ X3 — X5l (6.1)

This requires two short integrations, one from the analysis and one from the first-guess.
The evolution of the geopotential height at a central point for the forecast from the
incrementally filtered data X3* is shown in Fig. 6.6(a) (dotted curve). It is close to
that of the fully filtered case (dashed curve). The noise profile ||d||; for the forecast
from X7%*, shown as a dotted line in Fig. 6.6(b), is almost identical to the result for the
forecast from X% (dashed line, Fig. 6.6(b)). The rms difference of height relative to the
reference 24-hour forecast is now reduced to oz = 1.75 m; rms and maximum differences
of height and wind components for incremental initialization, shown in Table 6.4, may

be seen to be conspicuously smaller than in the case of full-field filtering.

The difference in height between the forecasts from X4 and X73%* is shown in
Fig. 6.7(b); the maximum is now only 6 m. Thus, filtering of the analysis increment
removes the noise without significant phase-error. Results with filter cutoff 7. = 3h
and span Ty = 1.5h (not shown) were comparable to those reported here. The practical
implementation of the incremental initialization technique requires two short-span in-
tegrations; however, the prelimianry field Xz is normally available prior to the analysis
time, so that X7 may be calculated in advance, and only one short forecast, to compute

X7, need be performed in real time.
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7. SUMMARY

The elementary theory of digital filters has been reviewed. The two principal
types of filter, nonrecursive and recursive, have been considered, and an application
of each type to the problem of initialization has been discussed. There are a number
of other potential uses for such filters: they may be applied periodically during an
integration to suppress noise; they may be used to formulate balance constraints for
four-dimensional data assimilation; they may be incorporated into the time-stepping in

the manner in which the classical Robert-Asselin filter is used with the leapfrog scheme.

The nonrecursive (FIR) filters have no counterpart in the continuous domain.
The most elementary design technique is based on Fourier theory; more sophisticated
optimal filters are constructed by way of the Chebyshev Alternation Theorem. FIR
filters have been successfully used for initialization (Lynch and Huang, 1992, Huang
and Lynch, 1992). For this application a backward integration of the model is required
in order to obtain output valid at the initial time. The effectiveness of a FIR filter is

strongly dependent upon its span: the longer the span, the better the filtering.

The recursive (IIR) filters which we have considered are derived from classical
analog filters by means of a bilinear transformation from the continuous (s) to the
discrete (z) domain. Direct modelling in the digital domain is also possible. The
effectiveness of an IIR filter depends on its frequency response, but also on its transient
decay rate, or start-up time. It was argued that output from an IIR filter applied to a
short forward integration may be valid at the initial time if the delay exceeds the span.
However, to achieve adequate damping it was necessary to employ the filter iteratively,
and the repeated application counteracted the delay to some extent. A way around
this was found: if the filter is applied only to the analysis increment, it is successful in

eliminating HF noise without causing a significant phase-error in the initialized analysis.

Recursive filters may be useful in climate modelling. Although such a filter can
be employed continuously, it should be sufficient to apply it periodically during the
integration. Some extra storage is required, but this should not be prohibitive. A filter
of the Flat-Delay type may be more suitable for this application than the Quick-Start
filter used for initialization. The filter may be applied to the full fields, and the time-lag
allowed for by integrating past the fiducial time by an amount equal to the delay.
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Fig. 2.1. Cassinian ovals: these curves are the loci of points for which the
product of the distances r; and 75 from two fixed points has a constant value a?. Here
the fixed points are (1,0) and (—1,0). The graphs shown are for a®> = 1,1/2,2 and
3. The curves were introduced in 1680 by Giovanni Domenico Cassini (1625-1712) in
connection with a study of the relative motions of the earth and sun. The case a? = 1 is
called the lemniscate (L. lemniscus, ribbon), the figure-of-eight curve first investigated
by Jacques Bernoulli in 1694, which played a major role in eighteenth century analysis.
For a? < 1 the curves have two separate components. The value a? = /2 occurs in
connection with prototype filters. This curve is also characterised as the locus of points
for which the product of the distances 7; and ro from s = ¢ and s = —i is equal to 272

where r is the distance from the origin. Look out for these Cassinians next time you

slice a doughnut.

Fig. 2.2. This peanut-shaped curve is the locus in the s-plane of the poles
sp = —og £ wy of prototype second-order filters (with cutoff frequency w, = 1). The
three special cases considered in the text are indicated (BW, FD, QS). The curve is
described by the equation (02 + w?)? = 2(62 — w?) + 1. The unit circle is shown for

reference.

Fig. 2.3. Amplitude (top) and Group Delay (bottom) of the three special
prototype filters considered in the text (BW: Butterworth, F'D: Flat-Delay, QS: Quick-
Start).

Fig. 4.1. Transfer functions for the filter defined by the coefficients h, =
sin(nw.At)/nm, where the cutoff period 7. = 27 /w, is 6 h, with and without modification

by a Lanczos window.

Fig. 4.2. Transfer functions for the filter defined as follows: (solid) h, =
sin(nw:At)/nm with Lanczos window, cutoff 7. = 27/w. of 6 h and span Ts = 6h;
(dashed) same, with span T = 3h; (dotted) optimal filter with span Ty = 3h, (7, 75) =
(12h, 3 h); (dot-dashed) same, with span Ty = 2h, (7, 75) = (15h, 3h).

Fig. 4.3. Mean absolute surface pressure tendency N; (units hPa/3h) for a 24
h forecast starting from uninitialized data (solid curve), from digitally filtered fields

(dashed curve) and from data after normal mode initialization (dotted curve).
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Fig. 4.4. Time evolution of the mean absolute surface pressure tendency N; for
analyses diabatically initialized by four different digital filters (see text for details) and

for adiabatic normal mode initialization

Fig. 5.1. Frequency response functions (magnitude of transfer functions) for two
second-order recursive filters derived from the Butterworth analog filter. (A) Digitiza-

tion using the bi-linear transformation; (B) Digitization using the matched Z-transform.

Fig. 5.2. Amplitude (top) and Group Delay (bottom) of three digital filters
derived using the bilinear transformation (BW: Butterworth, FD: Flat-Delay, QS:
Quick-Start). Timestep At = 360s, cutoff period 7. = 12h, cutoff frequency 6. =
/60 = 0.05236, f. = 1/120 = 0.008333.

Fig. 5.3. Amplitude (top) and phase (bottom) of response of two digital QS
filters derived using the bilinear transformation with timestep At = 360s and cutoff
period 7, = 12h. Solid line: zero at 79 = 2At or 6y = m; dashed line: zero at 79 = 2h =

20At or 6y = 7/10 or fy = 1/20.

Fig. 6.1. Input X and output Y for a second-order Butterworth filter. Input is
an oscillation with period 24 hours. Output has the same period and (approximately)
the same amplitude, but is phase-shifted. Top panel: 7. = 6h, dp = 1.35h; bottom
panel: 7. =12h, g = 2.70 h.

Fig. 6.2. Solid Line: Root-mean-square difference (metres) between forecasts of
various lengths and the initial state. Dashed Line: rms difference between filter output
for various spans and the initial state. Top panel for filter with cutoff period 7. = 6h

and delay § = 1.228 h; bottom panel for 7. = 12h and § = 2.458 h.

Fig. 6.3. Solid Line: Input signal z,, = cos(2rnAt/m). Output y, for each
of four iterations of filter. Top panel: Quick-Start Filter; bottom panel: Butterworth
Filter. For further details, see text.

Fig. 6.4. (a) Uninitialized 500 hPa geopotential analysis for 00Z, 22-11-1982.

(b) 24 hour reference forecast of geopotential.

Fig. 6.5. (Top panel) Evolution of geopotential at a central point during the first

six forecast hours. Solid: reference forecast; dashed: 1 iteration; dotted: 2 iterations;
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dot-dashed: 3 iterations of filter. (Bottom panel) Similar curves for mean absolute

divergence.

Fig. 6.6. (a) Evolution of the geopotential height at a central point for the fore-
casts from the original analysis X 4 (solid curve), from the fully filtered data X% (dashed
curve) and from the incrementally filtered data X%* (dotted curve). (b) Corresponding

graphs of mean absolute divergence ||d||; for the three forecasts.

Fig. 6.7. (a) Difference in height between the 1-day forecasts from X4 and
X% (forecast impact of full-field initialization). (b) Difference in height between the

forecasts from X4 and X3* (forecast impact of incremental initialization).

Table 6.1 The rms and maximum changes in height and winds after each iteration

(all figures relative to the reference analysis).

Table 6.2 The rms and maximum differences in height and winds after each

iteration (all figures relative to the reference analysis) for the 24 hour forecasts.

Table 6.3 The rms and maximum differences in height and winds after each
iteration (all figures relative to the reference analysis) between the 24 hour filtered

forecasts and the 25 hour reference.
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