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ABSTRACT

A filtering integration scheme based on a modification of the inversion integral for the Laplace transform
(LT) is developed and implemented in a barotropic limited-area model. The LT scheme is compared to a
conventional scheme and shown to simulate faithfully the low-frequency evolution of the atmosphere while
eliminating high-frequency oscillations. The scheme is combined with a Lagrangian treatment of advection

giving stable integrations for long time steps.

Simple perturbation experiments show that the LT model can absorb an imposed disturbance without data
shock. It is superior in this respect to more conventional schemes and may prove useful for asynoptic data

assimilation.

An alternative formulation of the filtering scheme using the Z transform is described. This technique is applied
to a system of equations that have been discretized with respect to time. The Z-transform scheme is shown to
behave in a manner similar to the Laplace-transform scheme.

1. Introduction

The primitive equations, which are used for nu-
merical weather prediction, have solutions covering a
broad frequency spectrum. The low-frequency rota-
tional components are of major meteorological signif-
icance, while the high-frequency gravity wave compo-
nents are normally of minor importance and are gen-
erally regarded as noise. The atmosphere maintains
itself in a state of near balance such that high-frequency
motions have small amplitudes. It is important to mir-
ror this balance in numerical simulations if spurious
or anomalous effects are to be avoided.

The integration techniques developed in this paper
are designed to separate the low- and high-frequency
components of the flow to simulate the former accu-
rately and to eliminate the latter. The methods, which
are based on the Laplace and Z transforms, derive from
the idea of nonlinear normal mode initialization
(NNMI). In NNMI the amplitudes of the gravity wave
components of the initial data are modified in such a
way that their initial tendencies vanish. This is achieved
by an iterative process (for a review of NNMI and fur-
ther references see Daley 1981). Provided the integra-
tion proceeds undisturbed, the amplitudes of these
components remain small, at least in the short and
medium range. If the model state is perturbed during
the simulation, anomalously large gravity-wave oscil-
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lations will be generated unless a balance is imposed
by reinitialization.

The Laplace transform filtering integration tech-
nique automatically achieves such a balance. Each step
of the method corresponds to a forward model time
step and simultaneously a single iteration of NNMI.
The method ensures a noise-free simulation by con-
tinuously maintaining the model in a quasi-balanced
state. If this state is disturbed during the integration,
for example by data insertion, balance is quickly re-
stored by the scheme. Thus, a model that uses the
scheme is shockproof in the sense that it can respond
to changes in its state during the course of the integra-
tion without suffering data shock. The scheme can thus
be used for insertion of asynoptic observations and is
of interest in the context of continuous data assimi-
lation.

The use of the Laplace transform (LT) for filtering
is described in section 2, and a filtering integration
scheme based on it is developed. In section 3 this
scheme is applied to the shallow-water equations. In
section 4 a forecast using the LT technique is compared
to a forecast with a more conventional scheme, and it
is shown that the technique is capable of accurately
simulating an atmospheric flow. In section 5 a number
of perturbation experiments are described. The LT
model is shown to be able to absorb and adjust to per-
turbations without problems. By comparison, a model
using a conventional integration scheme suffers data
shock and responds noisily to perturbations. These re-
sults demonstrate the potential of the LT filtering
scheme for continuous data assimilation. An alterna-
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tive formulation of the filtering integration scheme
based on the Z transform (ZT) is described in section
6, and compared to the LT scheme.

The filtering capabilities of the Laplace transform
were first employed by Lynch (1985a) in an initializa-
tion scheme, and the method was applied to initialize
data for a barotropic model (Lynch 1985b). Lynch
later applied it to a limited area version of the ECMWF
baroclinic gridpoint model with results (unpublished)
very similar to an NNMI method.

An integration technique using the LT was described
in Van Isacker and Struylaert (1985). They applied it
to a one-dimensional model and to a spectral model
with low-order (T19) truncation. Further discussion
of the results for the baroclinic case is found in Van
Isacker and Struylaert (1986). The authors report there
that the method allows a long time step without loss
of accuracy. An application of a similar method to a
simple one-dimensional model is described in Lynch
(1986) and its relevance for data assimilation is dis-
cussed.

Daley (1980) described an integration method in
which the low-frequency rotational Hough modes are
forecast while the high-frequency gravity modes are
diagnosed at each time step. The LT method is similar
to this scheme, but the distinction between low and
high frequencies is made implicitly. A comparison be-
tween the Daley scheme and the L'T method is being
made and the results will be published elsewhere.

2. Theoretical basis of the Laplace transform scheme

The use of the LT for filtering is reviewed and the
method is used to derive a scheme for the solution of
a general nonlinear equation. The description below
is brief; further details may be found in Lynch (1985a,b;
1986). The general theory of LT is presented in
Doetsch (1971).

a. Filtering by modification of the inverse transform

Consider a function f(¢) with components of various
frequencies

K
f(1) = 2 ar exp(iwd). (2.1)
k=1

The LT of fis a meromorphic function of s:
K
) =8{f}= 2 a/(s — iwx) (2.2)
k=1

with poles on the imaginary axis of the s plane. The
original function is recovered by means of the inverse
transform

)y =f) Ez—ir—l.fcefﬂs)ds (2.3)
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where the contour C is a line parallel to the imaginary
axis and to the right of all singularities of f (Doetsch
1971, chapter 6).

The components of f(¢) with frequencies below some
cutoff value ¥ may be isolated by modifying the in-
version integral: the contour C is replaced by a circle
C* of radius vy (see Fig. 1)

. 1 "
M =2*{f} =5 Jee ef(s)ds. (2.4)

The function f* is just the sum of the components
resulting from those poles of f which fall within C*,
namely the components with frequencies less than +.
Thus, the operator 8*R acts as an ideal low-pass filter
with cutoff frequency +.

In practice the integral (2.4) must be evaluated nu-
merically. The circle C* is approximated by a circum-
scribed N-gon C¥ (Fig. 2), and the integrand is cal-
culated at the midpoints s, of the edges of C¥. The
discrete modified inverse LT is then defined as

N
- /%) > f(s.)e As,.
27i

n=1

W) (2.5)
[The correction factor = tan(w/N)(x/N)~' ensures
that the inversion is exact for f(s) = ¢/ s, the transform

of a constant ¢.] Using the fact that As,/s, = 27ix/N
this transform can be rewritten as

S -plane xi.VG 2 +
*
4
Y
- o
’“I.VR
Ve l<VY <]V, .
l Rl Y l Gl . )f_LVG

FI1G. 1. Contours in the s plane used for the regular and modified
inverse Laplace transform. The value of v is chosen to separate the
rotational frequencies (vx) and the gravity-wave frequencies (v¢).
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S -plane

FIG. 2. Contour C* used to define the modified operator 2*, and
circumscribed po]z'gon CH used in approximating the contour integral
by a finite sum 2.

N
LAy =+ 2 S(sn)e*s,. (2.6)

In practice it has been found that N = 8, as in Fig. 2,
leads to completely satisfactory results. Normally, this
would require the evaluation of f(s) at eight points.
However, when the original function f(¢) is real it is
easy to show that

L f e*f(s)ds =~ f Im[e*f(s)ds] (2.7)
2wi Je+ T Jc+

where Im{ ] is the imaginary part and C* is the upper
half of C*. This halves the necessary work, as only four
evaluations of f are required to calculate the integral
on the right-hand side.

The numerical operator Sy is no longer an ideal
low-pass filter. Its effect on components of varying fre-
quencies has been investigated by Van Isacker and
Struylaert (1985). They proposed that the exponential
factor in (2.6) be replaced by its Taylor series truncated
to N terms:

N—1 k
(sn2)
et = oSt = -—

The operator 2% thus modified will be denoted by
{%. This approximation allowed Van Isacker and
Struylaert to find an expression for the response, and
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they showed that the effect of the modified operator
was as follows:

ng{eiwt} — MN(w)eNi“”
where the “response function” is given by
My(w) = [1 + (iw/v)"] 7.

For N a multiple of 4 this is the square of the response
of a Butterworth filter (Hamming 1989), and approx-
imates a step function with a corner point at w = v. It
is real in this case implying that no phase error is in-
curred.

(2.8)

b. Application to the solution of a nonlinear system

Consider a system whose state at time ¢ is specified
by the vector X (¢), which is governed by an equation
of the form

dX

7 + LX + N(X) =
where L is a linear operator and N a nonlinear vector
function. If the system is in the state X° at time 7 = 0
then the LT of this equation is

MX + N = X°

(2.9)

(2.10)

where M(s) = (sI + L) with I the identity matrix.

If one considers the evolution of the system over a
short time interval (0, At), and assumes that the non-
linear term does not vary, then (2.10) may be solved
as follows

X =M"[X°-Ns] (2.11)

where N° = N(X?). Then, to find the solution at time
t = At the inverse LT is applied

X (A1) = £ {M[X® = N°/5]} | ma-

If we are interested only in the slowly varying com-
ponents of the flow we may replace ' by the modified
inverse 2* which acts to filter out the high-frequency
components:

X! = X*(Ar)

= Q¥ (M [X° = N°/s1}|imar.  (2.12)

Having the solution at { = A7 one may proceed stepwise
to extend the forecast: the solution is advanced from
nAtto (n+ 1)At by

X" =@ (M7 X" = N"/5]} iear. (2:13)

Alternatively, a leapfrog time-stepping scheme may be
used:

X7t = 2*{M—1[X"_l - N”/S]}|z=2At-

Here the origin of time for the transform is (n — 1) At,
so that X "' is the “initial condition,” and the nonlin-
ear terms are evaluated at the center of the interval [(n

(2.14)
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— 1)At, (n + 1)Atf]. Clearly, numerous other for-
mulations of the time stepping algorithm are possible.

3. Application to a shallow-water model

The LT integration method will now be applied in
the context of a model based on the shallow-water
equations. The advection terms will be discretized in
a manner based on the semi-Lagrangian approach,
which yields attractive stability characteristics and en-
ables a large time step to be used.

The shallow-water equations may be written as fol-
lows

3—?+V-Vu—ﬁ)v+q>x+Nu=O (3.1)
v

a—t+V~Vv+ﬁ,u+(I>y+N,,=0 (3.2)
0d _
-5+V-V<I>+<I>V-V+Nq,=0 (3.3)

where the notation is conventional. The Coriolis pa-
rameter has been given a mean value f;, and variations
from this are included in the nonlinear terms:

N, = —[(f—f) + (utang)/a]v
N, = +[(f— fo) + (utang)/alu
Ny = (& — d)V-V.

These equations will be used in the following to make
a forecast over a limited domain.

When the semi-Lagrangian scheme is used for in-
tegration of the advection processes, the total time de-
rivative is approximated by

du  (ug"™"' —u})

da = At
which involves the change in value of u along a trajec-
tory. The value at the arrival grid point G at time (»
+ 1)Atis ug"*!, and u% is the (interpolated ) value at

the departure point on the trajectory at time » At. This
may also be written as

n+l __ n n__ ,.n
ﬁz(“"’ Yo )+(“G ”*). (3.4)
dt At At

Clearly, the first term on the right-hand side approxi-
mates the local (Eulerian ) time derivative at grid point
G; thus the second term is an approximation to the
advection, for example

Ug" — Uy
At

Use of this form of discretizing the advection ensures
that the numerical domain of dependence surrounds
the trajectory. It is a necessary condition for stability
of a numerical scheme that the physical domain of

(V-Vu)" =~ ( ) =A4,". (3.5)
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dependence should be encompassed by the numerical
domain of dependence. It will be seen from the inte-
gration results below that the use of (3.5) leads to a
stable scheme, unrestricted by any CFL criterion.

The LT will be applied to the time-continuous form
of the equations, thatisto (3.1), (3.2), (3.3). However,
in order to avail of the attractive stability properties of
the semi-Lagrangian approach, the advection terms will
first be discretized using (3.5). The transforms of the
equations may then be written as follows

si—ff+ & =u"—(4,"+N"/s=R, (3.6)
s0+ foii + &, = v" — (4," + N,")/s =R, (3.7)
s&+ ®(V-V)=®"— (4" + Ns")/s=Rs. (3.8)

The origin of time for the transformation is ¢t = nAt¢,
and the advection and other nonlinear terms have been
approximated by their values at this time. For a given
value of s the right-hand sides may be calculated, and
the system solved for (i, ¥, ®) as functions of s. Equa-
tions (3.6) and (3.7) may be solved for # and ¢
in turn

(s* + fo2) it = —(sBx + foB)) + [RS + (5//6)Ro"]
(3.9)

(52 +ﬁ)2)ﬁ = _(S(i)y _f(.)&’x) +[R)" — (S/fb)Run]-
(3.10)

If these relations are used to eliminate the divergence
term in (3.8), a Helmholtz equation is immediately
obtained for &:

- (5o
Liid

where the right-hand forcing function is given by

(3.11)

1 2 2
Fo= [; V-(R) - (i—:@i)(@" - Nq,/s)]

(3.12)

with R, representing the vector (R,, R,).

Equation (3.11) is particularly simple in having con-
stant coefficients. This is a result of separating the Co-
riolis parameter into mean and variable parts and in-
cluding the latter with the nonlinear terms. This
Helmholtz equation may be solved using a fast elliptic
solver. The subroutine HWSSSP, developed at NCAR
(Swarztrauber and Sweet 1975) was modified to cover
the case of complex variables.

If the quantity Q = (52 + f,°)/ ® is equal to an eigen-
value — )\, of the Laplacian operator for the domain and
boundary conditions used, the solution of (3.11) is not
unique. This would occur if the cutoff frequency had
the value vy = (®\,2 + f%)"/? for some n, and such
values should be avoided in choosing . In practice, no
difficulty has been experienced in solving (3.11).

A model based on the previously transformed equa-
tions has been written and used to prepare a number
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of forecasts. The advection terms, such as (3.5) are
calculated using bicubic interpolation with the up-
stream point estimated using the method of McDonald
and Bates (1987). If (u, v, ®) are known at time n At,
the forcing term (3.12) can be calculated and the Eq.
(3.11) solved for ®. Then # and ¢ are obtained from
(3.9) and (3.10). This step is repeated four times, with
values of s at the center of each upper edge of the oc-
togon in Fig. 2. The inversion operator may now be
applied using (2.6) and (2.7) with ¢ = At, to obtain
(u, v, ®) at time (n + 1) Atz. Due to the filtering prop-
erties of the operator, only the low-frequency com-
ponents will be contained in the solution. The radius
v of the contour C* is chosen to correspond to a cutoff
period of 6 h: v = 27/6.602 = 0.00029 s~'. Forecast
results using this model are described in the following
section.

4. Comparison with a conventional scheme

To investigate the accuracy of the LT scheme, a series
of parallel runs using this method and a more conven-
tional scheme were completed. The two models are
denoted SALT (stable advection Laplace transform)
and SLSI (semi-Lagrangian semi-implicit). The former
uses the time integration scheme described in section
3. The latter is a one-level version of the model de-
scribed by McDonald (1986), which is used in oper-
ational practice at the Irish Meteorological Service. The
integration domain is identical for the two models; the
area, which can be seen by reference to Fig. 3, is covered
by a2° X 2° C grid of 40 X 26 points. The geopotential
and normal wind are held constant along the bound-
aries.
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The initial data is the operational 500-hPa analysis
valid at 0000 UTC 22 November 1982, and initialized
using the LT technique (Lynch 1985b). This is shown
in Fig. 3. In the initialization the nonlinear terms were
calculated using the model SALT with a single time
step for each iteration. The time step chosen was At
= 600 s. However, when a time step of 1200 s was used
the results were virtually identical: the initialized height
fields in the two cases differed by less than a meter
{with rms difference 0.14 m).

The 24-h forecast made using SLSI with a time step
of 600 s is shown in Fig. 4. This is used as the reference
forecast. The corresponding forecast made using the
LT model SALT with the same time step is very similar.
The difference between the two forecasts is shown in
Fig. 5. The maximum difference in the height field is
21 m, and the rms difference is 4.09 m. The maximum
and rms differences in the wind fields are 2.3 m s™!
and 0.64 m s™!, respectively. The small values of these
differences between the two forecasts indicate that the
Laplace transform model is faithfully simulating the
flow. The differences are, for practical purposes, neg-
ligible.

The great advantage of using a semi-Lagrangian for-
mulation of advection is that relatively large time steps
may be used without significant loss of accuracy and
without the onset of instability. A forecast using SLSI
with a 1-h time step was made and compared to that
with a 600-s time step. The rms differences in height
and wind were 2.66 m and 0.45 m s™'. These time
truncation errors are very small, and show that an ac-
curate forecast is obtained using the reference model
with a 1-h time step.

22 Nov 1982 07

&

HH+00

FIG. 3. Initial geopotential height field: 500-hPa analysis
valid at 0000 UTC 22 November 1982.
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22 Nov 1982 ,Og

FIG. 4. The 24-h forecast of geopotential height made with the reference model SLSI.

The LT model SALT was also run with Az = 1 h,
and compared to the SALT forecast with At = 600 s.
The rms differences in height and wind were 6.82 m
and 1.37 m s~!. These time truncation errors are sig-
nificantly larger than those for the reference model
SLSI. The errors in the SALT forecast with Af = 1 h,
as measured against the reference SLSI with Az = 600
s, were 10.5 m rms for height and 1.85 m s™! for wind.
Thus, although the integration with SALT remains

stable for large time steps, there is an evident loss of
accuracy as the time step is increased. The error in
SLSI is quadratic in Az; for SALT the error grows lin-
early with the time step. Although the SALT and SLSI
forecasts with A7 = 1 h did not differ greatly (the max-
imum height difference was 58 m and the two maps
of geopotential looked very similar), the differences
were larger than would be desirable in an operational
context. Thus, despite the attractive stability properties

22 Nov 1982 07

X,
Sdedes

FiG. 5. Height difference between the 24-h forecasts made
with the two models SALT and SLSI.
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22 Nov 1982 07

F1G. 6. Perturbation height field added to the height forecasts 1 h after the initial time.

of the LT scheme for large At, it is unlikely to be of
sufficient accuracy for large time steps, as it is currently
formulated. Thus far there has been no success in de-
vising an advection scheme combined with the LT
technique, which has a quadratic time truncation error.

5. Perturbation experiments

A number of approaches have been made to the
problem of assimilation of asynoptic data. The tech-
nique most in vogue at present is four-dimensional
variational assimilation using the adjoint model equa-
tions. This appears very promising for the future, but
is computationally very expensive. In the following,
the simple ploy of inserting data at its time of validity
is considered, and the response of a model to inserted
data is investigated.

One of the attractive features of the LT integration
technique is its ability to remove data shock by rapid
adjustment to changes induced by the insertion of data
during a forecast. This shockproof character of the
SALT model will be demonstrated by some pertur-
bation experiments.

Figure 6 depicts a geopotential perturbation com-
prising a low centered at grid point (19, 9) and a high
at point (9, 13), both with magnitude 120 m. The spa-
tial distribution of each component is given by

&[1 — (r/R)*)’, r<R

P(r) =
(r) [0, r=R

where |®,/g| = 120 m, r is the distance from the cen-
tral point and R determines the scale. The perturbations
in Fig. 6 have a scale of R = 5Ax = 1000 km.

The high and low perturbations are added to the
forecast fields 1 h after the initial time. They may be
thought to represent the influences of observations at
the center points indicating geopotential heights 120
m above and below the forecast values. At the same
time, the wind field is modified by the addition of a
geostrophic flow corresponding to the height pertur-
bation. Since the geostrophic relationship is linear, the
addition of these height and wind perturbations will
preserve geostrophic balance if such exists prior to the
data insertion. Of course, the balance in the atmosphere
is more subtle, which makes the assimilation of data
so tricky.

The Rossby radius of deformation is defined by Lz?
= @/ f,. With a mean depth of 5500 m and f; = 10~*
s~! it has a value of approximately 2500 km. Since the
scale R of the imposed disturbance is considerably less
that this, the perturbation may be regarded as small.
According to geostrophic adjustment theory, the wind
perturbation should predominate with the height field
tending to adjust to the new wind field.

The two models SL.SI and SALT were run in parallel,
both perturbed in the same way at HH + 01 (i.e., one
hour after the initial time), and the ensuing forecasts
compared. The maximum positive and negative dif-
ferences between the perturbed and unperturbed fore-
casts were calculated every hour for each model. These
differences effectively measure how the amplitudes of
the high and low perturbations evolve in time. They
are shown in Fig. 7. For both models the high weakens
and the low intensifies. This is consistent with adjust-
ment theory: for cyclonic flow the geostrophic wind
exceeds the gradient wind; so, if the wind perturbation
is assimilated the low must deepen to maintain gradient
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F1G. 7. Absolute values of the maximum positive (High) and negative (Low) differences
between the perturbed and unperturbed forecasts for SLSI and SALT.

balance. By a similar argument the high must weaken.
This behavior is found for both models.

The character of the response to the perturbation
differs for the two models. The LT model appears to
adjust rapidly to the inserted data, with the evolution
being smooth after HH + 02. For SLSI, the amplitudes
of the high and low continue to oscillate for several
hours (Fig. 7). This is confirmed by a plot of the di-

POINT DIVERGENCE

vergence at grid point (19, 9), where the low is origi-
nally inserted (see Fig. 8). For SLSI the perturbation
elicits a noisy response which persists for over 6 h, being
gradually attenuated by a light divergence damping
(dashed line, Fig. 8). No such noise is experienced by
the model SALT (dot—dashed line, Fig. 8).

The ability of the LT model to assimilate a pertur-
bation without data shock or subsequent noise is an

\ / SLSI: UNPERTURBED
37 i - SLSI: PERTURBED
by - GALT: UNPERTURBED
-41 Vi SALT: PERTURBED
/
\
-5t /
\I
"0 3 6 9 12
TIME (hours)

FI1G. 8. Evolution of the divergence at grid point ( 19, 9) for the unperturbed
and perturbed forecasts using the two models.
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22 Nov 1982 07
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(b)SLSP

22 Nov 1982 07

) dss

FIG. 9. (a) Unperturbed 24-h height forecast with SLSI.
(b) Perturbed 24-h height forecast with SLSI.

attractive feature of this integration scheme. If data is
to be inserted hour by hour, noise from the earlier in-
sertions may interfere with quality control and assim-
ilation of the later ones. The model SLSI obviously
suffers in this respect. The model SALT is, in this sense,
shockproof.

The ultimate effect of the perturbations is seen by
comparing Figs. 9a,b. These are, respectively, the un-
perturbed and perturbed 24-h forecasts made using
SLSI. The main effects of the inserted data are the
sharpening of the trough to the west of Ireland and the
intensification of the ridge over the North Sea. The
forecasts made with SALT look very similar to the cor-

responding SLSI forecasts. The differences between the
perturbed and unperturbed forecasts for both models
are shown in Fig. 10. It can be seen that the long-term
consequences of the perturbations are very similar for
the two models. It is the short-term response that is
markedly different.

6. An alternative scheme based on the Z transform
a. Formulation of the scheme

If the equations of motion are discretized in time,
the resulting finite difference system is no longer ame-
nable to the LT approach. Instead, the discrete ana-
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logue of this technique, the Z transform, becomes ap-
plicable.

The definition and principal properties of the Z
transform are given in the Appendix. It is shown there
that an operator 3*8, similar to 8*&, acts as an ideal
low-pass filter on a discrete sequence comprising com-
ponents of various frequencies. A numerical integration
scheme based on this filter can be developed in a man-
ner completely analogous to the scheme based on the
modified inverse LT as described in section 3.

The starting point is as before the shallow-water sys-
tem (3.1)-(3.3). These equations are discretized in
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time by considering changes along a trajectory ending
at grid point G at time (n + 1)At and departing at
time n At from a point denoted by an asterisk. As be-
fore, the Lagrangian derivative is split into two parts,
for example

@ _ an+1 — an +An(u)
a At At

where the advection operator 4”( ) is defined by

A"(u) = (ug" — uy)

(a)SLSL

Hh+24

o
V

FIG. 10. (a) Difference between the perturbed and unperturbed height forecasts
with SLSI. (b) Corresponding difference for the model SALT.
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[compare (3.4) and (3.5)]. In a similar manner, av-
erages along the trajectory are split into two parts as
follows:

Jou = (1/2) fol (ug™*" + u") — A™(w)].

The discretized shallow-water equations may now be
written as follows:

(un+l — un) — F(vn+l + vn)
+D(®,"" + &)+ B, =0 (6.1)
(vn-H — vn) +F(un+l + un)
+D(®,""' + &")+B,"=0 (6.2)
(2"~ @") + @D(V- V™ + V-V") + By" = 0.
(6.3)

Here F = fyAt/2, D = At/2 and the advection, and
other nonlinear terms have been combined:

B, = A™(u + Fv — D®,) + At(N,"),
B," =

A™(v — Fu — D®,) + At(N,"),
By" = A"(® — ®DV-V) + At(Np")y.

The A terms involve difference at time » At between
the arrival and departure points; the N terms are eval-
uated at the departure point; all remaining terms in
(6.1)-(6.3) are calculated at the arrival grid point G.

Equations (6.1)-(6.3) are now Z-transformed, tak-
ing the origin of time at nAf and using (A.3). The Z
transform of u is denoted by #, etc. The B terms are
evaluated at time nAt and assumed to be constant.
This results in:

[(z—1Di—zu")— F[(z + 1)U — zv"]
+D[(z + )&, — 28,"] + (Z—f—l)Bu" =0
[(z—=1)0—zv"1+ F[(z+ Du — zu"]

z

+ D[(z + 1)<i>y—z<1>y"]+( )Bv"=0

(z=1)® - z8"] + ®D[(z + 1)V-V — zV-V"]

+( z )B(;,":O.
z-1

Defining { = (z+ 1)/(z — 1), the three equations may
be written in the form

i— F¢v+ Dtd, = R, (6.4)
U+ Fti+ Dfd, = R, (6.5)
&+ DAV -V)= R, (6.6)

where the right-hand sides are functions of z and of
the variables (u, v, ®) at time nAt. These equations
are formally similar to (3.6 )—-(3.8) and the procedures
are as before. Equations (6.4) and (6.5) are solved for
0 and ¥ in terms of &:
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(1 + F2¢%) i = -D{($, + Fid,) + (R, + F(R,)
(6.7)

(1 4+ F*?)0 = —D{(®, — F{d,) + (R, — F{R,).
(6.8)

These expressions are used to eliminate the divergence
term in (6.6), yielding a Helmholtz equation for &:

1 + F22\1.
(e o
where the right-hand forcing function may be calcu-
lated for a specified z from known quantities.

The solution is essentially the same as described in
section 3. Let (u, v, ®) be known at time nAt¢; the
forcing term of (6.9) can then be calculated and the
equation solved for ®. Then # and ¥ are obtained
from (6.7) and (6.8). This step is repeated four times,
with z, = exp(s,At), where s, is the value of s at the
center of each upper edge of the octogon in Fig. 2. The
inversion operator may now be applied, using (A.6)
with 1 = Af, to obtain (u, v, ®) at time (n + 1)Az. The
same sequence of operations may now be repeated as
often as necessary to reach the required forecast time.
As a result of the filtering properties of the modified
inversion operator, the solution will contain only low-
frequency components. The radius y of the contour

C* is chosen once again to correspond to a cutoff period
of 6 h,

(6.9)

b. Comparison of the Laplace and Z transform schemes

A series of forecasts was made using the Z transform
technique and the results were compared to those of
the LT model and the reference model described in
section 4. The Z-transform model is indicated by ZT,
the Laplace transform model by LT, and the reference
model (semi-Lagrangian, semi-implicit) by SS.

The initial data were the same as were used in section
4. The difference between the ZT forecast at 24 h and
the reference SS forecast, both using A7 = 600 s, is
shown in Fig. 11a. This is very similar to the corre-
sponding difference between the LT and SS forecasts
(see Fig. 5). The rms differences in height and wind
were 4.77 m and 0.82 m s™! (compare 4.09 m and
0.64 m s~! for LT versus SS). The difference between
the 24-h forecasts of geopotential height made with the
two transform integration schemes ZT and LT is shown
in Fig. 11b. The rms differences in height and wind
are now 1.27 m and 0.28 m s, indicating that the
two forecasts are virtually identical.

The two filtering schemes ZT and LT behave very
similarly for small At. Forecasts for a larger time step
At = 1 h were also made. Recall that the rms differences
between the two forecasts using the LT model were
6.82 m for height and 1.37 m s™! for wind. These were
considered to be uncomfortably large, and it was
pointed out in section 4 that the time truncation error
was linear in At for the LT model. The corresponding
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FIG. 11. (a) Difference between the 24-h height forecasts with the ZT model and the
reference model SS. (b) Difference between the forecasts for the ZT and LT model.

time truncation errors for ZT were 9.59 m for height
and 1.97 m s~! for wind. Thus, although the integra-
tions with the ZT scheme remain stable for large At,
the errors are again larger than desirable for an oper-
ational scheme.

In conclusion, the behavior of the Z-transform
scheme for small At is very like that of the LT scheme,
and both models produce accurate and noise-free fore-
casts. However, the assumption that the advection
terms are constant is made in deriving the transformed
equations. This is acceptable for small time steps, but
leads to a time truncation error which is linear in Af.
For both models the treatment of the advection terms

needs to be improved if accuracy for large time steps
is to be achieved.

7. Discussion

A filtering integration scheme has been formulated
using a modified form of the inversion integral for the
Laplace transform (LT). This scheme eliminates the
high-frequency components of the solution and pro-
vides a smooth evolution of the flow. Forecasts made
with the LT scheme have been compared to those using
a conventional scheme. With a small time step the two
models produce very similar results, demonstrating that
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the LT model is correctly simulating the flow while
filtering out unimportant high frequency noise.

The Lagrangian treatment of advection permits the
use of longer time steps without the onset of numerical
instability. Although the integration of the LT model
remained stable for large time steps, the accuracy of
the forecast diminished significantly, with the time
truncation error increasing linearly with Az. An alter-
native filtering integration scheme, based on the Z
transform, was formulated in the hope of reducing the
time truncation errors. For small Az the two filtering
schemes behaved very similarly. Moreover, the ZT
model also had errors which increased linearly with
the time step. Thus far no success has been made in
developing a filtering scheme with Lagrangian advec-
tion which has a quadratic error dependency on the
time step.

A number of simple perturbation experiments
showed that the LT model could assimilate data with-
out the occurrence of high-frequency oscillations. A
conventional semi-implicit model responded much
more noisily to an imposed perturbation. The LT
model is clearly superior in this regard, and is poten-
tially useful for the problem of continuous data assim-
ilation.

The LT model requires the solution of four (com-
plex) Helmholtz equations per time step, and takes
about six times longer to integrate than the reference
model. The computational overhead might be much
less for a scheme operating directly with the physical
variables and not requiring transformations to the im-
age space. It appears possible that such a scheme could
be developed using the ideas of digital filtering (Ham-
ming 1989).
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APPENDIX
Filtering with Z Transforms

The definition and elementary properties of the Z
transform are presented and the method of filtering is
described here. Further properties may be found in
Doetsch (1971) or in books on digital signal processing,
such as O’Flynn and Moriarty (1987) or Strum and
Kirk (1988).

Consider a sequence {f,} = {fi, /2, /3, * + +}. The
Z transform of the sequence is defined as
Ay=8{f} =3 fz™ (A1)
n=0

and is a function of the complex variable z. For ex-
ample, the transform of the constant sequence {1, 1,
1,...}isz/(z — 1); the exponential sequence { f, = "}
transforms to z/(z — «).
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Equation (A.1) is a Laurent series for f(z). The nth
term is obtained by multiplying by z" ! and integrating
around a circle C, centered at the origin and enclosing
all the singularities of f. All terms but one vanish,
giving

f=8"f} Ezim. g " R 2)dz.  (A2)

This is an expression for the inverse Z transform, al-
lowing us to derive { f,} from f(z).

From (A.1) it follows immediately that, if the trans-
form of { f, } is f, the transform of the shifted sequence
{ far1} 18 z(f — fo). Thus, the transform of the finite
difference Af, = (fus1 — fo) is

B{Af} = (z— Df(z) — zf. (A3)

In this way a finite difference system transforms to an
algebraic one, just as a differential equation becomes
an algebraic one under the Laplace transform.

The discrete analogue of the oscillatory function
exp(iwt) is a”, where a = exp(iwAt) is unimodular.
Low frequencies, that is small w, correspond to « close
to z = 1. Now consider a sequence with a number of
oscillatory components

K

fo= 2 aea”.

k=1

The Z transform of this function is

fiz)= éx Ck(

) (A.4)

Z = O

which has poles at z = a4, with the lower frequency
components corresponding to poles near z = 1 and
higher frequencies mapping to points farther away on
the unit circle. [ The frequencies that can occur in a
discrete system must fall in the Nyquist range (—wy,
+wy) = (—w/At, +n/At); the extreme values corre-
spond to poles at exp(+ir).]

To retrieve { f,,} from f, (A.2) may be applied. The
integral has K contributions, from the poles at z = a.
To eliminate higher frequencies the circular contour
C. is replaced by a contour C¥, which encloses the
poles close to z = 1 and excludes those further away:

[E=38*{f} Eﬁ. . 2" (z)dz. (A.5)

The contour C¥ is chosen as the image of C¥, a circle
of radius v in the s plane under the mapping z
= exp(sAt) (see Fig. A1). The operator 3*3 thus acts
as an ideal low-pass filter.

The character of the curve C¥ depends on the non-
dimensional parameter

A=r1n/Te="v/wN

where 7y = 2At = 27 /wy is the Nyquist period, the
shortest period representable with time step At, and 7,
= 2w /v is the cutoff period. For small A the curve
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z-plane

A=1/2

FIG. Al. Curves C¥* used to calculate the modified inverse Z transform, 3*,
for various values of the nondimensional parameter A.

C¥* is approximately circular. For large values of A it
is distorted into a kidney shape (Fig. A1). For the ex-
periments in section 5 7. = 6 h was chosen; with a time
step of 600 s, A = Y5 which is quite small; for a 1-h
time step, A = Y, corresponding to the dashed curve
in Fig. Al.

There is a direct analogue between the modified in-
version operator 3* and the modified inverse Laplace
transform operator &*, It is straightforward to show
that, under the mapping z = exp(sAt),

[ =38*{(2)} = AR (&*)} | i=nsr  (A6)

where £* is defined in section 2. To evaluate 3* nu-
merically, fTexp(s;At)] is calculated, where s;is defined
as before as the midpoints of the sides of an octogon
(Fig. 2) and 2* in (A.6) is replaced by a summation
over j.
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