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The natural numbers N split nicely into two subsets, the odd and even numbers

NO = {1, 3, 5, 7, . . . }, NE = {2, 4, 6, 8, . . . }.

Stopping at some number 2N , the odd and even numbers are equinumerous. Stopping
at 2N + 1, the odds are slightly ahead, but as N gets larger, the ratio of odd to even
numbers tends to 1. So, we can say informally that there are the same number of odd
and even integers. This will be made precise below by defining densities for the sets
NO and NE. Similar arguments apply to the integers Z, which split into two subsets

ZO = {. . . , −3, −1, +1, +3, +5, . . . }
ZE = {. . . , −4, −2, 0, +2, +4, . . . }.

The integers form an abelian group (Z, +) under addition. The even numbers form an
additive subgroup of (Z, +), with index [Z : ZE] = 2 and two cosets ZE and ZE + 1 =
ZO. This definition provides a bijection between the two cosets, which have the same
cardinality.
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Table 1. Addition table (left) and multiplication table (right) for Z.

+ even odd
even even odd

odd odd even

× even odd
even even even

odd even odd

Parity
The distinction between odd and even numbers is called parity. The even/odd concept
is defined only for the integers. The distinction does not apply to fractions or irrational
numbers, but one may wonder if there is a natural way to extend the concept of parity
to larger sets of numbers.

What characteristics might one require of such an extension? The definition would
have to agree with the traditional definition for the integers, so 5 would continue to be
odd and 10 even. In addition, the usual “rules of parity” might be required:

1. The sum of two even numbers is even; the product is even.
2. The sum of two odd numbers is even; the product is odd.
3. The sum of an even and an odd number is odd; the product is even.
4. An odd number plus 1 is even; an even number plus 1 is odd.

Table 1 shows the effects of addition and multiplication on the ring of integers.
If the concept of parity is extended to larger sets of numbers, some of the properties

indicated above may have to be sacrificed. We might define a rational number q = m/n

(in reduced form) to be even if the numerator m is even and odd if m is odd. But then
1
4 + 1

4 = 1
2 , meaning that two odd rationals would add to yield another odd one.

It is easy to distinguish between even rationals and those that are not even:

For any rational number q = m

n
,

{
q is even if m is even,

q is uneven if m is odd,

where m and n are relatively prime integers, (m, n) = 1.1 However, the two classes,
“even” and “uneven,” do not respect the rules of parity, so something better is required.

A three-way split
There is a simple way of separating the rational numbers into three subsets:

For any rational q = m

n
,

⎧⎪⎨
⎪⎩

q has parity even if m is even and n is odd,
q has parity odd if m is odd and n is odd,
q has parity none if m is odd and n is even.

The term none is an initialism for “neither odd nor even.” Corresponding to this three-
way partition, we define three subsets of the rationals:

Even: QE = {q ∈ Q : q = 2m

2n+1 for some m, n ∈ Z}
1From here onwards, all fractions a

b
will be considered to be in reduced form, with (a, b) = 1.
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Odd: QO = {q ∈ Q : q = 2m+1
2n+1 for some m, n ∈ Z}

None: QN = {q ∈ Q : q = 2m+1
2n

for some m, n ∈ Z}.
These three mutually disjoint sets comprise the rationals: Q = QE � QO � QN (where
� denotes the disjoint union). It is immediately obvious that ZE ⊂ QE and ZO ⊂ QO,
confirming that the definition of parity for the rationals is an extension of the usual
meaning for the integers. We see that the even and odd rationals respect the four “rules
of parity” listed above.

“Twice as many uneven as even fractions”. The rational numbers are count-
able: they can be put into one-to-one correspondence with the natural numbers. We can
list all rationals in (0, 1) in a sequence where, for each n in turn, all (new) numbers
m/n with m < n are listed in order. For nmax = 8 we have{

1
2 ,

1
3 ,

2
3 ,

1
4 ,

3
4 ,

1
5 ,

2
5 ,

3
5 ,

4
5 ,

1
6 ,

5
6 ,

1
7 ,

2
7 ,

3
7 ,

4
7 ,

5
7 ,

6
7 ,

1
8 ,

3
8 ,

5
8 ,

7
8

}
. (1)

Rearrangement in increasing order of magnitude gives the Farey sequence F8.
A Mathematica program was written to count the proportion of rationals in each

parity class in the interval (0, 1), with denominators less than or equal to n, for a range
of cutoff values n � nmax. The ratios are plotted in Figure 1. As more rationals are
included, the ratios of numbers with parity even, odd, and none all tend to the limit 1

3 .
Colloquially, there are an equal number of rationals with parity even, odd, and none,
and “twice as many uneven as even rationals.”
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Figure 1. Parity ratio r for rationals m/n of parity even (solid line, blue online), odd (dashed
line, red online) and none (dotted line, black online) for nmax = 20. The horizontal axis k is the
count of rational numbers used to compute the ratios. For nmax = 20, there are 127 rationals
in (0, 1).

The density of subsets of N
In pure set-theoretic terms, the set of even natural numbers is “the same size” as the
set of all natural numbers; both are infinite countable sets. However, cardinality is a
blunt instrument: with the usual ordering, every second natural number is even and,
intuitively, we feel that there are half as many even numbers as natural numbers. The
concept of density provides a means of expressing the relative sizes of sets that is more
discriminating than cardinality.
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Density—also called natural or asymptotic density—is defined for many interesting
subsets of N, although not for all subsets. Assume a subset A of N is enumerated as
{a1, a2, . . . }. We define the density of A in N as the limit, if it exists,

ρN(A) = lim
n→∞

|{ak : ak � n}|
n

.

Thus, if the fraction of elements of A among the first n natural numbers converges to a
limit ρN(A) as n tends to infinity, then A has density ρN(A) [7, p. 270]. More generally,
if A = {a1, a2, a3, . . . } is a subset of a countable set X enumerated as {x1, x2, x3, . . . },
we define the density of A in X—if it exists—as

ρX(A) = lim
n→∞

|A ∩ {x1, x2, . . . , xn}|
n

. (2)

For X = N, we usually write ρN(A) as ρ(A). For A = NE or A = NO, we have ρ(A) =
1
2 , as might be expected. This is consistent with our intuitive notion that 50% of the
natural numbers are even and 50% are odd.

Let us now rearrange the natural numbers into a set F such that there are twice as
many even as odd numbers in F . We reorder N so that each odd number is followed
by two even ones:

F = {1, 2, 4, 3, 6, 8, 5, 10, 12, . . . , 2n − 1, 4n − 2, 4n, . . . }.

It is easy to see that ρF (NE) = 2
3 and ρF (NO) = 1

3 . Proceeding further, we can con-
struct a set H in which the n-th odd number is followed by n even numbers. We find
that ρH(NE) = 1, so that “almost all the elements of H are even.”

These examples make it clear that density depends strongly on the ordering of the
reference set. Our intuition is guided by the usual (natural) ordering of the natural
numbers, and the alternation between odd and even numbers leads us to the conclusion
that, somehow, they are equal in number, each comprising “half” of the set of natural
numbers. Density relative to N is consistent with this intuition.

With the ordering {0, +1, −1, +2, −2, . . .} of the integers, the densities defined by
(2) are

ρZ(ZE) = 1
2 , ρZ(ZO) = 1

2 .

We will prove that, for the rational numbers with the Calkin-Wilf and Stern-Brocot
orderings illustrated in Figure 3,

ρQ(QE) = ρQ(QO) = ρQ(QN) = 1
3 .

Partitioning the rationals
In Table 2 we show the results of adding and multiplying numbers from the three par-
ity classes. The most important thing to notice is that, if we confine attention to only
the even and odd rationals, the tables are identical to the addition and multiplication
tables for Z (Table 1). The entry “any” in the tables indicates a sum or product that
is a ratio of two even numbers and that may, after reduction, be in any of the three
parity classes. Examining the left panel of Table 2, we see that (QE, +) is an additive
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Table 2. Addition table (left) and multiplication table (right) for Q. The entry “any” indicates
that the result may be in any of the three parity classes.

+ even odd none
even even odd none

odd odd even none

none none none any

× even odd none
even even even any

odd even odd none

none any none none

(normal) subgroup of (Q, +). In Table 2 (right panel) we show the results of multi-
plying numbers from the three parity classes. Restricting attention to the even and odd
rationals only—omitting those with no parity—we define

QP := QE � QO.

This is the set of all rationals whose denominators are odd numbers in Z. It is closed
under addition and multiplication and forms a subring of the field Q. Moreover, since
there are no divisors of zero, QP is an integral domain [4, p. 228]. Although QP is not
an ideal of Q (fields do not have nontrivial proper ideals), it is a (normal) subgroup of
(Q, +). So, we may enquire about its index [Q : QP] and its quotient group Q/QP.

Somewhat out of context, we mention the easily-proved observation that all three
parity classes, QE, QO, and QN, are (topologically) dense in the rationals.

2-Adic valuation and the “degree of evenness”.

All multiples of 2 are even, but some are more even than others.

The p-adic valuation—or p-adic order [6, p. 20]—of an integer n, defined for all
prime numbers p, is the exponent of the largest power of p that divides n:

νp(n) :=
{

max{k ∈ N ∪ {0} : pk | n} for n 	= 0
∞ for n = 0.

It may be extended to the rational numbers m/n:

νp

(m

n

)
= νp(m) − νp(n).

It is easily proved that, for any rationals q1 and q2,

νp(q1 + q2) � min{νp(q1), νp(q2)}, (3)

with equality holding if νp(q1) 	= νp(q2).
We shall be concerned exclusively with the case p = 2. We note that QP = {q ∈

Q : ν2(q) � 0} and QE = {q ∈ Q : ν2(q) > 0}. The “degree of evenness” of a number
can be expressed in terms of the 2-adic valuation. For even integers, ν2(n) > 0; for
odd integers, ν2(n) = 0. By convention, ν2(0) = ∞ (since zero is divisible by every
power of 2).

If we write a rational number q in the form 2k(2m + 1)/(2n + 1) with k ∈ Z, then
ν2(q) = k. Odd rationals have order 0 and rationals with no parity have negative 2-adic
order. In particular, half an odd integer has 2-adic order equal to −1. In summary,

For q rational with parity even, ν2(q) > 0,
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For q rational with parity odd, ν2(q) = 0,

For q rational with parity none, ν2(q) < 0.

The 2-adic order clearly identifies the parity classes of the rationals, and it provides
a means of partitioning them into finer-grain parity classes. The resulting partition
reveals a wealth of algebraic structure. For all k ∈ Z, we define the set of all rational
numbers with 2-adic valuation k:

Qk = {q ∈ Q : ν2(q) = k} and Q∞ = {0}.
The union of all the Q-sets comprises the entire set of rationals

Q = {0} �
∞⊎

k=−∞
Qk.

We illustrate the subsets Qk in Figure 2. The vertical axis is the 2-adic valuation ν2.
Each subset Qk is represented by a horizontal dotted line. We remark that all odd
rationals are in Q0, and all even rationals are in

⋃
k>0 Qk. For all K ∈ Z, we define

QK := {0} �
⊎
k�K

Qk (4)

and observe that QK is an additive subgroup of Q. We write this as QK � Q. In
particular, Q0 = QP and Q1 = QE. There is an infinite chain of subgroups, starting
with Q∞ = {0} and extending through all the QK groups to the full group of rationals:

Q∞ = {0} � · · · � Q2 � Q1 � Q0 � Q−1 � Q−2 � · · · � Q.

Dyadic rational numbers. A dyadic rational is a number that can be expressed as
a fraction whose denominator is a power of two. The usual definition of the dyadic
rational numbers [1, p. 122] is

D =
{ z

2m
: z ∈ Z, m ∈ Z

}
.

Note that the integers are included in the set of dyadic rationals. A convenient alterna-
tive definition is

D = {2k(2� − 1) : k ∈ Z, � ∈ Z} � {0},
since all the numbers of the form 2k(2� − 1) are in Qk . Moreover, the expression of
each number in this form is unique. We also define the sets

Dk = {2k(2� − 1) : � ∈ Z} and D∞ = {0},
and note that D = ⊎

k Dk � D∞. We see that D0 = ZO and
⊎

k>0 Dk = ZE.
The dyadics correspond to all real numbers with finite binary expansions and also to

the set of surreal numbers born on finite days [3, p. 29]. The dyadic rational numbers
form a ring between the ring of integers and the field of rational numbers:

Z � D � Q.
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Figure 2. Partition of the rational numbers. The vertical axis is the 2-adic valuation ν2. Each
(dense) subset Qk is represented by a horizontal dotted line. The sets Dk are indicated by the
marked points in Qk . The totality of these comprises the dyadic rationals D.

The sets Dk are indicated in Figure 2 by the marked points in Qk . For each k, Dk ⊂
Qk. The circles at level k = 0 are the odd integers. The large dots (blue online) at
positive k-levels are the even integers. The small dots (red online) at each negative
level k < 0 are the dyadic fractions, with odd numerator and denominator 2k. Zero
sits, like an angel, on top of the tree.

By analogy with the definition (4) of the QK -sets, we construct a countable infinity
of subgroups of D:

DK := {0} �
⊎
k�K

Dk.

Particular cases of the D-sets include

D−∞ = D, D−1 = 1
2Z, D0 = Z, D1 = ZE, D∞ = {0}.

There is an infinite chain of subgroups starting with D∞ and extending through all the
DK groups to the full group of dyadic rationals:

D∞ = {0} � · · · � D2 � D1 � D0 � D−1 � D−2 � · · · � D.

Readers familiar with the theory of p-adic numbers may wish to show that QP is the
ring of rational-valued 2-adic integers, Q ∩ Z2, and the dyadic rational numbers may
be expressed as

D = Q ∩
⋂

p odd

Zp.

Cosets of QP in Q
In the following section, we show that any two rationals q1 and q2 with distinct, neg-
ative 2-adic orders are representatives of distinct cosets: q1 + QP 	= q2 + QP. Thus,
if q1 + QP = q2 + QP, then ν2(q1) = ν2(q2). Consequently, there is at least one coset

VOL. 00, NO. 0, MONTH 2024 THE COLLEGE MATHEMATICS JOURNAL 7



for each k < 0 and therefore an infinite number of cosets. However, it is clear that
ν2(q1) = ν2(q2) does not imply equality of cosets; consider, for example, q1 = 1

4 and
q2 = 3

4 , since (q2 − q1) = 1
2 	∈ QP.

We now investigate the cosets q + QP in Q/QP. First, we note that if q ∈ Q−k then
q + QP ⊂ Q−k, but there is no guarantee that q + QP is equal to Q−k. Suppose q1 and
q2 are in Q−k for some k > 0. If they represent the same coset then q1 − q2 ∈ QP.
However, it is easily seen that ν2(q1 − q2) may assume any value greater than −k:

q1 − q2 = 2�−k o1

o2
for � > 0

(where o1 and o2 are odd integers). Thus, q1 − q2 may be in any of the following sets:

Q−k+1, Q−k+2, Q−k+3, . . . , Q−1, QP.

Clearly, q1 − q2 ∈ QP if and only if � � k, whence

q1 + QP = q2 + QP iff � � k.

For each k > 0, we define a set of values

qk,� = 2−k(2� − 1) ∈ Q−k for � = 1, 2, 3, . . . , 2k−1.

We note that these are the first 2k−1 positive values in D−k. We show in the following
section that these are representatives of 2k−1 cosets, which are all distinct and which
provide a disjoint partition of Q−k . This analysis provides explicit expressions for each
of the infinite set of cosets of QP in Q:

qk,� + QP, � = 1, 2, 3, . . . , 2k−1, k = 1, 2, . . . .

The diagram in Figure 2 has a scaling invariance: if the horizontal axis is stretched
by a factor of 2 and the diagram translated one unit in the vertical, the dyadic ratio-
nals occupy the same set of points. We have chosen to analyze the quotient group
Q/QP. However, a similar analysis could be done for any subgroup QK, with directly
analogous results.

Density of Qk: a heuristic discussion. The set Q−1 = 1
2 + QP is a coset of QP.

It can be visualized as a copy of QP shifted by a distance 1
2 . We argue heuristically that

Q−1 is “as dense as QP”.
More generally, for any k, there is a natural correspondence between elements of

Qk and elements of Qk−1:

1

2k

(
2m + 1

2n + 1

)
∈ Qk ←→ 1

2k−1

(
2m + 1

2n + 1

)
∈ Qk−1.

Thus, Qk−1 may be visualized as a compressed version of Qk. Since Qk−1 is “twice as
dense as Qk”, we may argue that we should have twice as many cosets in Qk−1 as there
are in Qk. This is consistent with what is proved rigorously below.
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Formal proof of the coset structure for QP

In this section, we give rigorous proofs of some of the results considered heuristi-
cally in the discussion above. Lemmas 1 and 2 give conditions for cosets to be equal.
Proposition 1 gives explicit representatives qk,� for each of the distinct cosets. In the
following, we abbreviate the 2-adic valuation ν2 to ν.

Lemma 1. Suppose q1, q2 ∈ QN and q1 + QP = q2 + QP. Then ν(q1) = ν(q2).

Proof. For the cosets to be equal, we must have q1 − q2 ∈ QP. Suppose that ν(q1) =
−k and ν(q2) = −� with k 	= � ∈ N. Without loss of generality, we may assume that
� = k + d with d > 0. Then, using (3),

ν(q1 − q2) = min(ν(q1), ν(−q2)) = min(ν(q1), ν(q2)) = min(−�, −k) = −�.

Thus, q1 − q2 ∈ Q−�, so that q1 + QP 	= q2 + QP. Consequently, a necessary condition
for equality of the cosets is that q1 and q2 have the same 2-adic valuation, ν(q1) =
ν(q2). �

The next lemma strengthens this to a necessary and sufficient condition.

Lemma 2. Let q1 and q2 be in QN. Then q1 + QP = q2 + QP if, and only if, ν(q1) =
ν(q2) = −k for some k ∈ N and ν(a1b2 − a2b1)) � k, where q1 = a1/(2kb1) and q2 =
a2/(2kb2).

Proof. Let q1 and q2 be in QN. Suppose that q1 + QP = q2 + QP. Lemma 1 tells us
that ν(q1) = ν(q2) = −k for some k ∈ N. We may thus write

q1 = a1

2kb1
and q2 = a2

2kb2
, (5)

where ai, bi are odd, and so

q1 − q2 = a1b2 − a2b1

2kb1b2
. (6)

By hypothesis, this is an element of QP, which implies 2k|(a1b2 − a2b1), as asserted.
For the converse, if ν(q1) = ν(q2) = −k, then (5), and hence (6), holds. The condi-

tion ν(a1b2 − a2b1) � k then implies ν(q1 − q2) � 0, and so q1 − q2 ∈ QP. �

Proposition 1. For each k ∈ N, let qk,� = (2� − 1)/2k ∈ Q−k for � = 1, . . . , 2k−1.
These numbers generate 2k−1 distinct QP-cosets, which comprise all the cosets of QP

by elements of Q−k.

Proof. It is clear that qk,� = (2� − 1)/2k lies in Q−k. If two of these numbers, qk,� and
qk,�′ say, generate the same coset, then (qk,� − qk,�′) ∈ QP and so, by Lemma 2, 2k

divides 2�′ − 1 − (2� − 1) = 2(�′ − �), and hence 2k−1 divides � − �′. As 1 � �, �′ �
2k−1, the only way this can occur is if � = �′. This shows that all 2k−1 cosets generated
by qk,� are distinct.

Next, we show that these exhaust all possible cosets by elements of Q−k . For this,
given q ∈ Q−k, we need to show that q + QP = qk,� + QP for some � ∈ {1, 2, . . . 2k−1}.
As q = n/(2km) for m and n odd, by Lemma 2, this amounts to showing ν(n − (2� −
1)m) � k, or that 2k divides n + m − 2�m. We may let n + m = 2s (s ∈ Z) and ex-
amine instead whether 2k−1 divides s − �m for some � ∈ {1, . . . , 2k−1}.
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Figure 3. The initial rows of the Calkin-Wilf tree (left) and Stern-Brocot tree (right).

Notice that

s − �m ≡ s − �′m (mod 2k−1) ⇐⇒ 2k−1 divides m(� − �′)

m odd⇐⇒ 2k−1 divides (� − �′) ⇐⇒ � = �′,

as again 1 � �, �′ � 2k−1. In particular, by the pigeonhole principle, all 2k−1 possible
2k−1-remainders, including 0, are contributed by s − �m, � = 1, . . . , 2k−1. So 2k−1

divides s − �m for some �, and for this �, we have q ∈ qk,� + QP, as stated. �

Densities of the parity classes
There are many exhaustive sequences of rationals other than (1), one attractive option
being the Calkin-Wilf tree [2]. The Calkin-Wilf tree is complete: it includes all positive
rational numbers, and each such number occurs precisely once. The tree starts with the
root value 1/1, and everything springs from this root (see Figure 3, left panel). Each
rational in the tree has two “children”: for the entry m/n, the children are m/(m + n)

and (m + n)/n. The “left child” m/(m + n) is always smaller than 1, while the “right
child” (m + n)/n is always greater than 1 (mnemonic: the children are “top over sum”
and “sum over bottom”).

The pattern of parity from one row of the Calkin-Wilf diagram to the next is simple.
Denoting odd parity, even parity, and no parity by o, e, and n, respectively, the parity
transfer rules are as follows.

e o n

↙ ↘ ↙ ↘ ↙ ↘ (7)

e o n e o n

We will now show that the elements of the Calkin-Wilf tree are remarkably regu-
lar, with the pattern (o, n, e) repeating interminably. Thus, the parity of any specific
term in the tree can easily be deduced. We also prove that, with the ordering of
Q corresponding to the Calkin-Wilf tree, the three parity classes all have the same
density.

Theorem 1. Let Q+ be ordered with the Calkin-Wilf tree. Then Q+ may be parti-
tioned into three parity classes, Q+

E , Q+
O , and Q+

N , each having asymptotic density 1
3 .

Proof. The parity classes for the first few rows of the Calkin-Wilf tree are shown in
Figure 4. Odd rows follow a pattern (one)ko for some k � 0, and even rows follow
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Figure 4. Parity classes of terms in the Calkin-Wilf tree.

a pattern ne(one)k. This is clearly true for the first few rows. Using the transfer rules
(7), and arguing inductively, it is clear that a row with pattern (one)ko is followed by a
row with pattern ne(one)2k . This, in turn, is followed by a row with pattern (one)4k+1o.
The full sequence begins

o / ne / (one)o / ne(one)2 / (one)5o / ne(one)10 / · · · .

We conclude that, if the entire tree is written row by row as a sequence, the parity
follows an unvarying pattern, with odd followed by none followed by even. The parity
of an element at any position N is immediately deduced from m = N(mod 3). The
pattern also implies that the three parity classes have equal densities. �

The Calkin-Wilf tree enumerates the positive rationals Q+. This enumeration,
which we write {qn : n ∈ N}, can be extended in a natural way to the full set of ra-
tionals: we enumerate Q by {0, q1, −q1, q2, −q2, . . . }. With this ordering, the rational
numbers split into three parts, each of asymptotic density 1

3 .
To summarize, the parity classes of elements of the Calkin-Wilf tree follow a simple

pattern if arranged in a single sequence: the pattern {o, n, e} repeats indefinitely (see
Figure 4). As a result, the densities of the parity classes in Q are all equal for this
ordering:

ρQ(QE) = ρQ(QO) = ρQ(QN) = 1
3 . (8)

The Stern-Brocot tree [5, p. 116] is another ordering of Q very similar to the
Calkin-Wilf tree. The numbers at each level are formed from the mediants of adja-
cent pairs of numbers above (Figure 3, right panel). The mediant of two (reduced) ra-
tionals, m1/n1 and m2/n2, is defined as M(m1/n1, m2/n2) := (m1 + m2)/(n1 + n2).
We note that the parity of the mediants of two numbers of different parity is the third
parity:

M(e, o) = n, M(o, n) = e, M(n, e) = o. (9)

We now show that, with the ordering of the Stern-Brocot tree, (8) holds true.

Theorem 2. For the order of Q induced by the Stern-Brocot process, the asymptotic
density of each parity class, QE, QO, and QN, is 1

3 .

Proof. The Stern-Brocot tree is generated starting from level 0 with the boundary
elements

[
0
1

]
and

[
1
0

]
, representing 0 and ∞ and with parities [e] and [n]. To get
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each subsequent level we add, between each pair of adjacent numbers, the medi-
ant of that pair, retaining all numbers already generated. The results, for the first
few levels, are shown in Figure 3 (right panel). The parity pattern for the first few
levels is

[e]o[n] / [e]noe[n] / [e]oneoneo[n] / [e]noenoenoenoenoe[n].

Using the transfer rules (9), an odd row with parity (eon)K is followed by even row
with parity e(noe)2K−1n. This in turn is followed by an odd row with parity (eon)4K−1.
By an inductive argument, it follows that the parity pattern for an odd row k is (eon)K ,
where K = (2k + 1)/3 and, for an even row k, is e(noe)Kn, where K = (2� − 1)/3.
This implies that the asymptotic densities are equal for all three parity classes.

The Stern-Brocot tree enumerates the positive rationals Q+. This enumeration is
easily extended to the full set of rationals, as was done above for the Calkin-Wilf tree.
Then the rational numbers split into three parts, each of asymptotic density 1

3 . �

The determination of the densities of parity classes for the ordering corresponding
to the Farey sequences is left as a challenge for readers.

Conclusion
We have extended parity from the integers to the rational numbers. Three parity
classes—even, odd, and “none”—were found. The even and odd rationals QE and QO

follow the usual rules of parity. The union of these forms an additive subgroup QP of
Q.

Using the 2-adic valuation, we partitioned Q into subsets and found a chain of
subgroups, each having a quotient group of cosets. We constructed a complete set of
representatives for the cosets of QP.

The Calkin-Wilf tree was found to have a remarkably simple parity pattern, with
the sequence “odd/none/even” repeating indefinitely. Using the natural density, which
provides a means of distinguishing the sizes of countably infinite sets, we showed
that, with the Calkin-Wilf ordering, the three parity classes are equally dense in the
rationals. The same conclusion holds for the Stern-Brocot tree.

Finally, we remark that, while this study discussed parity for the rational numbers,
there may be potential for broad extensions and generalizations, to the p-adic numbers
and to other number fields.

Acknowledgment. We are grateful to Tom Laffey, Emeritus Professor, School of Mathe-
matics & Statistics, University College Dublin and to Tony O’Farrell, Emeritus Professor at
Maynooth University, for discussions about this work.

Summary. We define an extension of parity from the integers to the rational numbers. Three
parity classes are found—even, odd, and “none”. Using the 2-adic valuation, we partition the
rationals into subgroups with a rich algebraic structure.

The natural density provides a means of distinguishing the sizes of countably infi-
nite sets. The Calkin-Wilf tree has a remarkably simple parity pattern, with the sequence
“odd/none/even” repeating indefinitely. This pattern means that the three parity classes have
equal natural density in the rationals. A similar result holds for the Stern-Brocot tree.
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