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ABSTRACT

A wind field given over a limited domain can be partitioned into nondivergent and irrotational components
in an infinity of ways. A particular solution, selected by requiring the velocity potential to vanish on the boundary,
has minimum divergent Kinetic energy and is numerically easy to obtain.

The reconstruction of the wind field from the vorticity and divergence together with the boundary velocity
is more difficult, since the potential equations are coupled by the boundary conditions. A numerical procedure
is devised, which solves the two potential equations simultaneously, modifying both interior and boundary
values in a converging iterative technique. The method is capable of reconstructing the wind field to any

accuracy desired.

1. Introduction

The Helmholtz theorem allows us to partition the
horizontal wind field V into nondivergent and irrota-
tional components

V=V, +V,=kXVy+ Vx, (1
where { is the streamfunction and x the velocity po-

tential. The vorticity { is defined as the vertical com-
ponent of the curl of velocity, and from (1) we get

V¥ =1 2)
Similarly, taking the divergence of (1) we have
Vix =3, (3)

where § is the velocity divergence.

Two problems frequently arise in meteorological
studies. First, given a windfield V, it is often of interest,
for diagnostic or other purposes, to partition it into its
nondivergent and irrotational components. We will call
this the partitioning problem. Second, given the vor-
ticity { and divergence 8, we wish to derive the velocity
field. This we will call the reconstruction problem.

When the domain under consideration is the entire
sphere, both problems are straightforward, and have
unique solutions. However, when the domain is of
limited extent the solution of the partitioning problem
is not unique, and the reconstruction problem is com-
plicated by boundary conditions which couple Egs. (2)
and (3). The streamfunction and velocity potential at
the boundaries must satisfy (1), which means
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where s and n are tangential and normal unit vectors,
respectively, and s and » are, respectively, distances
along and normal to the boundary.

Several methods have been proposed for determining
suitable, but not exact, boundary conditions in the case
of a limited domain (Sangster, 1960; Hawkins and Ro-
senthal, 1965; Shukla and Saha, 1974; Schaefer and
Doswell, 1979). Stephens and Johnson (1978) deter-
mined exact solutions for the streamfunction and ve-
locity potential by assuming periodic boundary con-
ditions and using Fourier transforms and consistent
finité difference approximations. However, their
method cannot be applied in the case of spherical co-
Ordinates. They remark, “No means of specifying exact
boundary condition values for a finite domain . .
have been available.”

The method of Shukla and Saha (1974) was a clear
improvement over previous methods. They used an
iterative method, in which Eq. (2) and (3) were solved
in alternate steps, using the most recent available
boundary values. Examining the error in the recon-
structed wind field, they showed that their method gives
a smaller value of this error than any of the other
methods tested. However, their method is “asymptotic”
rather than “convergent”; there is a residual error which
cannot be reduced by further iterations.

The method presented in this paper solves the re-
construction problem exactly, in the sense that the wind
field can be recovered to any degree of accuracy desired.
The method differs from that of Shukla and Saha in
that (2) and (3) are solved simultaneously rather than
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sequentially. A relaxation technique (SOR) is used, in
which the boundary values of ¢ and x are modified
after each iteration. In the specific case considered, 12
iterations were needed to reduce the maximum (ab-
solute) residue by a factor of 10. The method is more
economical than that of Shukla and Saha, which re-
quires repeated solutions of the Poisson Egs. (2) and
(3); in the present case these equations are solved only
once. The method uses consistent finite difference ap-
proximations for the potential equations.

2. The partitioning problem: nonuniqueness of the so-
lution

If the wind components (1, v) are known over the
sphere, they may be partitioned uniquely into nondi-
vergent and irrotational parts: we evaluate the vorticity
¢ and divergence 6 by differentiation, and solve two
Poisson equations: '

V=g, (6)
Vix =4, )

for the streamfunction y and velocity potential x. There
are no boundary conditions, but the solutions are re-
quired to be regular on the sphere. These solutions are
unique up to additive constants; this is so because the
solutions of the corresponding homogeneous equations
(Laplace equations) are harmonic functions which
cannot have extrema in the interior of the domain and
are therefore constants. Thus, the partitioning of the
wind field into nondivergent and irrotational compo-
nents is unique.

For a limited area the splitting of the wind field is
no longer unique. It was stated by Miyakoda (1960)
that in this case the distributions of y and x have no
physical significance of themselves, but only insofar as
they are used in (1). We examine this question in detail
below.

From a wind field (#, v) in a region ©, bounded by
a curve I, we can derive the vorticity { and divergence

o:
_ 1o d(ou)
I_o[(”\ ao]’ (8)
_1[du  d(av) _
‘s—a[ax“L ao]‘ ©)

Here, A and § are longitude and latitude, ¢ = cosf, and
the radius of the sphere is taken as unity. The stream-
function and velocity potential are obtained by solving
(6) and (7) subject to the boundary conditions on T

W 1ox
w o ¥ (10)
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Since these conditions involve both variables, the sys-
tem is coupled and the two equations must be solved
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together. The system has a unique solution if and only
if the corresponding homogeneous system has only the
trivial solution where y and x are constants; however,
this is not the case. Consider the example:

Y = A4 log(secfd + tanf) + BA

], (12)
= —B log(secf + tanf) + A\

where 4 and B are arbitrary constants. By direct sub-
stitution we see that these functions satisfy the ho-
mogeneous system. The corresponding wind fields are
derived from (1) and are seen to vanish. However, their
nondivergent and irrotational parts are as follows:
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The nondivergent part (u,, vy), which is also irrota-
tional, is a flow with constant direction and speed
varying inversely as cos. The irrotational part (u,, v,),
also nondivergent, is simply the reverse flow.

It is now clear that the partitioning of the wind field
cannot be unique. Given any separation into nondi-
vergent and irrotational components:

U= Uy + U,
U=U¢+vx,

we can add the solution (13), which changes the com-
ponents arbitrarily without altering the total flow. Fur-
thermore, (12) and (13) ate not the most general so-
lution of the homogeneous problem.

From the infinitude of possible partitions of the wind
field we can select a particular solution in the following
way. Let (¥, x) be any such solution. We write

‘b = ‘1/0 + {Ls

X=X+ %
where ¢ and % vanish on the boundary I' and satisfy
the Poisson_equations (6) and (7) in the interior, Q.
(Note that { and % are uniquely determined by these
conditions.) Then, the remaining parts (Yo, xo) are

equal to the original solution (¥, x) on the boundary,
and satisfy Laplace equations

Vi =0, Vx=0

in the interior. (They are again uniquely determined
once Y and x have been specified.) These functions
determine that part of the flow which is both nondi-
vergent and irrotational. (On the sphere this part nec-
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essarily vanishes, since potential flow must have a sin-
gularity somewhere and thus is a physical flow only
over a bounded sector of the sphere.) We may now
partition the wind field as follows:

V=Vo+V,+V,

and the nondivergent and irrotational component, Vg,
may be divided arbitrarily between the rotational and
divergent components. To render the partitioning
unique, we include V,, with the rotational component:

Vy=Vo+V,, V.=V,

The partitioning problem is now solved very simply.
Given the (u, v) field, we derive the divergence § and
solve the Poisson equation (7) with zero boundary con-
ditions, this determines x uniquely. We may then de-
rive the divergent wind V, = Vx, and the residue
(V —V,) is the rotational component. We do not need
to solve explicitly for (¥, x) or (Yo, Xo)- (Sangster {1960]
has argued that a zero boundary condition on ¥ is ap-
propriate for minimizing the kinetic energy of the di-
vergent wind and maximizing that of the rotational
flow; this is, in general, a meteorologically reasonable
criterion.)

Consider now the reconstruction problem. If the ve-
locity field is given only on the boundary, together with
the vorticity and divergence in the interior, then we
determine the velocity everywhere by solving (6) and
(7) in Q subject to (10) and (11) on T, and using (1).
Any solution will do, since all yield the same wind
field. However, the rotational and divergent compo-
nents of the flow can be specified uniquely only after
we determine x by solving a further Poisson equation.

Finally, let us again emphasize that in all cases the
total wind field is well determined by the given data.
It is the partitioning into nondivergent and irrotational
components that is nonunique without further con-
ditions.

3. Numerical solution of the reconstruction problem

We have seen that the problem of recovering the
wind field from the vorticity and divergence involves
the simultaneous solution of the two Poisson Egs. (2)
and (3) which are coupled by the boundary conditions
(4) and (5). In this section we describe a numerical
method for solving these equations together, and we
show by an example that the method is capable of re-
covering the wind field to any desired degree of accu-
racy. The method is an iterative procedure in which
both the interior and boundary values of ¥ and x are
relaxed towards balance with the interior and boundary
forcing.

a. Details of the method

We consider a regular longitude-latitude grid ),
= jAM, 8; = jAB, with variables distributed as in Fig. 1.
(It is essentially an Arakawa C-grid.) We approximate
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F1G. 1. Disposition of the variables on the discrete grid. Values of
variables within the circle are indicated by subscripts i, j.

derivatives by centered differences on this grid. When
Eq. (1) is split into components and discretized we get

uy = —(1/80)y = ¥y-1) + (1/0,AN(Xi+1j ~ Xip)s
(14)
vy = (1/0j012ANy — Vi) + (1/80) (X1 — Xa7),
(15)

where g; = cogjAl, u; = uf(i + Y2)AN, jA8], etc. The
vorticity and divergence are related to the winds
through (8) and (9), which become

$i = (o)1 AN D1y — )

— (1/80)(0j41Ujj41 — ojuy)], (16)
05 = (1/a)l(1/ AN (uy — ui—y;)
+ (1/A8)(0j+1205 — 0j1205-1)].  (17)

Now using (14) and (15) in (16) and (17) we get the
finite difference analogues of the Poisson equations (2)

and (3):
de‘llij = g’lj’

VdZXij = 6ij’

(18)
(19)

where V2 is the usual five-point discrete Laplacian op-
erator. When these equations are applied on the M
X N interior grid points where { and 6 are defined (see
Fig. 1), boundary values of ¢ and x occur with i = 0,
M+ 1orj=0,N+ 1. Since the boundary values of
u and v are known, we may solve (14) or (15) for these
values. Equation (14) is used to evaluate

Vio, Yin+1s X0j> XM+1j
and (15) is used for

Yojs Yaa1j Xio  and  Xinei.
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For example, | .
Yio = ¥ — (A0/a AN (Xienr — Xar) + A0uyy,
Vinet
= Yiv + (A0/one tANY(Xiv1 N+t = Xine1) = BB ny1.

In all cases, the most recent values available are used
to evaluate the right-hand sides during the iteration
process. Thus we see that both the boundary and in-
terior values of ¥ and x change during the solution
process; only the boundary velocities and interior forc-
ing ({, 8) are unchanging. The quantities Yo, and
Xam+1 N+1 are set arbitrarily to zero.

The system of equations (18), (19) is now written in

the form
VA= & — Py,
VdZij = 511 - Q.'j,

where V7 denotes the interior terms of the discrete

Laplacian, and the boundary terms of y and x are writ-

ten on the right-hand side in Pj; and Q. '
The system (20), (21) is now solved simultaneously

(20
(21)

using a successive overrelation (SOR) technique. We -

start from some first guess, for example y = x =0. A
single SOR iteration of (20) is made during which the
values of ¢ are updated. There follows an iteration
through (21), using the most recent values of Y to eval-
uate the boundary values of x from (14) or (15). The
y-iteration is repeated, using updated x-values at the
boundaries, and so on. All the ¥ and x values are
changing, and thus the right-hand forcing terms in (20),
(21) also change at each iteration.

The characteristic which distinguishes the present
solution method from previously proposed methods
(e.g., that of Shukla and Saha) is the modification of
the boundary values of x and ¢ during the actual so-
lution procedure. In other methods, these values are
fixed, so that the solution has to be repeated iteratively.
Apparently, it is this characteristic of the method which
leads to its good convergence properties, and its ability
to reconstruct the wind field exactly.

If equations (20) and (21) are combined to form a
single equation, it may be possible to apply a direct
solution method. However, it is not clear whether the
computational expense would be reduced. Since our
primary interest is in reconstructing the wind field ac-

- curately, we have chosen the more simple SOR method.

b. A numerical example

The above algorithm is now used to solve for the
wind components on a grid with (M X N) = (21 X 20)
internal grid points having a mesh spacing (A\, Af)
=(2°, 1°), and covering approximately the area be-
tween 45° and 65°N and 20°W and 20°E.

The wind components 1 and v are shown in Fig. 2,
and represent the circulation around a depression near
the centre of the region. -
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FIG. 2. Initial wind field: a) zonal component ¥, and b) meridional
component v. (Units are m s™'.)

From these winds we derive vorticity and divergence
fields over the interior of the region. These latter forcing
fields are then used, together with the winds on the
boundary, to derive the streamfunction and velocity
potential using the numerical technique described
above. The fields of Y and x after 60 iterations are
shown in Figs. 3 and 4, respectively.

The solution process was started using zero values
for ¢ and x. The wind fields corresponding to ¥ and
x were evaluated at several stages during the iteration
process, using (14) and (15), and compared with the
original wind fields. The maximum (absolute) differ-
ences in each velocity component are shown in Table
1. We can see from these results that the reconstructed
wind (from ¢ and x) is converging satisfactorily towards
the original wind, and that the differences are negligible
after about 30 iterations.

4. Conclusions

The problem of partitioning the wind field into ro-
tational and divergent components has been examined.
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FIG. 3. Streamfunction ¢ computed from the wind ficld in Fig. 2
after 60 iterations. (Units are 10° m?s™'.)

On a limited domain the solution is nonunique; a par-
ticular solution was chosen by requiring the velocity
potential to vanish on the boundary. This solution has
minimum divergent kinetic energy (Sangster, 1960)
and is obtained by the numerically straightforward so-
lution of a Poisson equation with zero boundary con-
ditions.

3

FIG. 4. As in Fig, 3 but for the velocity potential x.
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TABLE 1. Maximum absolute differences (m s™!) between the

original and reconstructed wind components for 60 iterations of
the solution technique. (The overrelaxation parameter was chosen

as 1.80.)
Tterations | At} ma |AV]oyan
0 27. . 14.
12 2.8 20
24 42 % 107! 49 x 107!
36 59 %1072 55X 1072
48 8.2 x 1074 1.2 X 1073
60 1.6 X 107* 1.1 X107

The more difficult problem of reconstructing the
wind field from the vorticity and divergence has been
considered, and an iterative technique for its solution
has been devised. This technique relaxes both interior
and boundary values of the streamfunction and velocity
potential towards balance with the forcing functions.
Its effectiveness has been shown by application to a
particular wind field. In contrast to previously proposed
methods known to us (see, e.g., Shukla and Saha, 1974),
the solution converges towards the original wind field,
which may be recovered to any degree of accuracy re-
quired.
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