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Abstract. The billiard problem concerns a point particle moving freely in a region of

the horizontal plane bounded by a closed curve Γ, and reflected at each impact with Γ.

The region is called a ‘billiard’, and the reflections are specular: the angle of reflection

equals the angle of incidence. We review the dynamics in the case of an elliptical

billiard. In addition to conservation of energy, the quantity L1L2 is an integral of

the motion, where L1 and L2 are the angular momenta about the two foci. We can

regularize the billiard problem by approximating the flat-bedded, hard-edged surface

by a smooth function. We then obtain solutions that are everywhere continuous and

differentiable. We call such a regularized potential a ‘ballyard’. A class of ballyard

potentials will be defined that yield systems that are completely integrable. We find

a new integral of the motion that corresponds, in the billiards limit N →∞, to L1L2.

Just as for the billiard problem, there is a separation of the orbits into boxes and loops.

The discriminant that determines the character of the solution is the sign of L1L2 on

the major axis.
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1. Introduction

In his Lectures on Theoretical Physics, Arnold Sommerfeld [6] wrote “The beautiful

game of billiards opens up a rich field for applications of the dynamics of rigid bodies.

One of the illustrious names in the history of mechanics, that of Coriolis, is connected

with it.” Sommerfeld was referring to a book by Gaspard-Gustave de Coriolis, Théorie

mathématique des effets du jeu de billiard, published in Paris in 1835 [5].

Billiards has been used to examine questions of ergodic theory [4]. In ergodic

systems, all configurations and momenta compatible with the total energy are eventually

explored. Such questions lie at the foundation of statistical mechanics. We know that

the dynamics on an elliptic billiard is integrable: its caustics are confocal ellipses and

hyperbolas. George Birkhoff conjectured that if the neighbourhood of a strictly convex

smooth boundary curve is foliated by caustics, then the curve must be an ellipse. So
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far, this conjecture — that ellipses are characterized by their integrability — remains

an open problem.

The simplest billiard is circular. The dynamics are easily described: every

trajectory makes a constant angle with the boundary and is tangent to a concentric circle

within it. Berger [1, p. 713] observed that “Circular billiards is indeed a banal subject,

but nontheless we visualize it rapidly.” Every trajectory is either a polygon (perhaps

star-shaped) or is everywhere dense in an annular region. Moreover, the elliptical billiard

problem is completely resolved, thanks to Poncelet’s theorem and the known geometry

of confocal conics. We have periodic trajectories, or ones that are dense in regions of

two distinct topological types. More generally, Tabachnikov [7] discusses the theory of

convex smooth billiards — the elliptic case. Berry [2] considered various deformations

of the circular billiard, and showed how they support a variety of different orbits.

In §2 we review the well-known theory of billiards on an elliptical domain. In this

case, the velocity has a jump discontinuity at each impact. In §3, we introduce ballyard

domains, regularizing the problem by approximating the flat-bedded, hard-edged surface

by a smooth function. This ensures that the solutions are everywhere smooth. We define

a countably infinite class of ballyard potentials depending on a parameter N , each of

which is completely integrable. For this class, we find a new integral of the motion, L,

that corresponds, in the billiards limit N → ∞, to L1L2. It follows from this integral

and the nature of the potential surface that the orbits split into boxes and loops. The

discriminant that determines the character of the solution is the sign of L1L2 on the

major axis.

2. Elliptical Billiards

We idealize the game of billiards, assuming the ball is a point mass moving at constant

velocity between elastic impacts with the boundary, or cushion, of the billiard table.

The energy is taken to be constant. The path traced out by the moving ball may form

a closed periodic loop or, more generically, it may cover the table or part of it densely,

never returning to the starting conditions.

The billiard table may be of any shape, but we generally assume that it is either

rectangular, like a normal table, or elliptical. In this section, we examine the orbits

for an elliptical table. We assume for simplicity that the centre of the ellipse is at the

origin, the major axis coincides with the x-axis and the semi-axes are a and b. Thus,

the boundary is described by the equation

x2

a2
+
y2

b2
= 1

It is also useful to recall the parametric form

x = a cos θ , y = b sin θ

where θ is called the eccentric anomaly (note that θ is not identical to the polar angle,
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which we denote by ϑ). The foci are at (f, 0) and (−f, 0) where f 2 = a2 − b2. Defining

the eccentricity e by e2 = 1− (b/a)2, it follows that the foci are at (ea, 0) and (−ea, 0).

Initial Conditions.

Initial conditions for motion in a plane normally require four numbers, two for the

position and two for the momentum. Since we can assume without loss of generality

that the ball moves at unit speed, only the direction of the initial momentum is required.

Likewise, if the motion starts from the boundary, a single value determines the position.

We suppose a trajectory starts at a boundary point with eccentric anomaly θ0 and moves

at an angle ψ0 to the x-axis. The pair of values {θ0, ψ0} determines the entire motion.

Each bounce is a specular reflection: the angle between the normal to the cushion

and the incoming trajectory is equal to the corresponding angle for the outgoing

trajectory. The tangential component of velocity is unchanged after impact, while the

normal component reverses sign. Thus, the speed remains constant.

The first linear segment of the trajectory is tangent to another conic confocal

with the boundary. Because of the specular reflection at the boundary, all subsequent

segments are also tangent to this conic [1]. The conic is called the caustic of the orbit,

and may be an ellipse or a hyperbola.

Generic Motion: Box Orbits & Loop Orbits.

Since the speed is a constant, taken to be unity, the orbit is determined by the initial

postion and angle of motion. Alternatively, we can simply give the first two points of

impact with the cushion. There are two generic types of orbit. The first arises when

the ball crosses the major axis between the foci, the second when it crosses outside.

In the first case, once the trajectory brings the ball across the interval −f < x < +f

on the x-axis, it is constrained by the geometry of the ellipse to remain within a region

bounded by a hyperbola having the same foci as the original ellipse. Each segment of

the orbit between impacts with the ellipse is tangent to this hyperbola (see figure 1,

left panel). Generically, the orbit is dense in this region, coming arbitrarily close to any

given point within it.

If the ball crosses the major axis outside the foci, that is for x ∈ (−a,−f) or

x ∈ (f, a), it will continue to do so. It will never pass between the foci. Each segment

is tangent to a smaller ellipse, confocal with the original boundary (see figure 1, right

panel). Generically, the orbit is dense in the annular region between the two ellipses.

The Homoclinic Orbit: Motion through the Foci.

The two generic families of orbits are separated by the homoclinic orbits, for which the

ball passes through a focus. Due to specular reflection at the boundary, it will pass

through a focus on each subsequent segment of its path. Moreover, the orbit rapidly

approaches horizontal motion back and forth along the major axis (see figure 2).
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Figure 1. Generic orbits. Left: Box orbit, crossing the major axis between the foci.

Right: Loop orbit, crossing the major axis outside the foci.

Figure 2. Homoclinic orbits. Left: Singular orbit passing through the two foci. Right:

Any orbit through a focus rapidly approaches motion along the major axis.

There is an interesting paradox here: the dynamical behaviour is reversible in time.

However, all orbits through the foci tend to the same limiting orbit, ultimately bouncing

back and forth between the ends (−a, 0) and (+a, 0) of the ellipse. What if we start on

the same trajectory but reverse the time? We will find that, once again, the orbit will

approach horizontal oscillations. So, starting from motion close to the end state, two

things can happen: either this back-and-forth motion will continue indefinitely or the

y-component will gradually increase, reach a maximum and then die away rapidly. The

graph of y against time is reminiscent of a wave-packet or soliton.
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Periodic Orbits.

For special choices of the initial position and direction of movement, closed orbits ensue.

The simplest are period-2 orbits, where there are just two points of impact. These are

along the major or minor axes. We have seen that horizontal oscillations are unstable to

some small perturbations: the motion may develop a large component along the minor

axis, and then return to a quasi-horizontal orbit.

There is a simple period-4 orbit touching the ellipse at the four stationary points,

that is the points where the distance from the origin is maximal or minimal. Now move

the initial point (a, 0) slightly by varying θ0 = ε, leaving the direction ψ0 unchanged.

The first impact will move from (0, b) to a nearby point and, after four segments, the

ball will be close to (a, 0). It is clear that, by tweaking the initial angle ψ0, the orbit

can be made to return to the initial point after four segments, thereafter repeating in

a period-4 orbit. In fact, this is guaranteed by Poncelet’s closure theorem, discussed

below. It follows from the theorem that there are period-4 orbits from every starting

point. Indeed, Poncelet’s theorem implies that there is a period-n orbit for any starting

point and any n ≥ 3.

Poncelet’s closure theorem, also called Poncelet’s porism, is discussed at length in

[1]. A porism is a problem that has either an infinite number of solutions or none at all.

Poncelet’s porism states that, given any two conics, if there is a polygon with vertices on

one conic (the outer conic) and all sides tangent to the other one (the inner conic), then

an arbitrary point on the outer conic is a vertex of such a polygon. For elliptic billiards,

this means that if there is a periodic orbit, then there exist orbits of the same period

for any value of the initial position θ0. Berger [1] describes Poncelet’s result — which is

simply stated but difficult to prove — as “the most beautiful theorem on conics”.

Phase Portrait.

The billiard problem may be described as a Hamiltonian dynamical system. Between

impacts with the boundary, the momentum is constant, so the equations of motion are

q̇ = p , ṗ = 0 ,

representing motion in a straight line at constant speed. At each impact, the normal

component of momentum is reversed while the tangential component is unchanged.

The dynamics are completely specified by considering the discrete mapping from one

bounce to the next. Let (xn, yn) be the n-th point of impact, and (un, vn) the velocity

between points (xn, yn) and (xn+1, yn+1). The slope of this segment is mn = vn/un.

Given the values (x, y;m)n we can calculate the position of the next bounce:

xn+1 = −xn −
2a2mn(yn −mnxn)

m2
na

2 + b2
, yn+1 = yn +mn(xn+1 − xn) .

Then, defining νn+1 = (a2yn+1)/(b
2xn+1), we get

mn+1 =
2νn+1 − (1− ν2n+1)mn

(1− ν2n+1) + 2νn+1mn

.
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We now have (x, y;m)n+1. This discrete map can be iterated to generate the entire

orbit.

We can determine the motion once the initial position θ0 ∈ [−π, π] and opening

angle φ0 ∈ [−π, π] are known. Indeed, the continuous system may be represented by a

discrete mapping from one impact to the next:

θn+1 = f(θn, φn) , φn+1 = g(θn, φn) .

Plotting the representative points on a (θ, φ) diagram, we obtain a phase-portrait of

the motion. Such portraits are shown in figure 3 for ten choices of initial conditions.

Three represent box orbits; these fall within the separatrix, which includes the point

(θ, φ) = (0, 0). The remaining six are for clockwise and counter-clockwise loop motions.

There is a striking similarity between these phase plots and the phase portrait

for a simple pendulum, which has librational and rotational motions separated by a

homoclinic orbit that asymptotes to the unstable equilibrium point.

Figure 3. Phase plots of ten orbits. Horizontal axis is θ ∈ [−π, π] and vertical axis is

φ ∈ [−π, π]. The separatrix contains the point (θ, φ) = (0, 0).

Constants of Motion.

Since the system has no dissipation and since energy is conserved at boundary impacts,

the kinetic energy

T = 1
2
(ẋ2 + ẏ2)

is a constant of the motion. For a circular table it is convenient to use polar coordinates

(r, ϑ). Then the Lagrangian may be written

L = 1
2
(ṙ2 + r2ϑ̇2)− V (r) .
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Since ϑ is an ignorable coordinate (L is independent of ϑ), the conjugate variable

pϑ = ∂L/∂ϑ̇ = r2ϑ̇, the angular momentum about the centre, is conserved.

For an elliptical table, the angular momentum about the centre is no longer

conserved. However, there is another conserved quantity, as we shall now show. Since

the boundary is an ellipse, it is convenient to use elliptic coordinates (ξ, η):

x = f cosh ξ cos η , y = f sinh ξ sin η . (1)

The components of the velocity v = (u, v) are then

ẋ = u = f sinh ξ cos η ξ̇ − f cosh ξ sin η η̇

ẏ = v = f cosh ξ sin η ξ̇ + f sinh ξ cos η η̇

and the radii from the center and foci are

r0 = (x, y) = f(cosh ξ cos η, sinh ξ sin η)

r1 = (x− f, y) = f(cosh ξ cos η − 1, sinh ξ sin η)

r2 = (x+ f, y) = f(cosh ξ cos η + 1, sinh ξ sin η)

We can now compute the angular momenta L1 = r1 × v and L2 = r2 × v about the

foci, from which it follows that

L1 · L2 = L1L2 = f 4(cosh2 ξ − cos2 η)
[
(− sin2 η)ξ̇2 + (sinh2 ξ)η̇2

]
. (2)

Since there is no cross-term containing ξ̇η̇, the quantity L1L2 does not change its value

at an impact, where (ξ̇, η̇) → (−ξ̇, η̇). Clearly, since segments between bounces are

linear, L1 = r1 × v and L2 = r2 × v are constant along each segment. Thus, L1L2 is a

constant of the motion [7]

The transformation to elliptic coordinates (1) can be inverted:

ξ = arccosh

(
r1 + r2

2f

)
, η = arccos

(
r2 − r1

2f

)
.

Constant ξ corresponds to r1 + r2 constant, yielding an ellipse, while constant η

corresponds to r1 − r2 constant, yielding a hyperbola. We note that

r1 = f(cosh ξ − cos η) , r2 = f(cosh ξ + cos η) .

so that

r1r2 = f 2(cosh2 ξ − cos2 η) = f 2(sinh2 ξ + sin2 η) .

Since a constant product of distances from two points yields a Cassinian oval, we see

that the contours of the function (cosh2 ξ − cos2 η) are such ovals. The particular case

r1r2 = f 2 is the lemniscate of Bernoulli.

It is clear that for loop orbits, L1 and L2 are either both positive or both negative,

so L1L2 is positive. For box orbits, which pass between the foci, L1 and L2 are of
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opposite signs. For the homoclinic orbit, passing through the foci, one or other of these

components vansihes. Thus, L1L2 acts as a discriminant for the motion:

Orbit is


Box type if L1L2 < 0

Homoclinic if L1L2 = 0

Loop type if L1L2 > 0.

Confocal Conics.

We consider the set of confocal conics

x2

a2 + λ
+

y2

b2 + λ
= 1 . (3)

The case λ = 0 corresponds to the boundary of the billiard table. The range

λ ∈ (−b2,+∞) gives a family of ellipses all having the same foci, while the range

λ ∈ (−a2,−b2) gives a family of confocal hyperbolas orthogonal to the ellipses [1]. The

two families cover the points of the plane twice, and provide an orthogonal coordinate

system (see figure 4).

Suppose the initial segment lies on the line y = mx + c. The condition that this

line is tangent to a confocal conic (3) leads to a quadratic equation whose discriminant

must vanish, yielding

λ =
c2 − (m2a2 + b2)

1 +m2
. (4)

But since this is true for all segments of the trajectory, λ is an invariant of the motion.

We will show now how this purely geometric result may be interpreted dynamically.

The angular momentum about the centre is L0 = (xv − yu). The angular momenta

about the foci are then L1 = L0 − fv and L2 = L0 + fv. The slope m is related to the

components of velocity, m = v/u. Using this in (4) and recalling that u2 + v2 = 1, we

find that

λ = L2
0 − f 2v2 − b2 = L1L2 − b2

Since L1L2 is conserved, so is λ, and every segment of the trajectory is tangent to the

same conic. For λ ∈ (−b2,+∞) it is an ellipse, while for λ ∈ (−a2,−b2) it is a hyperbola.

3. Regularizing the Motion: Ballyards

The perfectly-reflecting boundaries imply instantaneous changes in momentum at each

bounce. This corresponds to a potential well that is constant in the interior and has

a step discontinuity at the boundary. We can approximate this behaviour by a high-

order polynomial. For a circular table of radius a we take the potential energy to be

V (r) = V0(r/a)N where N is a large positive integer. This corresponds to a radially

attractive force that is negligible in the interior but large in a narrow boundary zone.
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With polar coordinates (r, ϑ), the conjugate momenta are pr = ṙ and pϑ = r2ϑ̇ and the

Hamiltonian may be written

H = 1
2
(p2r + p2ϑ/r

2) + V (r)

Since this is independent of ϑ, the azimuthal momentum pϑ is a constant of the motion.

Figure 4. Elliptic coordinates (ξ, η). The family of ellipses and the family of

hyperbolas each cover the plane. All conics have the same foci.

For an elliptical table, we choose a potential function that rises sharply near the

elliptical boundary. The kinetic energy may be written in elliptic coordinates:

T = 1
2
f 2(cosh2 ξ − cos2 η)(ξ̇2 + η̇2)

The Lagrangian then becomes

L = T − V = 1
2
f 2(cosh2 ξ − cos2 η)(ξ̇2 + η̇2)− V (ξ, η) . (5)

The conjugate momenta in elliptic coordinates are

pξ =
∂T

∂ξ̇
= f 2(cosh2 ξ − cos2 η)ξ̇ , pη =

∂T

∂η̇
= f 2(cosh2 ξ − cos2 η)η̇ .

The Hamiltonian may now be written

H =
p2ξ + p2η

2f 2(cosh2 ξ − cos2 η)
+ V (ξ, η) .
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A Liouville integrable system.

In 1848 Joseph Liouville identified a broad class of dynamical systems that can be

integrated [8, p. 67]. We confine attention here to systems with two degrees of freedom,

with generalised coordinates (q1, q2). If the kinetic and potential energies can be

expressed in the form

T = 1
2
[U1(q1) + U2(q2)]× [V1(q1)q̇21 + V2(q2)q̇22] , V =

W1(q1) +W2(q2)

U1(q1) + U2(q2)
. (6)

then the solution can be solved in quadratures. This is proved in Appendix I, where

explicit expressions for the solution integrals are given.

The kinetic energy term in the Lagrangian (5) is of the form (6) with

U1(ξ) = f 2 cosh2 ξ U2(η) = −f 2 cos2 η V1 ≡ 1 V2 ≡ 1 .

We can express the function U(ξ, η) in the form

U(ξ, η) = U1(ξ) + U2(η) = r1r2 .

For small eccentricity, this depends only weakly on η.

If the potential energy function is of the form V (ξ, η) = [W1(ξ) +W2(η)]/[U1(ξ) +

U2(η)], the problem defined by the Lagrangian (5) is of Liouville type. The Hamiltonian

may be written as

H =

[
1
2
(p2ξ + p2η) + (W1(ξ) +W2(η))

f 2(cosh2 ξ − cos2 η)

]
.

It is a constant of the motion, equal in value to the total energy E.

We seek a potential surface that is close to constant within the elliptical region

defined by (x/a)2 + (y/b)2 = 1 and that rises rapidly in a boundary zone. We define the

potential surfaces by setting

W1(ξ) = VNf
2 coshN ξ W2(η) = −VNf 2 cosN η (7)

where VN = V0 sechN ξB with V0 a constant, ξB the value of ξ defining the reference

ellipse (cosh ξB = a/f = 1/e) and N an even integer. The potential energy function is

then

V (ξ, η) =
W1(ξ) +W2(η)

U1(ξ) + U2(η)
= VN

[
coshN ξ − cosN η

cosh2 ξ − cos2 η

]
.

Two examples of potential energy surfaces are shown in figure 5.

For N = 2 we have

W = V2f
2(cosh2 ξ − cos2 η) , V ≡ 1

so that the potential energy is constant. The table is flat and the particle moves at

constant velocity in a straight line; there is no finite boundary. For N = 4, we have

W = V4f
2(cosh4 ξ − cos4 η) V = V4(cosh2 ξ + cos2 η)
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Figure 5. Potential energy surface for N = 6 (left) and N = 32 (right). Cross-sections

along the major axis are also shown.

so the potential energy is proportional to x2 + y2. In this case, which corresponds to an

isotropic simple harmonic oscillator in two dimensions, the orbits are closed ellipses.

The system is integrable for any value of N but, for definiteness, we let N = 6:

W = V6f
2(cosh6 ξ − cos6 η) = V6f

2(cosh2 ξ − cos2 η)(cosh4 ξ + cosh2 ξ cos2 η + cos4 η) .

The Hamiltonian function for this system is

H =
1
2
(p2ξ + p2η)

f 2(cosh2 ξ − cos2 η)
+ V6(cosh4 ξ + cosh2 ξ cos2 η + cos4 η) .

From Equations (A.1) and (A.2) in Appendix I we have

1
2
U2ξ̇2 = EU1(ξ)−W1(ξ) + γ1 (8)

1
2
U2η̇2 = EU2(η)−W2(η) + γ2 (9)

where γ1 and γ2 are constants of integration, and γ1 + γ2 = 0.

We partition the energy as E = E1 + E2, where

E1 = 1
2
U(ξ, η)ξ̇2 +

W1(ξ)

U(ξ, η)
and E2 = 1

2
U(ξ, η)η̇2 +

W2(η)

U(ξ, η)
.

Then the constants of motion can be written

γ1 = UE1 − EU1 γ2 = UE2 − EU2 .

Note that the components E1 and E2 of energy are not constants.
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Equations (8) and (9) can be integrated:∫ ξ U1(ξ)dξ√
2[EU1(ξ)−W1(ξ) + γ1]

=

∫ t

dt (10)∫ η U2(η)dη√
2[EU2(η)−W2(η) + γ2]

=

∫ t

dt (11)

Analytical evaluation of these integrals may or may not be possible. For the case N = 4,

the solutions can be expressed in terms of elliptical integrals.

For the case N = 6, we get:∫ ξ

ξ0

f 2 cosh2 ξ dξ√
2[Ef 2 cosh2 ξ − V6f 2 cosh6 ξ + γ]

= t− t0 (12)

∫ η

η0

−f 2 cos2 η dη√
2[−Ef 2 cos2(η) + V6f 2 cos6 η − γ]

= t− t0 (13)

where we have written γ = γ1 = −γ2. These do not have solutions in closed form.

The Angular Momentum Integral.

For the billiard dynamics, the product of the angular momenta about the foci, L1L2, is

an integral of the motion. We seek a corresponding integral for the general case N of a

ballyard. In elliptical coordinates, we can write

L1L2 = f 2U(ξ, η)[sinh2 ξ η̇2 − sin2 η ξ̇2]

We use (8) and (9) to substitute for ξ̇2 and η̇2 and, after some manipulation, find that

L1L2 +
2f 2(sinh2 ξ W2 − sin2 η W1)

U
= −2(f 2E + γ) . (14)

Since the right hand side is constant, the same is true of the left hand side. If we define

the quantity

Λ(ξ, η) =
2f 2[sinh2 ξ W2(η)− sin2 η W1(ξ)]

U(ξ, η)

then the relationship (14) becomes

L ≡ L1L2 + Λ = −2(f 2E + γ) = constant , (15)

and L is an integral of the motion.

It is easy to show that Λ(ξ, η) is equal to Λ0 = −2f 2VN , a constant, on the major

axis (y = 0). This implies that L1L2 is also constant there. But it is clear on physical

grounds that L1L2 < 0 on the inter-focal segment −f < x < f and L1L2 > 0 when

x < −f or x > f . Therefore, if the trajectory passes through the inter-focal segment, it

can never cross the major axis outside it. If it crosses outside, it cannot pass between

the foci. If a trajectory passes through a focus then L1L2 must vanish there. It can
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never cross the axis at points other than the foci. This special case of motions L = Λ0

separates the box orbits from the loop orbits.

We note that as N →∞,

W1 = O

(
cosh ξ

cosh ξB

)N
and W2 = O

(
1

cosh ξB

)N
so that, for |ξ| < |ξB|, we have limN→∞ L = L1L2. That is, the integral L corresponds in

this limit to the product of the angular moments about the foci, the quantity conserved

for motion on a billiard.

Note that (15) may be written L+ 2f 2E+ 2γ = 0, so the three constants E, γ and

L are not independent. Given that the system has two degrees of freedom, there must

be another independent integral of the motion.

4. Numerical Results

Numerical integrations confirm the dichotomy between box and loop orbits for the

ballyard potentials. A large number of numerical experiments were performed with

N = 6, and several for larger values of N . Figure 6 shows a typical box orbit (left

panel) and loop orbit (right panel).

Figure 6. Numerical solutions for N = 6. Left: Box orbit, crossing the major axis

between the foci. Right: Loop orbit, crossing the major axis outside the foci.

For the special case of orbits passing through the foci, the equations in (ξ, η)

coordinates are singular. A re-coding using cartesian coordinates enabled numerical

integrations along homoclinic orbits. A typical orbit is shown in figure 7. The orbit

rapidly approaches an oscillation along the major axis.

In general, the orbits are dense in a region bounded by an ellipse and hyperbola

(box orbits) or between two ellipses (loop orbits). However, for delicately chosen initial

conditions, the solutions may be periodic. A periodic box orbit is shown in figure 8 (left

panel) and a pure elliptic loop orbit is shown in figure 8 (right panel).
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Figure 7. Numerical solution (N = 6) for the homoclinic orbit, crossing the major

axis at the foci.

Figure 8. Numerical solutions for N = 6. Left: Periodic box orbit Right: Pure elliptic

loop orbit.

5. Conclusion

We have reviewed the well-known problem of motion on an elliptical billiard, and shown

how the dynamics may be regularized by approximating the flat-bedded, hard-edged

billiard by a smooth surface, a ballyard. The ballyard Lagrangians are of Liouville type

and so are completely integrable. A new constant of the motion (L) was found, allowing

us to show that the trajectories split into boxes and loops, separated by homoclinic

orbits. The discriminant that determines the character of the solution is the sign of

L1L2 on the major axis.
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Appendix I: Integrable Systems of Liouville Type

Following [8, §43], we show how a system of Liouville type, where the kinetic and

potential energies can be expressed in the form

T = 1
2
[U1(q1) + U2(q2)][q̇21 + q̇22] , V =

[W1(q1) +W2(q2)]

[U1(q1) + U2(q2)]
,

can be solved in quadratures. Letting U(q1, q2) = U1(q1) + U2(q2) we have

T = 1
2
U [q̇21 + q̇22] , V =

1

U
[W1(q1) +W2(q2)] .

The Lagrangian equation for the coordinate q1 is

d

dt

(
∂T

∂q̇1

)
− ∂T

∂q1
= −∂V

∂q1

or, more explicitly,
d

dt
(U q̇1)− 1

2

∂U
∂q1

[q̇21 + q̇22] = −∂V
∂q1

Multiplying both sides by 2U q̇1, this becomes

d

dt

(
U2q̇21

)
− U q̇1

∂U
∂q1

[q̇21 + q̇22] = −2U q̇1
∂V

∂q1

But the expression for total energy E implies U(q̇21 + q̇22) = 2(E − V ). Thus the q1-

equation may be written

d

dt

(
U2q̇21

)
= 2(E − V )q̇1

∂U
∂q1
− 2U q̇1

∂V

∂q1

= 2q̇1

[
(E − V )

∂U
∂q1

+ U ∂

∂q1
(E − V )

]
= 2q̇1

∂

∂q1
[(E − V )U ] = 2q̇1

∂

∂q1
[EU1(q1)−W1(q1)]

= 2
d

dt
[EU1(q1)−W1(q1)] .

So we can write
d

dt

[
1
2
U2q̇21

]
=

d

dt
[EU1(q1)−W1(q1)] .

Integrating this we get
1
2
U2q̇21 = EU1(q1)−W1(q1) + γ1 (A.1)

where γ1 is a constant of integration. We obtain a similar equation

1
2
U2q̇22 = EU2(q2)−W2(q2) + γ2 (A.2)

for the q2-component. Adding these together we find that γ1 + γ2 = 0.
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Solution by Quadratures.

We partition the energy as E = E1 + E2, where

E1 = 1
2
U(q1, q2)q̇

2
1 +

W1(q1)

U(q1, q2)
and E2 = 1

2
U(q1, q2)q̇

2
2 +

W2(q2)

U(q1, q2)
.

Then the constants of motion can be written

γ1 = UE1 − EU1
γ2 = UE2 − EU2

Note that the components E1 and E2 of energy are not constants.

Equations (A.1) and (A.2) can be integrated:∫ q1 U1(q1)dq1√
2[EU1(q1)−W1(q1) + γ1]

=

∫ t

dt (A.3)∫ q2 U2(q2)dq2√
2[EU2(q2)−W2(q2) + γ2]

=

∫ t

dt (A.4)

Analytical evaluation of these integrals may or may not be possible.
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