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1. Introduction

The spectrum of atmospheric motions is vast, encompassing phenomena
having periods ranging from seconds to millennia. The motions of interest
to the forecaster have timescales greater than a day, but the mathematical
models used for numerical prediction describe a broader span of dynamical
features than those of direct concern. For many purposes these higher fre-
quency components can be regarded as noise contaminating the motions of
meteorological interest. The elimination of this noise is achieved by adjust-
ment of the initial fields, a process called initialization. In this chapter, the
fundamental equations are examined and the causes of spurious oscillations
are elucidated. The history of methods of eliminating high-frequency noise
is recounted and various initialization methods are described. The normal
mode initialization method is described, and illustrated by application to
a simple mechanical system, the swinging spring.

1.1. RICHARDSON’S FORECAST

The story of Lewis Fry Richardson’s forecast, made about eighty years
ago, is well known. Richardson forecast the change in surface pressure at
a point in central Europe, using the mathematical equations. He described
his methods and results in his book Weather Prediction by Numerical Pro-
cess (Richardson, 1922). His results implied a change in surface pressure
of 145 hPa in 6 hours. As Sir Napier Shaw remarked, “the wildest guess
...would not have been wider of the mark ...”. Yet, Richardson claimed
that his forecast was “... a fairly correct deduction from a somewhat un-
natural initial distribution”; he ascribed the unrealistic value of pressure
tendency to errors in the observed winds, leading to a spuriously large value
of the calculated divergence. This large tendency reflects the fact that the
atmosphere can support motions with a great range of timescales.



1.2. THE SPECTRUM OF ATMOSPHERIC MOTIONS

The natural oscillations of the atmosphere fall into two groups (see, e.g.,
Kasahara, 1976). The solutions of meteorological interest have low frequen-
cies and are close to geostrophic balance. They are called rotational or
vortical modes, since their vorticity is greater than their divergence; if di-
vergence is ignored, these modes reduce to the Rossby-Haurwitz waves.
There are also very fast gravity-inertia wave solutions, with phase speeds
of hundreds of metres per second and large divergence. For typical condi-
tions of large scale atmospheric flow (when the Rossby and Froude numbers
are small) the two types of motion are clearly separated and interactions
between them are weak. The high frequency gravity-inertia waves may be
locally significant in the vicinity of steep orography, where there is strong
thermal forcing or where very rapid changes are occurring; but overall they
are of minor importance and may be regarded as undesirable noise.

1.3. THE PROBLEM OF INITIALIZATION.

A subtle and delicate state of balance exists in the atmosphere between
the wind and pressure fields, ensuring that the fast gravity waves have
much smaller amplitude than the slow rotational part of the flow. Obser-
vations show that the pressure and wind fields in regions not too near the
equator are close to a state of geostrophic balance and the flow is quasi-
nondivergent. The bulk of the energy is contained in the slow rotational
motions and the amplitude of the high frequency components is small. The
existence of this geostrophic balance is a perennial source of interest; it is
a consequence of the forcing mechanisms and dominant modes of hydro-
dynamic instability and of the manner in which energy is dispersed and
dissipated in the atmosphere. For a review of balanced flow, see MclIntyre
(2003). The gravity-inertia waves are instrumental in the process by which
the balance is maintained, but the nature of the sources of energy ensures
that the low frequency components predominate in the large scale flow.
The atmospheric balance is subtle, and difficult to specify precisely. It is
delicate in that minor perturbations may disrupt it but robust in that local
imbalance tends to be rapidly removed through radiation of gravity-inertia
waves in a process known as geostrophic adjustment.

When the primitive equations are used for numerical prediction the
forecast may contain spurious large amplitude high frequency oscillations.
These result from anomalously large gravity-inertia waves which occur be-
cause the balance between the mass and velocity fields is not reflected
faithfully in the analysed fields. High frequency oscillations of large ampli-
tude are engendered, and these may persist for a considerable time unless
strong dissipative processes are incorporated in the forecast model.

One of the long-standing problems in numerical weather prediction has
been to overcome the problems associated with high frequency motions.
This is achieved by the process known as initialization, the principal aim



of which is to define the initial fields in such a way that the gravity inertia
waves remain small throughout the forecast. If the fields are not initialized
the spurious oscillations which occur in the forecast can lead to various
problems. In particular, new observations are checked for accuracy against
a short-range forecast. If this forecast is noisy, good observations may be
rejected or erroneous ones accepted. Thus, initialization is essential for
satisfactory data assimilation. Another problem occurs with precipitation
forecasting. A noisy forecast has unrealistically large vertical velocity. This
interacts with the humidity field to give hopelessly inaccurate rainfall pat-
terns. To avoid this spin-up, we must control the gravity wave oscillations.

2. Scale-analysis of the Shallow Water Equations.

Considerable insight into the problem of initialization is achieved by con-
sideration of the scale properties of the linear shallow water equations. We
introduce characteristic scales for the dependent variables, and examine the
relative sizes of the terms in the equations. Let L = 10°m represent the
length scale and V = 10ms™! the velocity scale. An advective time-scale
T = L/V = 10%s is assumed. P represents the scale of pressure varia-
tions. For simplicity we take f = 10~*s~! and density po = 1kgm 3 to be
constants. The linear rotational shallow water equations are:
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The scale of each term in the equations is indicated. The ratio of the velocity
tendencies to the Coriolis terms is the Rossby number,

1 V
E—:—:l_l
Ro T~ fL 0

a small parameter. For balance in the momentum equations, we must have
P = LfV = 103 Pa. Then the sizes of the terms are as indicated here:
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To the lowest order of approximation, the tendency terms are negligible
and there is geostrophic balance between the Coriolis and pressure terms.

2.1. SCALING THE DIVERGENCE

The vorticity is the same scale as each of its components:
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Due to the cancellation between the two terms in the divergence, one might
expect it to scale an order of magnitude smaller than each of its terms:
Oou Ov v
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This is generally appropriate but here we are considering barotropic mo-
tions of large vertical scale. If we assume this magnitude for the divergence,
and take g = 10ms~2 and H = 10* m (the scale height of the atmosphere is
approximately 10 km), the terms of the continuity equation scale as follows:
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which is impossible, as there is nothing to balance the second term. We
recall that the divergence term arises through vertical integration:
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There is a strong tendency in the atmosphere towards cancellation between
convergence at low levels and divergence at higher levels and vice-versa,
called the Dines mechanism. Thus, we assume

v
/5dz ~RoSH,  so that g/édz ~Ro’gH— = 1072
The terms of the continuity equation are now brought into balance.

2.2. THE EFFECT OF DATA ERRORS

Suppose there is a 10% error Av in the v-component of the wind observation
at a point. The scales of the terms are as before:
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However, the error in the tendency is A(Ou/0t) ~ fAv ~ 10~*, comparable
in size to the tendency itself: the signal-to-noise ratio is 1. The forecast may
be qualitatively reasonable, but will be quantitatively invalid.

A similar conclusion is reached for a 10% error in the pressure gradient.
However, if the spatial scale Az of the pressure error is small (say, Az ~
L/10) the error in its gradient is correspondingly large:
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The forecast will be qualitatively incorrect, indeed unreasonable.
Now comnsider the continuity equation. The pressure tendency has scale

% ~1072Pas ! ~ 1hPa in 3 hours.

If there is a 10% error in the wind, the resulting error in divergence is
A6 ~ Av/L ~ 107, The error is larger than the divergence itself! As a
result, the pressure tendency is unrealistic. Worse still, if the wind error is
of small spatial scale, the divergence error is correspondingly greater:
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Clearly, this implies a pressure tendency two orders of magnitude larger
than the correct value. Instead of the value dp/dt ~ 1 hPa in 3 hours we
get a change of order 100 hPa in 3 hours. This is strikingly reminiscent of
Richardson’s result.

3. Early Initialization Methods
3.1. THE FILTERED EQUATIONS

The first computer forecast was made in 1950 by Charney, Fjgrtoft and Von
Neumann. In order to avoid Richardson’s error, they modified the predic-
tion equations in such a way as to eliminate the high frequency solutions.
This process is known as filtering. The basic filtered system is the set of
quasi-geostrophic equations. These equations were used in operational fore-
casting for a number of years. However, they involve approximations which
are not always valid, and this can result in poor forecasts. A more accurate
filtering of the primitive equations leads to the balance equations. This sys-
tem is more complicated to solve than the quasi-geostrophic system, and
has not been widely used.



3.2. STATIC INITTALIZATION

Hinkelmann (1951) investigated the problem of noise in numerical inte-
grations and concluded that if the initial winds were geostrophic, high
frequency oscillations would occur but would remain small in amplitude.
He later succeeded in integrating the primitive equations, using a very
short timestep, with geostrophic initial winds (Hinkelmann, 1959). Fore-
casts made with the primitive equations were soon shown to be clearly
superior to those using the quasi-geostrophic system. However, the use of
geostrophic initial winds had a huge disadvantage: the valuable informa-
tion contained in the observations of the wind field was completely ignored.
Moreover, the remaining noise level is not tolerable in practice. Charney
(1955) proposed that a better estimate of the initial wind field could be
obtained by using the nonlinear balance equation. This equation — part of
the balance system — is a diagnostic relationship between the pressure and
wind fields. It implies that the wind is nondivergent. It was later argued by
Phillips (1960) that a further improvement would result if the divergence of
the initial field were set equal to that implied by quasi-geostrophic theory.
Each of these steps represented some progress, but the noise problem still
remained essentially unsolved.

3.3. DYNAMIC INITTALIZATION

Another approach, called dynamic initialization, uses the forecast model
itself to define the initial fields. The dissipative processes in the model can
damp out high frequency noise as the forecast procedes. We integrate the
model first forward and then backward in time, keeping the dissipation
active all the time. We repeat this forward-backward cycle many times
until we finally obtain fields, valid at the initial time, from which the high
frequency components have been damped out. The forecast starting from
these fields is noise-free. However, the procedure is expensive in computer
time, and damps the meteorologically significant motions as well as the
gravity waves, so it is no longer popular. Digital filtering initialization,
described in another chapter of this book, is essentially a refinement of
dynamic initialization. Because it used a highly selective filtering technique,
is is computationally more efficient than the older method.

3.4. VARIATIONAL INITTIALIZATION

An elegant initialization method based on the calculus of variations was
introduced by Sasaki (1958). We consider the simplest case: given an anal-
ysis of the mass and wind fields, how can they be modified so as to impose
geostrophic balance? This problem can be be formulated as the minimiza-
tion of an integral representing the deviation of the resulting fields from
balance. The variation of the integral leads to the Euler-Lagrange equa-
tions, which yield diagnostic relationships for the new mass and wind fields
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in terms of the incoming analysis. Although the method was not widely
used, the variational method is now at the centre of modern data assimila-
tion practice.

4. Atmospheric Normal Mode Oscillations

The solutions of the model equations can be separated, by a process of
spectral analysis, into two sets of components or linear normal modes, slow
rotational components or Rossby modes, and high frequency gravity modes.
We assume that the amplitude of the motion is so small that all nonlin-
ear terms can be neglected. The horizontal structure is then governed by a
system equivalent to the linear shallow water equations which describe the
small-amplitude motions of a shallow layer of incompressible fluid. These
equations were first derived by Laplace in his discussion of tides in the atmo-
sphere and ocean, and are called the Laplace Tidal Equations. The simplest
means of deriving the linear shallow water equations from the primitive
equations is to assume that the vertical velocity vanishes identically.!

4.1. THE LAPLACE TIDAL EQUATIONS

Let us assume that the motions under consideration can be described as
small perturbations about a state of rest, in which the temperature is a
constant, T, and the pressure p(z) and density p(z) vary only with height.
The basic state variables satisfy the gas law and are in hydrostatic balance:
p = RpTy and dp/dz = —gp. The variations of mean pressure and density
follow immediately:

P(z) = poexp(—z/H), p(z) = poexp(—z/H),

where H = po/gpy = RTy/g is the scale-height of the atmosphere. We
consider only motions for which the vertical component of velocity vanishes
identically, w = 0. Let u, v, p and p denote variations about the basic state,
each of these being a small quantity. The horizontal momentum, continuity
and thermodynamic equations become

%—fﬁv—{—g—i =0 (4.1)
%—Ffﬁu—lrg—z =0 (4.2)
%+V-pv =0 (4.3)
%%_%% =0 (4.4)

!This assumption precludes the possibility of stud¥ing internal modes for which w # 0.
A more general derivation, based on a separation of the horizontal and vertical depen-
dencies of the variables, is presented in Daley, (1991, Ch. 9).



Density can be eliminated from the continuity equation (4.3) by means of
the thermodynamic equation (4.4). Now let us assume that the horizontal
and vertical dependencies of the perturbation quantities are separable:

pu U(z,y,1)
{ pv } = { V(z,y,t) } Z(z) . (4.5)
p P(z,y,t)

The momentum and continuity equations can then be written

oU oP
o Vg =0 (4.6)
ov oP

hll - = 4.
o iU+, 0 (4.7)
%—1;+(gh)V-V =0 (4.8)

where V = (U, V) is the momentum vector and h = yH = yRTy/g. This
is a set of three equations for the three dependent variables U, V', and P.
They are mathematically isomorphic to the Laplace tidal equations with a
mean depth h. The quantity h is called the equivalent depth. There is no
dependence in this system on the vertical coordinate z.

The vertical structure follows from the hydrostatic equation, together
with the relationship p = (ygH)p implied by the thermodynamic equation.

It is determined by
dz VA

1 + Vi 0, (4.9)
the solution of which is Z = Zyexp(—z/vH), where Zy is the amplitude at
z=0.If weset Zy =1, then U, V and P give the momentum and pressure
fields at the earth’s surface. These variables all decay exponentially with
height. It follows from (4.5) that u and v actually increase with height
as exp(kz/H), but the kinetic energy decays. Solutions with more general
vertical structures, and with non-vanishing vertical velocity, are discussed
in Daley, (1991, Ch. 9).

4.2. VORTICITY AND DIVERGENCE

We examine the solutions of the Laplace Tidal Equations in some enlighten-
ing limiting cases. Holton (1975) gives a more extensive analysis, including
treatments of the equatorial and mid-latitude S-plane approximations. By
means of the Helmholtz Theorem, a general horizontal wind field V may
be partitioned into rotational and divergent components

V=V, +V,=kxVi+Vy.

The stream function 7 and velocity potential x are related to the vor-
ticity and divergence by the Poisson equations V2i = ¢ and V2x = 4.



It is straightforward to derive equations for the vorticity and divergence
tendencies. Together with the continuity equation, they are

9¢

5 Hfo+Bv =0 (4.10)

%—f(-l—ﬂu-i—VQP =0 (4.11)
oP

= = 0. 4.12

5 + ghé 0 (4.12)

These equations are completely equivalent to (4.6)—(4.8); no additional ap-
proximations have yet been made. However, the vorticity and divergence
forms enable us to examine various simple approximate solutions.

4.3. ROSSBY-HAURWITZ MODES

If we suppose that the solution is quasi-nondivergent, i.e., we assume || <
€|, the wind is given approximately in terms of the stream function (u,v) =
(—%y,¥z), the vorticity equation becomes

V2¢t + 6¢z = 0(5) ) (4'13)

and we can ignore the right-hand side. Assuming the stream function has
the wave-like structure of a spherical harmonic, we substitute the expres-
sion ¢ = oY, ()\, ) exp(—ivt) in the vorticity equation and immediately
deduce an expression for the frequency:

2Qm

V:VRE—W.

(4.14)
This is the celebrated dispersion relation for Rossby-Haurwitz waves (Haur-
witz, 1940). If we ignore sphericity (the S-plane approximation) and assume
harmonic dependence ¥(z,y,t) = 1 exp[i(kz + Ly — vt)], then (4.13) has
the dispersion relation

v p

k k2402’

which is the expression for phase-speed found by Rossby (1939). The Rossby
or Rossby-Haurwitz waves are, to the first approximation, non-divergent
waves which travel westward, the phase speed being greatest for the waves
of largest scale. They are of relatively low frequency — (4.14) implies that
lv] < © — and the frequency decreases as the spatial scale decreases.

To the same degree of approximation, we may write the divergence
equation (4.11) as

V2P — f¢ — By = O(5). (4.15)

Ignoring the right-hand side, we get the linear balance equation

V2P =V-fVy, (4.16)
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a diagnostic relationship between the geopotential and the stream function.
This also follows immediately from the assumption that the wind is both
non-divergent (V = k x V) and geostrophic (fV = k x VP). If variations
of f are ignored, we can assume P = f1. The wind and pressure are in
approximate geostrophic balance for Rossby-Haurwitz waves.

4.4. GRAVITY WAVE MODES

If we assume now that the solution is quasi-irrotational, i.e. that |{| <
|0], then the wind is given approximately by (u,v) = (Xxz,Xy) and the
divergence equation becomes

V2xt + Bxz + V2P = O(()

with the right-hand side negligible. Using the continuity equation to elimi-
nate P, we get
Vxu + BXat — ghVx = 0.

Seeking a solution x = xoY," (A, ¢) exp(—ivt), we find that

2Qm n(n+1)gh
V2+(_n(n+1)>y_ PRIk . (4.17)

The coefficient of the second term is just the Rossby-Haurwitz frequency
vg found in (4.14) above, so that

1 1 Dgh
V= :t\/z/é + (51/}2)2 ~ 5VR; where vg = w,

Noting that |vg| > |vr|, it follows that
vy & *rg,

the frequency of pure gravity waves. There are then two solutions, rep-
resenting waves travelling eastward and westward with equal speeds. The
frequency increases approximately linearly with the total wavenumber n.

5. Normal Mode Initialization
The model equations can be written schematically in the form
X +4iLX + N(X) =0 (5.1)

with X the state vector, L a matrix and N a nonlinear vector function. If LL
is diagonalized, the system separates into two subsystems, for the low and
high frequency components:
Y +iAyY + Ny(Y,Z) = 0 (5.2)
7 +iAzZ +Nz(Y,Z) = 0
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where Y and Z are the coefficients of the LF and HF components of the
flow, referred to colloquially as the slow and fast components respectively,
and Ay and Az are diagonal matrices of eigenfrequencies for the two types
of modes.

Let us suppose that the initial fields are separated into slow and fast
parts, and that the latter are removed so as to leave only the Rossby waves.
It might be hoped that this process of “linear normal mode initialization”
(imposing the condition Z = 0 at ¢ = 0) would ensure a noise-free forecast.
However, the results of the technique are disappointing: the noise is reduced
initially, but soon reappears; the forecasting equations are nonlinear, and
the slow components interact nonlinearly in such a way as to generate
gravity waves. The problem of noise remains: the gravity waves are small
to begin with, but they grow rapidly (see Daley, Ch. 9).

To control the growth of HF components, Machenhauer (1977) proposed
setting their initial rate-of-change to zero, in the hope that they would re-
main small throughout the forecast. Baer (1977) proposed a somewhat more
general method, using a two-timing perturbation technique. The forecast,
starting from initial fields modified so that Z = 0 at ¢ = 0 is very smooth
and the spurious gravity wave oscillations are almost completely removed.
The method takes account of the nonlinear nature of the equations, and is
referred to as nonlinear normal mode initialization (NNMI). The method is
comprehensively reviewed in Daley (1991). Rather than considering the full
complexity of an atmospheric model, we will illustrate LNMI and NNMI
by application to a simple mechanical system.

6. Initialization and the Swinging Spring

The procedure of linear and nonlinear normal mode initialization can be
clearly illustrated by applying the method to the equations of the elastic
pendulum or ‘swinging spring’. This system comprises a heavy bob sus-
pended by a light elastic spring. The bob is free to move in a vertical
plane. The oscillations of this system are of two types, distinguished by
their physical restoring mechanisms. For an appropriate choice of parame-
ters, the elastic oscillations have much higher frequency than the rotation
or libration of the bob. We consider the elastic oscillations to be analogues
of the high frequency gravity waves in the atmosphere. Similarly, the low
frequency rotational motions are considered to correspond to the rotational
or Rossby-Haurwitz waves.

6.1. THE DYNAMICAL EQUATIONS

Let £y be the unstretched length of the spring, k its elasticity or stiffness
and m the mass of the bob. At equilibrium the elastic restoring force is
balanced by the weight: k(¢ — £y) = mg. Polar coordinates ¢, = r and
g9 = 6 are used, and the radial and angular momenta are p, = ms and
pg = mr?0. The Hamiltonian is, in this case, the sum of kinetic, elastic
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potential and gravitational potential energy:

H:i 2+p_g +lk(r—£)2—mrcosﬁ
om \P7 T 2 2 ° 9 .

The (canonical) dynamical equations may now be written explicitly

0 = pg/mr®
pg = —mgrsing
o= pr/m
pr = pa/mrd —k(r —£y) +mgcosb.

(If the Hamiltonian formalism is unfamiliar, the equations may be derived
by considering the forces on the bob). These equations may also be written
symbolically in vector form

X +LX+N(X)=0

where X = (8, pg,r,p,)", L is the matrix of coefficients of the linear terms
and N is a nonlinear vector function.

Let us now suppose that the amplitude of the motion is small, so that
|| = |[r—£] < £ and |0| < 1. The state vector X comprises two sub-vectors:

/
X:(Y), where Y:(e) and Z=<T),
Z Do Dr

and the linear dynamics of these components evolve independently. We call
the motion described by Y the rotational component and that described
by Z the elastic component. The rotational equations may be written

0+ (g/0)0 =0

which is the equation for a simple pendulum having oscillatory solutions
with frequency /g/£. The remaining two equations yield

7 + (k/m)r' =0,

the equations for elastic oscillations with frequency /k/m. We define the
rotational and elastic frequencies and their ratio by

Ve =)
WR = -, WE = —, e=\|{—) .
12 m WE

It is easily shown that € < 1, so the rotational frequency is always less than
the elastic. We assume that the parameters are such that ¢ < 1. In this
case the linear normal modes are clearly distinct: the rotational mode has
low frequency (LF) and the elastic mode has high frequency (HF).
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6.2. LINEAR AND NONLINEAR INITTALIZATION

For small amplitude motions, for which the nonlinear terms are negligible,
the LF and HF oscillations are completely independent of each other and
evolve without interaction. We can suppress the HF component completely
by setting its initial amplitude to zero:

Z=(",p)T=0 at t=0.

This procedure is called linear initialization. When the amplitude is large,
nonlinear terms are no longer negligible and the LF and HF motions inter-
act. It is clear from the equations that linear initialization will not ensure
permanent absence of HF motions: the nonlinear LF terms generate radial
momentum. To achieve better results, we set the initial tendency of the HF
components to zero:

Z=(©p) =0 at t=0,

This procedure is called nonlinear initialization. For the spring, we can
deduce explicit expressions for the initial conditions:

2(1 — €2(1 — cos ))
1— (0/wr)?
Thus, given arbitrary initial conditions X = (6, pg, , pr

(r,pr)T by Zgp = (rg,0)". The rotational component Y = (8, pg
unchanged.

r(0) =rg = ) pr(0) =0.

)T, we replace Z =
)! remains

6.3. A NUMERICAL EXAMPLE

In Figure 1 we show the results of two integrations of the spring equations.
The upper panels show the evolution and spectrum of the slow variable 8;
the lower panels are for the fast variable r. Dotted curves are for linear
initialization and solid curves for nonlinear initialization. The parameter
values are m = 1, g = m2, k = 10072 and £ = 1 (all SI units), so that ¢ = 0.1
and the periods of the swinging and springing motions are respectively Tp =
2s and 7g = 0.2s. The initial conditions are vanishing velocity (7 = 6 = 0),
with 8(0) =1 and 7(0) € {1,0.99540}. The equations are integrated over a
period of 6 seconds For the slow variable, the curves are indistinguishable.
The spectrum has a clear peak at a frequency of 0.5 cycles per second (Hz).
For the fast variable, the linearly initialized evolution has high frequency
noise (dotted curve, lower left panel). This is confirmed in the spectrum:
there is a sharp peak at 5 Hz. When nonlinearly initialized, this peak is
removed: only the peak at 1 Hz remains. This is the ‘balanced fast motion’.
It can be understood physically: the centrifugal effect stretches the spring
twice for each pendular swing: the result is a component of r with a period
of one second. The radial variation does not disappear for balanced motion,
but it is of low frequency. It is said to be ‘slaved’ (or, better, enslaved) to
the slow motion.
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Figure 1. Solution of swinging spring equations for linear (LNMI) and nonlinear (NNMI)
initialization. See text for details.
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