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ABSTRACT

Two methods of post-processing the uncalibrated wind speed forecasts from the European Centre for Medium-

Range Weather Forecasts (ECMWF) ensemble prediction system (EPS) are presented here. Both methods

involve statistically post-processing the EPS or a downscaled version of it with Bayesian model averaging

(BMA). The first method applies BMA directly to the EPS data. The second method involves clustering the

EPS to eight representative members (RMs) and downscaling the data through two limited area models at

two resolutions. Four weighted ensemble mean forecasts are produced and used as input to the BMA method.

Both methods are tested against 13 meteorological stations around Ireland with 1 yr of forecast/observation

data. Results show calibration and accuracy improvements using both methods, with the best results stemming

from Method 2, which has comparatively low mean absolute error and continuous ranked probability scores.
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1. Previous studies

Wind speed forecasts have different uses at different time-

scales, from very short-term energy market clearing to

day-ahead energy market decisions and even week-ahead

forecasts for maintenance scheduling (Soman et al., 2005).

In the very short-term to short-term time frame (less than

six hours), wind speed forecasts have traditionally been

produced using persistence forecasting or statistical models,

the former being the most basic of forecasts, assuming that

the weather at time tþ k will be the same as at time t, where

k is a very short-term to short-term time step. Persistence

forecasting on this scale can contain skill (Soman et al.,

2005). Short-term forecasts can be produced using simple

statistical methods such as ARMA (auto-regressive moving

average) or other time series based models (Soman et al.,

2005), or more complicated methods such as Kalman

filtering (Sweeney and Lynch, 2011) or artificial neural

networks (ANN) (Sweeney et al., 2011).

The focus of the current study is on medium-term

forecasting of up to �48 hours, which relies on numerical

weather prediction (NWP) and more specifically ensemble

prediction systems (EPS). The value of an EPS is in its

interpretation, and its forecast potential goes far beyond

the deterministic ensemble mean. The spread of the

ensemble members quantifies the forecast uncertainty and

the ensemble forecast can be described by a probability

density function (PDF). Leutbecher and Palmer (2008)

describe how the skill and usefulness of probabilistic

forecasts are determined by reliability and resolution.

Reliability, also known as calibration, refers to the

statistical consistency between the predicted probabilities

and the subsequent observations (Candille and Talagrand,

2005). Uncalibrated or inconsistent forecasts lead directly

to reductions in levels of forecast quality and value

(Murphy, 1993). All EPSs are subject to forecast bias and

dispersion errors and are therefore uncalibrated (Gneiting

et al., 2005). Resolution describes the forecasts’ ability

to discriminate between scenarios that lead to different

verifying observations (Jolliffe and Stephenson, 2011).

It was proposed by Gneiting et al. (2007) that the aim of

probabilistic forecasting is to maximise sharpness subject

to calibration. In this case, sharpness describes the spread

of the predicted distributions relative to climatological

references, with narrower intervals being perceived to be

better forecasts. An alternative definition of sharpness is

the tendency of a probabilistic forecast to predict extreme

values or deviations from the climatological mean and is an

attribute of the marginal distribution of the forecasts.

Applying this definition would imply a wider interval to be

considered a better forecast (Jolliffe and Stephenson, 2011).
*Corresponding author.

email: jennifer.courtney@ucdconnect.ie

Tellus A 2013. # 2013 J. F. Courtney et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0

Unported License (http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use, distribution, and reproduction in any medium, provided

the original work is properly cited.

1

Citation: Tellus A 2013, 65, 19669, http://dx.doi.org/10.3402/tellusa.v65i0.19669

P U B L I S H E D  B Y  T H E  I N T E R N A T I O N A L  M E T E O R O L O G I C A L  I N S T I T U T E  I N  S T O C K H O L M

SERIES A
DYNAMIC
METEOROLOGY
AND OCEANOGRAPHY

(page number not for citation purpose)

http://www.tellusa.net/index.php/tellusa/article/view/19669
http://dx.doi.org/10.3402/tellusa.v65i0.19669


Throughout this article we will implement the former

definition of sharpness as defined by Gneiting et al. (2007).

Gneiting et al. (2005) developed a technique based on

ensemble model output statistics (EMOS) whereby a full

PDF can be produced from a regression equation, assum-

ing a Gaussian distribution. For simplified interpretation,

the coefficients of regression are constrained to be posi-

tive and the technique then referred to as EMOS�. The

EMOS� forecasts had lower mean absolute error (MAE),

root mean square error (RMSE) and continuous ranked

probability score (CRPS) than the raw or bias-corrected

ensemble for surface temperature and sea-level pressure.

As the forecast errors of wind speed are unlikely to form

a Gaussian distribution, this method cannot be directly

applied to a wind speed dataset. Wilks (2002) describes how

the wind speed data could be transformed to a normal

distribution by taking the square root of the distribution.

Thorarinsdottir and Gneiting (2010) developed the EMOS

approach for wind speed using a truncated normal dis-

tribution with a cut-off at zero to represent the data.

An ‘ensemble regression’ (EREG) model designed speci-

fically for use with ensemble forecasts was suggested by

Unger et al. (2009). The method is a fully calibrated version

of the ‘dressed ensemble’ method of Roulston and Smith

(2003). Raftery et al. (2005) developed a method to calibrate

ensemble forecasts using Bayesian model averaging (BMA).

BMA is a statistical method for post-processing ensemble

forecasts by weighting and combining competing forecasts.

For a predictand y each forecast fk is represented by a

conditional PDF gkðyjfkÞ. The BMA predictive model then

calculates a performance-based weight for each ensemble

wk over a recent training period. The weighted PDFs are

summed to produce the BMA PDF forecast.

Meteorological parameters such as surface temperature

and sea-level pressure can be approximated using Gaussian

distributions. The model parameters are then estimated

through maximum likelihood from the training data using

an Estimation-Maximisation (EM) algorithm (Raftery

et al., 2005). The BMA method was further developed

for parameters whose distributions do not approximate

Gaussians: precipitation fitted with a mixture of a discrete

component at zero and a gamma distribution (Sloughter

et al., 2007), wind speed fitted with a gamma distribution

(Sloughter et al., 2010) and visibility fitted with a mixture

of discrete point mass and beta distribution components

(Chmielecki and Raftery, 2011). Fraley et al. (2010)

described how the BMA method could be adapted to the

case where one or more of the ensemble members are

exchangeable, differing only in random perturbations.

This exchangeability constraint means that the BMA

method can be applied to synoptic ensembles such as those

produced by the European Centre for Medium-Range

Weather Forecasts (ECMWF) where one group is made

up of the control forecast and the other consists of the

50 perturbed exchangeable forecasts. Optimising model

parameters is an area of active research. Tian et al. (2012)

described an alternative method for obtaining the BMA

weights and variances, stating that the EM algorithm tends

to favour local optima rather than finding global optima.

They use a Broyden-Fletcher-Goldfarb-Shanno (BFGS)

optimisation method. Experiments on soil moisture simu-

lations showed the BFGS numerical results to be superior

to those of the EM algorithm and with comparable

computational expense. Models used to model wind speed

are different to those of soil moisture and the BFGS

method has not been shown to benefit wind energy

applications. The choice of the well-established EM algo-

rithm for this study is in keeping with previously published

literature in this area.

A study was carried out by Marrocu and Chessa (2008)

to evaluate the effectiveness of the BMA, EMOS, EMOS�

and a variant of the kernel dressing (DRESS) method

(Roulston and Smith, 2003) to calibrate a forecast ensem-

ble. They found that for 2-m temperature, BMA and

DRESS were best at calibrating the raw ensemble with

EMOS being the least effective. These results can be

extended to other continuous parameters such as mean

sea-level pressure (MSLP) or geopotential height but the

study does not mention extending to wind speed. A ‘poor

man’s ensemble’ may be produced by combining the

deterministic output from different numerical prediction

centres. The benefits from this approach include providing

a random sampling of initial condition errors and model

evolution errors (Arribas et al., 2005). Arribas et al. (2005)

found that at short-range their poor man’s ensemble,

derived from 10 national meteorological centres (NMCs),

was comparable to the ECMWF EPS but with the best

results stemming from a hybrid combination of the NMC

forecasts and a subset of the ECMWF ensemble members.

Nipen and Stull (2011) propose a procedure that cali-

brates any ensemble allowing focus to be put on improving

the probabilistic forecast accuracy. By separating the tasks

of calibration and accuracy improvement, they develop the

possibility of using methods that have good numerical

results but are uncalibrated by relabelling the cumulative

distribution function (CDF) values of the probabilistic

forecast to reflect the truth.

Recently, much research effort has been spent analysing

the benefits of multimodel ensemble approaches. Much

like the poor man’s ensemble, the multimodel ensemble

accounts for the initial condition and model physics errors

from an array of sources, capturing more of the models’

uncertainties (Johnson and Swinbank, 2009). Just as an

ensemble mean forecast from a single ensemble is not

always the best forecast but never the worst, the multi-

model ensemble forecast exhibits the same behaviour.
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Some ensembles may perform better than others under

certain synoptic regimes and so weighting the ensembles

based on recent performance may produce a more skillful

multimodel ensemble. Garcia-Moya et al. (2011) studied a

multimodel, multiboundary short-range EPS at the Spanish

meteorological service consisting of five limited area

models (LAMs) with five global model initialisers. The

multimodel proved to be under-dispersive, but no more so

than the ECMWF EPS. Their multimodel system shows

high skill for 10 m wind speed forecasts amongst other

surface parameters.

Literature on the appropriate probability distribution

to fit to wind speed data is extensive. Garcia et al. (1998)

compared the goodness to fit results of the Weibull and

log-normal distributions with better results obtained from

the Weibull distribution. Celik (2004) performed a similar

experiment comparing the Weibull and the Rayleigh

distributions at a region in southern Turkey. Again, the

Weibull gave a more accurate fit. The general consensus

within the literature is that wind speed data are best fit by a

Weibull distribution; however, Silva (2007) showed how

very often the Weibull, gamma and log-normal distribu-

tions are difficult to distinguish, with Sloughter et al. (2010)

favouring the gamma distribution.

The remainder of this article is structured as follows.

Section 2 describes the BMA method and how it is im-

plemented for wind speed forecasting. Details of the data

and methodologies used in this study are given in sections

3 and 4, respectively. Section 5 describes our findings while

conclusions are drawn in section 6.

2. Bayesian model averaging

2.1. Basic concepts

BMA is a statistical post-processing technique that can be

used to combine competing dynamical models, which may

be uncalibrated, and produce predictive PDFs of future

meteorological quantities that are both calibrated and

sharp (Raftery et al., 2005). Gneiting et al. (2007) argued

that the goal of probabilistic forecasting is to maximise

sharpness subject to calibration.

The BMA predictive PDF takes the form

pðyjf1; :::; fkÞ ¼
XK

k¼1

wkgkðyjfkÞ; (1)

where gkðyjfkÞ is the conditional PDF of y given forecast

fk, y is the quantity to be estimated and wk is the posterior

probability of forecast fk being the best one based on its

relative performance over a training period.

The shape of the PDF is dependent upon the weather

quantity of interest. Temperature (2 m) and MSLP are

approximated by a normal distribution centred around a

linear least squares bias correction of the original fore-

cast, ak þ bk fk, with standard deviation s. ak and bk are

estimated by linear regression of y on fk over the training

period. wk and s are estimated using maximum likelihood

on the training data. For numerical simplicity it is common

practice to maximise the log of the likelihood function,

in this case via an expectation-maximisation algorithm.

The optimised parameter vector is then inserted into eq. (1)

to produce the BMA probabilistic forecast.

Adaptions are made to the BMA method for wind speed

forecasting, though the general framework is the same. The

distribution is represented as a gamma function, with shape

parameter a and scale parameter b, described by

gðyÞ ¼ 1

baCðaÞ
ya�1 expð�y=bÞ (2)

where y]0. The mean of the distribution is m�ab and its

standard deviation is r ¼
ffiffiffi
a
p

b. The parameters m and a are

ensemble member specific, and as with the normal distribu-

tion can be estimated through linear regression and log-

likelihood parameter estimation over the training period.

The method takes into account the problems of getting the

log of a wind speed value of zero and discretisation of the

observations to whole numbers in knots (Sloughter et al.,

2010). The parameter vector is used to construct the overall

BMA forecast PDF as a weighted average of individual

forecast PDFs.

In practice, the BMA method is conducted separately for

each forecast hour and results obtained for this study are

averaged over all forecast hours, unless stated otherwise.

2.2. Graphical example

BMA can be understood graphically using Fig. 1, the

probabilistic �24 hour wind speed forecast at Johnstown

Castle, initialised on the 11 January 2011 at 0000 UTC.

Individual forecast ensemble members are represented by

the component thin curves. Their variance and weights are

found using maximum likelihood estimation on the train-

ing data. The weighted component curves are combined to

produce the thick curve, the BMA predictive PDF. The

dashed vertical lines represent the bounds of the 90%

prediction intervals and the verifying observation is repre-

sented by the solid vertical line.

2.3. Selection of the training period

There is no definitive criterion for selecting the length

of the training period; a subjective analysis of many

factors is required. Here, we investigate how the MAE,

CRPS and 60% coverage interval and width vary with
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different lengths of training period, starting with 10 d

and increasing in 5-d intervals to a training period of 60 d.

The test period remained fixed, while the training period

consisted of the number of training days previous to the

test period.

Figure 2 shows how each of the scores varied with the

length of the training period for the verification locations,

verified over two months. For each experimental training

length, the data from the locations is summarised with a

boxplot. For each boxplot, the median is represented by the

horizontal line, the top and bottom of the box represent the

25th and 75th percentiles, respectively. The whiskers show

the maximum and minimum distribution values and the

circles represent outliers.

For MAE and CRPS, there is very little difference

amongst the training lengths. The coverage increases with

increasing training length, reaching its optimal value of

60% around 55 d. The width values show very little

difference with increasing forecast lengths after about 20 d.

Due to the dynamic nature of the weather and the

different characteristic time-scales associated with different

weather schemes, there will be no perfect length for the

training period. The optimal length of training period is

also likely to change depending on what season it is being

estimated for. Gneiting et al. (2005) describe the trade-off

required in selecting the length of the training period be-

tween forecast adaptability in the short-term and reduced

Fig. 1. Example BMA predictive PDF (thick curve) with the

component ensemble PDFs (thin curves), the 90% confidence

interval bounds (dashed vertical lines) and the verifying

observation (thick solid vertical line).
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statistical variability in the longer term. An educated esti-

mate is required and it was decided to make the length

of the training period 25 d across all stations balancing

the need for increased accuracy and reduced statistical

variability with the adaptability of the system to changing

weather patterns.

3. Data

The wind speed forecast data used in this study originate

from the ECMWF EPS, consisting of one control fore-

cast and 50 perturbed ensemble members. The data are

recorded on 63 model levels and interpolated over a regular

latitude/longitude grid of 0.58 resolution covering the

domain from 308N to 608N and 258W to 458E. The

data were made available by the COSMO Limited-Area

Ensemble Prediction System (CLEPS) group and are

recorded every three hours from 1 January 2010 to 28

February 2011. Seven dates are missing from the dataset

with no more than three consecutively.

The forecasts are verified at 13 locations around Ireland.

The sites correspond to meteorological stations where

weather information is recorded hourly and are shown in

Fig. 3. The verifying wind speed observations have been

provided by Met Éireann in knots and subsequently

converted to m s�1.

Over the time frame of the data, the ensemble mean

forecast was found to be more skillful than the individual

ensemble members. The MAE of the ensemble mean at

�24 hours, averaged across all 13 locations, was 1.701

while the most skillful individual members had an MAE of

1.719. Similarly, at �48 hours the ensemble mean MAE

was 1.794, while the individual members could not improve

on an MAE of 1.835.

For both forecast intervals, there is a positive relationship

between the ensemble range, or the difference between the

two ensemble members on either extreme of the distribu-

tion, and the absolute forecast error as seen in Fig. 4, the

spread-error correlations being 0.27 for �24 hours and

0.48 for �48 hours. However, examination of the verifica-

tion rank histograms (VRHs) in Fig. 5 show the ensemble to

be under-dispersive and hence uncalibrated. As there are

51 ensemble members, it is expected that the observation

would be contained within the ensemble range 50 out of

52 times or 96% of the time, but in reality the �24-hour

and �48-hour observations were contained only 43% and

59% of the time, respectively. Raftery et al. (2005) explain

that this is not an uncommon characteristic of forecast

ensembles, which prompted them to develop the BMA

technique to produce calibrated and sharp predictive

PDFs.

4. Methodology

4.1. Method 1

The first method uses the 51 member ECMWF ensemble as

input to the BMA method. The 50 perturbed forecasts

differ only in random perturbations. Fraley et al. (2010)

describe how constraining these members to be exchange-

able deals with their indistinguishability. In practice, this

means constraining the weights, variances and bias correc-

tion parameters of the exchangeable members to be the

same while the control member is considered as a com-

pletely separate forecast during the maximum likelihood

parameter estimation over the training period.

The BMA method is applied from 21 January 2010 to

26 February 2011, with a 25-d training window. The dates

selected will provide consistency of forecast days across

both calibration methods with Method 2 requiring longer

training. BMA is run separately for each forecast hour

from �1 hour to �48 hour and for each station where the

ECMWF data are bilinearly interpolated to each location

and the wind speed u and v components are converted

to ms�1.
Fig. 3. Map of the 13 forecast verification locations used in this

study.
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4.2. Method 2

The second method involves spatially and temporally

downscaling the ECMWF EPS using LAMs. Downscaling

all 51 ensemble members would be a computationally

expensive exercise, so a clustering algorithm is applied to

the members to divide them into eight clusters. Each cluster

is assigned a weight based on the number of ensemble

members within it. The objective of the clustering method

was to find the eight representative members (RMs), one

from each cluster, that minimise the within-cluster spread

while maximising the between-cluster spread, based on a

RMSE distance measure. This is achieved using a clustering

method that always selects the ensemble members with the

highest and lowest values as two of the RMs. This captures

the spread of the under-dispersive ensemble. Selection of

the other six RMs could be optimised with alternative

clustering methods and this is an area for future research.

Due to the indistinguishability of the ensemble members,

there is no consistency between the ensemble members on a
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Fig. 4. Spread-skill relationship for the daily average absolute

errors in the �24 hours and �48 hours wind speed forecasts in the

ECMWF EPS averaged across all stations for 1 yr. Ensemble

range refers to the difference between the two ensembles at either

extremes of the distribution. The correlation coefficients were

�0.27 and �0.48, respectively.
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day-to-day basis. Consequently, the clustering technique is

applied to each forecast day individually and new cluster

weights are assigned each day. Clustering is performed on

the �48 hour u and v wind speed components at model

level 48, the closest level to the 850 mb pressure level where

forecasts are not strongly affected by boundary layer

disturbances.

The RM forecasts are downscaled using two LAMs,

COSMO (COSMO, 2012) and WRF (Skamarock et al.,

2005), at two resolutions. The first domain is of approxi-

mately 14 km resolution while the second domain is a

nested domain of approximately 3 km resolution. COSMO

forecasts are produced using one-way nesting, while WRF

forecasts have two-way nesting with feedback from the

inner to the outer domain. An outline of the domains can

be seen in Fig. 6.

The downscaled RM forecasts are produced for every

forecast hour from �1 hour to �48 hour and are bilinearly

interpolated to the meteorological stations. Each LAM at

each resolution produces eight RM downscaled ensemble

member forecasts. A weighted ensemble mean forecast is

calculated for each downscaled configuration using the

respective 8 RM forecasts and their cluster weights. The

products of the downscaling process are four weighted

ensemble mean forecasts that now exhibit inter-day con-

sistency and can be used as the input to the BMA method.

Similar to the ECMWF EPS, the individual ensembles

have a mean forecast that is more skillful than the indivi-

dual ensemble members. They have a positive spread-

error correlation and are under-dispersive and therefore

uncalibrated. These four weighted ensemble forecast means

are used as the input forecasts to the BMA method with

the aim of producing a calibrated and sharp predictive

PDF. The same dates are used as for Method 1 with no

exchangeability constraints.

Raftery et al. (2005) put forward an argument that there

may be redundancies of information if the ensemble

members are highly correlated. The addition of an en-

semble member that is highly correlated with an existing

ensemble member will not contribute sufficient information

to the BMA method to warrant the additional computa-

tional time required to include it.

Table 1 gives the correlation coefficients between the

four LAMs weighted ensemble mean forecast errors. The

two forecasts derived from the WRF model have a forecast

error correlation coefficient of 0.93, which is relatively high

due to the two-way nesting of the WRF model that gives

feedback from the 3 km domain to the 14 km domain.

A decision needs to be made as to whether or not to keep

both domains despite this correlation. Figure 7 shows the

BMA weights at Johnstown Castle for each of the forecasts

over all the forecast days in this study. It is clearly seen that

at different times each of the forecasts are assigned the

highest weight indicating that, depending on the synoptic

situation, each ensemble has more value than the others

and therefore none of the forecasts are continually

redundant and should be excluded.

4.3. Verification techniques

The quality of the forecasts is assessed using a number

of well-established techniques. The MAE deterministically

assesses the accuracy of a point forecast for each method.

The forecasts correspond to the ECMWF ensemble median

forecast, the weighted ensemble mean of each of the LAM

ensembles and the median of the BMA forecast of each

method. The CRPS compares the full distribution with the

observation as follows:

CRPS ¼
Z 1

�1
½FðyÞ � FoðyÞ�

2
:dy (3)

Fig. 6. Outline of the 14 and 3 km domains used when

downscaling the ECMWF representative member forecasts with

COSMO and WRF.

Table 1. Correlation coefficients of the forecasts errors between

the four limited area model ensembles based on their weighted

ensemble mean forecasts

Ensemble COSMO 14 COSMO 3 WRF 14 WRF 3

COSMO 14 1 0.59 0.46 0.42

COSMO 3 0.59 1 0.69 0.69

WRF 14 0.46 0.69 1 0.93

WRF 3 0.42 0.69 0.93 1
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where F(y) is the CDF of the predictand y, and Fo(y) is a

step function at the observation where:

FoðyÞ ¼ 0; yBobserved value (4)

FoðyÞ ¼ 1; y]observed value (5)

The sharper and more accurate the forecast, the closer the

CDF is to the step function. This equates to a smaller value

under the integral sign in eq. (3), and therefore a lower

value of CRPS.

The VRH is a statistical tool to assess the calibration of

an ensemble of forecasts. For an ensemble of forecasts to

be calibrated, each forecast and the observation can be

considered as random samples from the same probability

distribution (Hamill, 2001). The ensemble forecasts over a

time period are sorted in numerical order. The observation

is then ranked relative to the sorted ensemble member

forecasts and the frequency of observation rank presented

as a histogram. The shape of the VRH gives an indication

of its calibration with a flat histogram indicating perfect

calibration. The probability integral transform (PIT) histo-

gram is the continuous analogue of the VRH. The CDF

value is obtained for each verifying observation and the

frequencies ranked and presented as a histogram as before.

The coverage and width of the 90% prediction interval

are also used to assess the quality of the forecasts. The

coverage refers to the percentage of times the observation

falls within the bounds of the 90% prediction interval,

with a value close to 90% being considered calibrated. The

interval bounds are the wind speeds that correspond to the

0.05 and 0.95 probability forecasts of the PDF and should

be as close as possible to indicate a sharp forecast.

5. Results

In this section, we compare the calibration and accuracy

of the forecasts using the different calibration methods.

Results are given for 2 of the 13 meteorological stations

individually as well as the average results across all

stations. The two stations were chosen as the ones

perceived to give the greatest and least forecast improve-

ments, Johnstown Castle and Knock Airport, respectively,

while the station average is considered to be a more

0 100 200 300

0 100 200 300

0 100 200 300

0 100 200 300

COSMO 14

Date Sequence

0.0
0.2
0.4
0.6
0.8
1.0

W
ei

gh
t

0.0
0.2
0.4
0.6
0.8
1.0

W
ei

gh
t

0.0
0.2
0.4
0.6
0.8
1.0

W
ei

gh
t

0.0
0.2
0.4
0.6
0.8
1.0

W
ei

gh
t

COSMO 3

Date Sequence

WRF 14

Date Sequence

WRF 3

Date Sequence

Fig. 7. The BMA weights for the four ensemble member inputs used in Method 2 for Johnstown Castle from February 2010 to February

2011. This shows each of the members contributing significantly to the BMA forecasts at different times during the year and should all be

retained for the Method 2 forecast.
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representative picture of the results distribution. We start

with the results for the original 51 member ECMWF EPS

and compare all successive forecasts to this baseline.

5.1. ECMWF data

The VRH in Fig. 8 represent the ranks of the observed

wind speed value relative to the 51 ensemble member fore-

casts of the ECMWF. The top VRH represents Johnstown

Castle and shows a disproportionately high ranking of the

observation below the ensemble range, indicating there

may be an over-forecasting bias in the ECMWF data for

this station. The bottom VRH representing Knock Airport

indicates that the ensemble forecasts at this location are

under-dispersive with the verifying observation more often

than not falling outside the ensemble range. The dashed

lines correspond to the potential height of the bars if the

ensemble were calibrated. However, it is clear to see they

are not.

Table 2 shows the MAE, CRPS and coverage and width

of the 90% prediction intervals for the same two stations

and the average across all stations for all forecast hours. It

can be seen that the wind speed forecasts at Knock Airport

are distinctly better than those as Johnstown Castle with

the average across all stations unsurprisingly somewhere

between the two. The lack of coverage at all stations again

indicates towards the forecasts being uncalibrated.

5.2. Calibration

5.2.1. Method 1. The ECMWF 51 member ensemble is

used as input to a BMA method as described in section 2.

The PIT s for Johnstown Castle and Knock �24 hour

wind speed forecasts are displayed in Fig. 9. The PIT

histograms indicate that the BMA forecast is a distinct

calibration improvement over the original ECMWF EPS

data though there is still a small tendency towards an

over-forecasting bias for both stations. Post-processing

with BMA also appears to have corrected the over-

dispersiveness of the ensemble forecasts at Knock Airport.

5.2.2. Method 2. Having clustered and downscaled

the ECMWF 51 member ensemble to eight RM member

forecasts for each LAM, and having calculated a weighted

ensemble mean for each LAM, there are four competing

forecasts. For each station, the VRH for each LAM

showed the general trend of an over-forecasting bias that

is evident from the sample VRH s in Fig. 10. Downscaling

the model data through the LAMs does not calibrate the

forecast.
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Fig. 8. Example VRHs for Johnstown Castle (top) and Knock

Airport estimated using ECMWF EPS data. Ranks are estimated

at forecast hours �24 hours for the full year of data. Johnstown

Castle shows the observation falling below the ensemble range a

large proportion of the time indicating an over-forecasting bias at

this station. The Knock Airport histogram shows the observation

falling outside the ensemble range on more occasions than within

it, indicating under-dispersiveness. The dashed line corresponds to

the height of the bars if the ensemble was calibrated

Table 2. Accuracy results for the ECMWF ensemble wind speed

forecasts

Station MAE CRPS Cov. Width

Johnstown Castle 2.61 1.98 18 2.02

Knock Airport 0.95 0.72 48 1.60

Average all stations 1.67 1.27 35 1.89

This table consists of the MAE, CRPS and coverage and width of

the 90% prediction interval.
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The BMA forecast obtained using the four LAM-

weighted ensemble mean forecasts as input, is a more

calibrated forecast than the raw forecasts. Evidence of this

is seen from the almost flat PIT histograms for Johnstown

Castle and Knock Airport �24 hour wind speed forecasts

in Fig. 11. The application of both Method 1 and Method 2

to the ECMWF EPS improves the calibration of the

forecasts. Close inspection of Figs. 9 and 11 would indicate

that both methods induce a similar level of calibration on

the forecasts. The figures shown here are representative

of the calibration patterns obtained for each of the 13

meteorological stations. We now compare the accuracy of

the two methods to establish which method produces the

greatest forecast improvements.

5.3. Accuracy

The accuracy of the two calibration methods is detailed

in Tables 3�5 in terms of the MAE, CRPS and coverage

and width of the 90% prediction interval and correspond
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Fig. 10. Example VRHs for a LAM forecast for Johnstown

Castle (top) and Knock Airport. Ranks are estimated at forecast

hours �24 hours for the full year of data. Johnstown Castle

shows the observation falling below the ensemble range a large

proportion of the time indicating an over-forecasting bias at this

station. Knock Airport shows a similar though slightly less

extreme pattern. The dashed line corresponds to the height of the

bars if the ensemble was calibrated.

Johnstown Castle

Rank

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

2.5

Knock Airport

Rank

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

2.5

Fig. 9. PIT for Johnstown Castle (top) and Knock Airport using

ECMWF EPS data post-processed with BMA. The observation is

compared to the full predictive PDF. The dashed line corresponds

to the height of the bars if the BMA forecast was calibrated. Both

PIT histograms display an over-forecasting bias but are an

improvement over the uncalibrated ensemble forecast.
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to the Johnstown Castle, Knock Airport and average

station forecasts, respectively. The average ensemble fore-

cast results and the BMA forecast results are detailed for

both BMA methods and the original ECMWF results are

reiterated for comparative purposes.

The numerical results for Johnstown Castle in Table 3

show that the Method 2 BMA forecast is the most accurate

as both a deterministic and probabilistic forecast with the

lowest MAE and CRPS and considerable improve-

ments over the original ECMWF ensemble forecasts. The

coverage of the 90% prediction interval is also good.

The trade-off in using this method is that it widens the

90% prediction interval. However, the forecast has become

more calibrated. Both BMAmethods have evident accuracy

improvements over their respective average ensemble fore-

casts.

Knock Airport (Table 4) had a very good original

ECMWF ensemble forecast for wind speeds and improving

on these numerical accuracy results proved difficult. The

first BMA method made the forecasts slightly less accurate

while the second BMA method made a marginal improve-

ment to the CRPS while worsening the deterministic MAE

score. These disimprovements are small in comparison

to the improvements made to the calibration of the wind

speed forecast at Knock Airport so overall it can be argued

that post-processing the LAM forecasts with BMA does

add value to the forecasts at this location. As Knock

Airport showed the least improvement in accuracy of all

13 stations using the BMA method, it can be derived that

at every station value is added to the wind speed forecast

by statistically post-processing them in this way. This result

is mirrored in Table 5 which shows the accuracy results

averaged across all 13 stations. At an individual station

level, there was no correlation between the accuracy of

the forecasts and the location around Ireland or proximity

to the coast. Overall, improvements can be made to the

forecasts, assessed both deterministically and probabilisti-

cally, by post-processing each method with BMA. As we

have previously shown, applying the BMA method also

improves the calibration.
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Fig. 11. PIT for Johnstown Castle (top) and Knock Airport

LAM ensemble forecasts combined and post-processed with BMA.

The observation is compared to the full predictive PDF. The

dashed line corresponds to the height of the bars if the BMA

forecast was calibrated. Both PIT histograms show good

calibration.

Table 3. Numerical results for ECMWF ensemble forecast and

the two calibration methods for Johnstown Castle

Forecast MAE CRPS Cov. Width

ECMWF 2.61 1.98 18 2.02

Method 1 � Avg Ens 2.61 2.25 88 2.24

Method 1 � BMA 0.90 0.63 63 3.53

Method 2 � Avg Ens 2.62 2.42 31 5.08

Method 2 � BMA 0.87 0.62 84 3.28

Coverage and width refer to the 90% prediction interval. The best

results are displayed in bold font for clarity.

Table 4. Numerical results for ECMWF ensemble forecast and

the two calibration methods for Knock Airport

Forecast MAE CRPS Cov. Width

ECMWF 0.95 0.72 47 1.60

Method 1 � Avg Ens 0.97 0.75 88 1.80

Method 1 � BMA 1.01 0.72 85 3.89

Method 2 � Avg Ens 1.12 0.92 73 3.35

Method 2 � BMA 0.98 0.70 84 3.68

Coverage and width refer to the 90% prediction interval. The best

results are displayed in bold font for clarity.
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By taking the ECMWF 51 member ensemble, clustering

it to eight RMs, downscaling the RMs through four LAMs

and calculating a weighted ensemble mean forecast, then

using these forecasts as input to a BMA procedure, the

forecasts transform from being under-dispersive to being

calibrated and more accurate. The MAE and CRPS scores

improve by 29% and 33%, respectively, averaged across

all 13 stations over a full year. Though the results shown

here were for the �24 hour wind speed forecasts, very

similar trends were seen in both calibration and accuracy

across forecast hours �1 to �48 hours.

6. Conclusions

The ECMWF produces an EPS that despite showing a

positive spread-error correlation, is under-dispersive and

therefore uncalibrated. We have put forward two methods

of post-processing the ECMWF EPS with the aim of

producing a more calibrated and accurate probabilistic

forecast for the wind energy industry. Both methods use

BMA, with a fixed training period of 25 d to calibrate

the forecasts with varying degrees of success. Method 1

involves constraining the 50 perturbed ensemble members

to be equal which increased the calibration and accuracy

of the forecast. Method 2 produced forecasts with similar

calibration to those produced by Method 1. However,

they were the best forecasts in terms of accuracy and thus

added the most value to the wind speed forecasts in terms

of the end users in the wind energy industry. This method

clustered and downscaled the ECMWF data through

four LAMs which were then used, in conjunction with

the cluster weights, to produce a weighted ensemble

mean forecast for each LAM. These forecasts were used

as input to the BMA method. The methods were applied

to forecast lead times of �1 hour to �48 hour indicating

that probabilistic forecast improvements have been made

to wind speed forecasts in the short to medium-term time

frame across all verification locations.
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