
AweSums
Marvels and Mysteries of Mathematics

•
LECTURE 8

Peter Lynch
School of Mathematics & Statistics

University College Dublin

Evening Course, UCD, Autumn 2021



Outline
Introduction

Möbius Band I

Cookie Row

Moessner’s Magic

Lateral Thinking I

The Sieve of Eratosthenes

Hilbert’s Problems

Sources

Music and Mathematics III

Intro Möb1 Cookie Row Moessner’s Magic LT1 Sieve H23 Sources Music3



Outline
Introduction

Möbius Band I

Cookie Row

Moessner’s Magic

Lateral Thinking I

The Sieve of Eratosthenes

Hilbert’s Problems

Sources

Music and Mathematics III

Intro Möb1 Cookie Row Moessner’s Magic LT1 Sieve H23 Sources Music3



Meaning and Content of Mathematics

The word Mathematics comes from
Greek µαθηµα (máthéma), meaning
“knowledge” or “lesson” or “learning”.

It is the study of topics such as
I Quantity: [Numbers. Arithmetic]
I Structure: [Patterns. Algebra]
I Space: [Geometry. Topology]
I Change: [Analysis. Calculus]
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The Möbius Band

You may be familiar with the Möbius strip or
Möbius band. It has one side and one edge.

It was discovered independently by August Möbius
and Johann Listing in the same year, 1858.
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Building the Band

It is easy to make a Möbius band from a paper strip.

For a geometrical construction, we start with a circle
and a small line segment with centre on this circle.
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Now move the line segment around the circle:

To show the boundary of the surface, we color one
end of the line segment red and the other magenta.

Intro Möb1 Cookie Row Moessner’s Magic LT1 Sieve H23 Sources Music3



Figure: The boundary comprises two unlinked circles
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Figure: The boundary comprises two unlinked circles
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The Möbius Band
Now, as the line moves, we give it a half-twist:
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The Möbius Band
The two boundary curves now join up to become one:
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The Möbius Band

The Möbius Band has only one side.

It is possible to get from any point on the surface
to any other point without crossing the edge.

The surface also has just one edge.
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Band with a Full Twist

Figure: The boundary comprises two linked circles
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Band with Three Half-twists

Figure: One side and one edge. What shape is the edge?

The boundary is a knot, a trefoil curve
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Tadashi Takieda Video

https://www.youtube.com/watch?v=wKV0GYvR2X8
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Two Möbius Bands make a Klein Bottle

A mathematician named Klein
Thought the Möbius band was divine.

Said he: “If you glue
The edges of two,

You’ll get a weird bottle like mine.”
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Equations for the Möbius Band

The process of moving the line segment around the
circle leads us to the equations for the Möbius band.

In cylindrical polar coordinates the circle is
(r , θ, z) = (a, θ,0).

The tip of the segment, relative to its centre, is

(r , θ, z) = (b cosφ,0,b sinφ)

where b = 1
2` is half the segment length and φ = αθ,

with α determining the amount of twist.

The tip of the line has (r , z) = (a + b cosαθ,b sinαθ).
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Equations for the Möbius Band

In cartesian coordinates, the equations become

x = (a + b cosαθ) cos θ
y = (a + b cosαθ) sin θ
z = (b sinαθ)

These are the parametric equations for the twisted
bands, with θ ∈ [0,2π] and b ∈ [−`, `].

For the Möbius band, α = 1
2 .
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A Surprising Result

Let us consider an infinite row of cookies
each smaller than the previous one.

Assume that the radius of the n-th cookie is 1/n.
Then the surface area is π/n2.
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A Surprising Result

The total length of the row of cookies is

2
(

1 +
1
2
+

1
3
+ . . .

)
= 2

∞∑
n=1

1
n

This is the harmonic series, which diverges.

The total surface area of the cookies is

∞∑
n=1

π ×
(

1
n

)2

= π

(
∞∑

n=1

1
n2

)
=
π3

6

The series is known as the Basel series,
and it is convergent, with sum π2/6.
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Alfred Moessner’s Conjecture

A Remark on the Powers of the Natural Numbers
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Moessner’s Construction: n=2

We start with the sequence of natural numbers:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 . . .

Now we delete every second number and
calculate the sequence of partial sums:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 4 9 16 25 36 49 64

The result is the sequence of perfect squares:

12 22 32 42 52 62 72 82 . . .
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Moessner’s Construction: n=3

Now we delete every third number and
calculate the sequence of partial sums.

Then we delete every second number and
calculate the sequence of partial sums:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 3 7 12 19 27 37 48 61 75 91

1 8 27 64 125 216

The result is the sequence of perfect cubes:

13 23 33 43 53 63 . . .
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Moessner’s Construction: n=4

The Moessner Construction also works for larger n:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 3 6 11 17 24 33 43 54 67 81 96

1 4 15 32 65 108 175 256

1 16 81 256

The result is the sequence of fourth powers:

14 24 34 44 . . .
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Moessner’s Constructions

Remark:

Using Moessner’s construction, we can generate
a table of squares, cubes or higher powers.

The only arithmetical operations
used are counting and addition!

Are there any other sequences generated in this way?
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Moessner’s Construction for n!
We begin by striking out the triangular numbers,
{1,3,6,10,15,21, . . . } and form partial sums.

Next, we delete the final entry in each group and form
partial sums. This process is repeated indefinitely:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 6 11 18 26 35 46 58 71 85 101

6 24 50 96 154 225 326

24 120 274 600

120 720

This yields the factorial numbers:

1! 2! 3! 4! 5! 6! . . .
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Wikipedia Mathematics Portal
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Source of Some Puzzles

Mathematical Lateral Thinking Puzzles
by

Paul Slone & Des MacHale
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Slicing a Cake with One Cut

Bake a cake that you can slice
into 6 equal pieces with one cut?

Hint: The cake can be any shape you like
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Student Solution: Snake Cake

Bake a cake that you can slice
into 5 equal pieces with one cut?
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Student Solution: Zigzag Cake
Bake a cake that you can slice

into 6 equal pieces with one cut?
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A Three-dimensional Cake

Cake in the form of a helix.

This is like twist . . .

. . . pastry twisted round
a stick and cooked over a
camp-fire.
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Rearrange Six Glasses

There are six glasses in a row.

Glasses 1, 2 and 3 are full.
Glasses 4, 5 and 6 are empty.

How can you arrange for the full and empty
glasses to alternate, moving only one glass?
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Rearrange Six Glasses
First, pour water from Glass 2 into glass 5:

Then, place Glass 2 in its original position:
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Eratosthenes Measured the Earth
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The Sieve of Eratosthenes

Eratosthenes was the Librarian in Alexandria
when Archimedes flourished in Syracuse.

They were “pen-pals”.

Eratosthenes estimated size of the Earth.

He devised a systematic procedure for generating
the prime numbers: the Sieve of Eratosthenes.

Intro Möb1 Cookie Row Moessner’s Magic LT1 Sieve H23 Sources Music3



The Sieve of Eratosthenes

The idea:
I List all natural numbers up to n.
I Circle 2 and strike out all multiples of two.
I Move to the next number, 3.
I Circle it and strike out all multiples of 3.
I Continue till no more numbers can be struck out.

The numbers that have been circled are the
prime numbers. Nothing else survives.

It is sufficient to go as far as
√

n.
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The Sieve of Eratosthenes
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The Sieve of Eratosthenes
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The Sieve of Eratosthenes
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Is There a Pattern in the Primes?

It is a simple matter to make a list of
all the primes less that 100 or 1000.

It becomes clear very soon that there is
no clear pattern emerging.

The primes appear to be scattered at random.

Figure: Prime numbers up to 100
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The grand challenge is to find patterns
in the sequence of prime numbers.

This is an enormously difficult problem
that has taxed the imagination of the
greatest mathematicians for centuries.
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David Hilbert (1862–1943)

David Hilbert, from a contemporary postcard.
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Hilbert’s Problems

In August 1900, David Hilbert addresed the
International Congress of Mathematicians
in the Sorbonne in Paris:

“Who of us would not be glad to lift the veil
behind which the future lies hidden; to cast a
glance at the next advances of our science
and at the secrets of its development during
future centuries?”

Hilbert presented 23 problems that challenged
mathematicians through the twentieth century.
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Hilbert’s Problems

Hilbert’s eighth problem concerned itself with
what is called the Riemann Hypothesis (RH).

RH is generally regarded as the deepest and most
important unproven mathematical problem.

Anyone who can prove it is assured of lasting fame.
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Why is RH Important?

A large number of mathematical theorems
(1000’s) depend for their validity on the RH.

Were RH to turn out to be false, many of these
mathematical arguments would simply collapse.

In 2000, industrialist Landon Clay donated $7M,
with $1M for each of 7 problems in mathematics.

The Riemann hypothesis is one of these problems.

http://www.claymath.org/millennium-problems
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Why is RH Important?

Whoever proves Riemann’s hypothesis will have
completed thousands of theorems that start like this:

“Assuming that the Riemann hypothesis is true . . . ”.

He or she will be assured of lasting fame.

Those who establish fundamental mathematical
results probably come closer to immortality
than almost anyone else.
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Sources to Continue your Interest

I YouTube
I Plus Magazine
I Quanta Magazine
I Mathigon.org
I Wolfram Alpha
I MoMath.org
I Gresham College
I Wikipedia

I ThatsMaths.com
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The Piano Keyboard
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Middle C

C is the first note of the C major scale.
Middle C is the ‘central note on the piano.

It is commonly pitched at 261.63 Hz.

The standard frequency of the note A4 is 440 Hz.

261.63× 29/12 = 440

Where does the peculiar factor 29/12 come from?

We will look at well-tempered scales later.
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Bernstein: I Like to be in America

https://en.wikipedia.org/wiki/America_(West_Side_Story_song)

Music: Leonard Bernstein. Lyrics: Stephem Sondheim.
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Brubeck: Blue Rondo a la Turk

https://musescore.com/fierabrass/scores/286641
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Thank you
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