AweSums

Marvels and Mysteries of Mathematics • LECTURE 3

Peter Lynch School of Mathematics & Statistics University College Dublin

Evening Course, UCD, Autumn 2021

< ロ > (四 > (四 > (三 > (三 >))) (三 =))

Outline

Introduction

- **The Nippur Tablet**
- **Cutting the Plane**
- Set Theory II
- **Greek Alphabet**
- **Counting Infinite Sets**
- **Distraction 2B: Books**

э.

Intro

Cutting

Sets 2

Greek

(日)

Outline

Introduction

- **The Nippur Tablet**
- **Cutting the Plane**
- **Set Theory II**
- **Greek Alphabet**
- **Counting Infinite Sets**
- **Distraction 2B: Books**

Intro

NipTab

Cutting

Sets 2

Greek

Inf Sets

(日)

DIST02B

Meaning and Content of Mathematics

The word Mathematics comes from Greek $\mu\alpha\theta\eta\mu\alpha$ (máthéma), meaning "knowledge" or "lesson" or "learning".

- It is the study of topics such as
 - Quantity (numbers)
 - Structure (patterns)
 - Space (geometry)
 - Change (analysis).

NipTab

Sets 2

Greek

(日)

Outline

Introduction

The Nippur Tablet

Cutting the Plane

Set Theory II

Greek Alphabet

Counting Infinite Sets

Distraction 2B: Books

Intro

NipTab

Cutting

Sets 2

Greek

(日)

Inf Sets

DIST02B

The Nippur Tablet

What is the last line? The last line states that

 $13 \times 13 = 2 \times 60 + 49 = 169$

But it could be

$$13 \times 13 = 2 \times 60^2 + 40 \times 60 + 9$$

which comes to 9609. Babylonian numeration is *ambiguous.*

There is no zero!

Intro

Cutting

Sets 2

Greek

Inf Sets

What purpose could the Nippur Tablet have had?

What use could there be for a list of squares?

Perhaps it was used for multiplication!

After a brief refresher on school maths, we show how this can be done.

NipTab

Sets 2

Gr

Greek

A B F A B F

Refresher: Some School Maths

How do we do multiplication of binomials

 $(a+b) \times (c+d)$?

This can be evaluated by expanding twice:

$$a \cdot (c+d) + b \cdot (c+d) = a \cdot c + a \cdot d + b \cdot c + b \cdot d$$

A special case where the two factors are equal:

 $(a+b) \cdot (a+b) = a \cdot a + a \cdot b + b \cdot a + b \cdot b$ so that $(a+b)^2 = a^2 + 2ab + b^2$

NipTab

Greek

Geometric Reasoning

э

Cutting

Sets 2

Greek

Inf Sets

(日)

Multiplication by Squaring

Let *a* and *b* be any two numbers:

$$(a+b)^2 = a^2 + 2ab + b^2$$

 $(a-b)^2 = a^2 - 2ab + b^2$

Subtracting, we get

$$(a+b)^2 - (a-b)^2 = 4ab$$

Thus, we can find the product using squares:

$$ab=rac{1}{4}igg[(a+b)^2-(a-b)^2igg]$$

Every product is the difference of two squares (\div 4).

Intro

Cutting

NipTab

.

Sets 2

Greek

Inf Sets

(日)

DIST02E

Multiplication by Squaring

$$\frac{1}{4}\bigg[(a+b)^2-(a-b)^2\bigg]=ab$$

Let us take a particular example: $37 \times 13 = ?$

$$a = 37 \quad b = 13 \quad a + b = 50 \quad a - b = 24.$$

$$\frac{1}{4}[50^2 - 24^2] = \frac{1}{4}[2500 - 576]$$

$$= \frac{1}{4}[1924]$$

$$= 481$$

$$= 37 \times 13.$$

Perhaps this was the function of the Nippur tablet.

Cutting

Sets 2

Greek

Inf Sets

< □ > < □ > < □ > < □ > < □ >

Practicalities in Babylon

$$ab=\frac{1}{4}\bigg[(a+b)^2-(a-b)^2\bigg]$$

Suppose it was important to be able to multiply numbers up to, say, 100.

A full multiplication table would have 10,000 entries. With 20 products on each tablet, this would mean 500 clay tablets!

A table of squares up to 200 would require only 10 clay tablets.

Intro

Cutting

Sets 2

Greek

.

(日)

Refresher: Some School Maths

How do we calculate

$$a^2 - b^2$$
?

In school we may learn that

$$a^{2}-b^{2}=(a+b)*(a-b)$$

But can we make this understandable?

Yes: using pictures.

NipTab

Intro

Cutting

Sets 2

Greek

≻ ৰ ≣ ► ৰ ≣ ► Inf Sets

DIST02E

A Pictorial Proof (a > b)

Intro

Sets 2

Greek

Inf Sets

A Pictorial Proof

Intro

Outline

Introduction

- **The Nippur Tablet**
- **Cutting the Plane**
- **Set Theory II**
- **Greek Alphabet**
- **Counting Infinite Sets**
- **Distraction 2B: Books**

DIST02B

Intro

NipTab

Cutting

Sets 2

Greek

(日)

Digression: A Simple Puzzle

Six random lines. How many regions?

Intro

Cutting

Sets 2

Greek

<□ ▷ < @ ▷ < 臺 ▷ < 臺 ▷ k Inf Sets

D

A Problem of Jakob Steiner

Jakob Steiner (1796-1863)

What is the <u>maximum</u> number of parts into which a plane can be divided by *n* straight lines?

Intro

NipTab

Cutting

Sets 2

Greek

Inf Sets

D

Solving a Simple Puzzle

George Pólya, a famous Hungarian mathematician, wrote a book called

How to Solve It.

He gave many helpful tips for solving problems.

One of the key rules was:

If you cannot solve a problem, Try to solve a simpler problem.

Let's do some Experimental Mathematics.

Cutting

Sets 2

Greek

Inf Sets

(日)

Technical Restrictions

The lines must be in a generic configuration:

- All the lines are distinct.
- No two lines can be parallel.
- No point is on more than two lines.

If these restrictions are violated, a minute perturbation will be sufficient to remove the problem so that they are satisfied.

NipTab

Sets 2

Gi

Greek

Inf Sets

1

No Lines: 1 Region.

NipTab

Cutting

Sets 2

Greek

k

Inf Sets

ヘロト 人間 とくほとくほど

DIST02B

æ

Intro

NipTab

Cutting

Sets 2

Greek

Inf Sets

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

Intro

Intro

Finding a Pattern

DIST02B

Intro

Cutting

Sets 2

Greek

Inf Sets

Finding a Pattern

Triangular Numbers

Numbers of the form

Intro

$$T_n=1+2+3+\cdots+n$$

are called triangular numbers:

Triangular Numbers

Intro

$$2T_4 = 4(4+1) \quad \text{(green+yellow)} \quad T_4 = \frac{4(4+1)}{2} = 10.$$
NipTab Cutting Sets 2 Greek Inf Sets DISTO2B

Triangular Numbers

 $T_4 + T_5 = 5 \times 5$ (yellow+green).

$$T_{n-1}+T_n=n^2$$

Intro

NipTab

Cutting

Sets 2

Greek

.

< □ ▶ < @ ▶ < 厘 ▶ < 厘 ▶ k Inf Sets

DIST02B

Proving the Pattern: Heuristic Argument

We have found a pattern for the number of regions:

$$R_n = \frac{n(n+1)}{2} + 1 = \left(\frac{n^2 + n + 2}{2}\right)$$

But we have not proved it mathematically. Perhaps it breaks down for larger *n*.

We will not give a formal proof, but just an argument that suggests the formula is correct.

Suppose we have n - 1 lines. The *n*-th line has to cross each one of the other lines. It also has to extend in both directions.

Intro

Cutting

Sets 2

Greek

Inf Sets

(4月) (4日) (4日)

Consequences of the Pattern

We have found a pattern for the number of regions:

 $R_n=R_{n-1}+n.$

Is this of any practical importance?

Perhaps not. But you might consider the following problem to be of interest:

How many pieces of cake can you get by making n straight slices?

This leads us to the Lazy Caterer's Sequence.

Intro

Cutting

Sets 2

Greek

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

The Lazy Caterer's Sequence

Also known as the central polygonal numbers.

The maximum number of pieces of a disk (cake, pancake or pizza) that can be made with a given number of straight cuts.

Three cuts produce six pieces if the cuts all meet at a common point, but up to seven if they don't.

 $1, 2, 4, 7, 11, 16, 22, 29, 37, 46, 56, 67, 79, 92, 106, \ldots$

See oeis.org

Intro

NipTab

Sets 2

0

Greek

・ コット 4 日 マ チョット 4 日 マ

The Pitfalls of Generalizing

= nar

DIST02B

Intro

The Pitfalls of Generalizing

Circle Division by Chords.

The sequence begins

 $1, 2, 4, 8, 16, \ldots$

It is tempting to assume the number of regions is

 $R_n = n^2$

for all values of n.

But this formula breaks down for n = 6.

Cutting

Sets 2

Greek

Inf Sets

ヘロト ヘヨト ヘヨト

Outline

Introduction

- **The Nippur Tablet**
- **Cutting the Plane**
- Set Theory II
- **Greek Alphabet**
- **Counting Infinite Sets**
- **Distraction 2B: Books**

Intro

NipTab

Cutting

Sets 2

Greek

Inf Sets

(日)

DIST02B

Venn Diagram for 4 Sets

Intro

Cutting

Sets 2

(

Greek

Inf Sets

DIST02B

Venn-4 Diagram: Symmetric

Challenge: Construct a symmetric Venn-4 diagram.

NipTab

Cutting

Sets 2

Greek

< □ ▶ < @ ▶ < 厘 ▶ < 厘 ▶ k Inf Sets

≣ ୬९० DIST02B

Venn Diagram for 5 Sets

Intro

TRACKING SYMPTOMS

Intro

On 7 April, around 60% of app users who tested positive for COVID-19 and reported symptoms had lost their sense of smell.

- Anosmia (loss of smell) Cough Fatigue
- Diarrhoea Shortness of breath Fever

From Science journal *Nature.*

A diagram that is very poorly designed and difficult to understand.

イロト イポト イヨト イヨト

Greek

Inf Sets

э

Mathematial Graphs: Joining the Dots

A graph is a set of vertices joined by edges.

Intro

Cutting

Sets 2

Greek

< □ > < □ > < □ > < □ > < □ > Inf Sets

Venn Diagram as a Graph

Graph is equivalent to an octahedron

Intro

Cutting

Sets 2

Greek

Inf Sets

≣ ✓ DIST

Cube and Octahedron are Duals

Intro

Cutting

Sets 2

Greek

Inf Sets

DIST02B

From Kepler's Harmonices Mundi

э.

Intro

NipTab

Cutting

Sets 2

Greek

<ロト < 聞 > < 回 > < 回 > .

Inf Sets

Venn3 Dual as a Cube

DIST02B

Cutting

Sets 2

Greek

ヘロト 人間 トイヨト イヨト

Inf Sets

The Necker Cube

DIST02B

3

Intro

See blog post

Venn Again's Awake

on my mathematical blog thatsmaths.com

Intro

NipTab

Cutting

Sets 2

(

Greek

(日)

Inf Sets

DIST02B

э

Outline

Introduction

- **The Nippur Tablet**
- **Cutting the Plane**
- **Set Theory II**
- **Greek Alphabet**

Counting Infinite Sets

Distraction 2B: Books

Intro

NipTab

Cutting

Sets 2

Greek

Inf Sets

(日)

DIST02B

The Greek Alphabet

Ελληνικό αλφάβητο

Some Motivation

- Greek letters are used extensively in maths.
- Greek alphabet is the basis of the Roman one.
- Also the basis of the Cyrillic and others.
- A great advantage for touring in Greece.
- You already know several of the letters.
- It is simple to learn in small sections.

Cutting

NipTab

Sets 2

Greek

Inf Sets

Ursa Major

Figure: The Great Bear: Dubhe is α -Ursae Majoris.

Intro

Cutting

Sets 2

Greek

Inf Sets

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Letter	Name	Sound		1		Sound	
		Ancient ^[5]	Modern ^[6]	Letter	Name	Ancient ^[5]	Modern ^[6]
<mark>Α</mark> α	alpha, άλφα	[a] [a:]	[a]	Nv	nu, vu	[n]	[n]
Bβ	beta, βήτα	[b]	[v]	Ξξ	xi, ξι	[ks]	[ks]
Гγ	gamma, γάμμα	[g], [ŋ] ^[7]	[ɣ] ~ [j],	0 0	omicron, όμικρον	[0]	[o]
			[ŋ] ^[8] ~ [ŋ] ^[9]	Пπ	<mark>pi</mark> , πι	[q]	[p]
Δδ	delta, δέλτα	[d]	[ð]	Ρρ	rho, ρώ	[r]	[r]
Eε	epsilon, έψιλον	[e]	[e]	Σ σ/c ^[13]	sigma, σίγμα	[s]	[s]
Zζ	zeta, ζήτα	[zd] ^A	[z]	-			
Ηŋ	eta, ήτα	[ε:]	[1]	Тт	tau, ταυ	[t]	[t]
Θθ	theta, θήτα	[t ^h]	[0]	Υυ	upsilon, ύψιλον	[y] [y:]	[1]
				Φφ	phi, φι	[p ^h]	[f]
Т	iota, ιώτα	[i] [iː]	[i], [j], ^[10] [ŋ] ^[11]	Xx	chi, xı	[kʰ]	[x] ~ [ç]
Кк	<mark>kappa</mark> , κάππα	[k]	[k] ~ [c]				
Λλ	lambda, λάμδα	[1]	[1]	Ψψ	psi, ψι	[ps]	[ps]
Mμ	mu, μυ	[m]	[m]	ωΩ	omega, ωμέγα	[):]	[0]

Figure: The Greek Alphabet (from Wikipedia)

Intro

Cutting

Sets 2

Greek

(日)

Inf Sets

æ

OC Alpha	Beta	Y Gamma	B Delta	Epsilon	۲ _{Zeta}
η	θ	L	X	λ	μ
Eta	Theta S	I ota	Карра	Lambda	Mu
Nu T	Xi U	Omicron	X	Rho	Sigma
Tau	Upsilon	Phi	Chi	Psi	Omega

Figure: 24 beautiful letters

Cutting

Sets 2

Greek

Inf Sets

ヘロト 人間 とくほとくほど

≣ ઝવલ DIST02B

The First Six Letters

The first group of six letters.

Intro

Sets 2

Greek

<□ > < 酉 > < 亘 > < 亘 >
 Inf Sets

DIST02B

The Next Six Letters

The second group of six letters.

Intro

NipTab

Cutting

Sets 2

Greek

Inf Sets

The Next Six Letters

The third group of six letters.

DIST02B

Intro

Cutting

NipTab

Sets 2

Greek

Inf Sets

The Last Six Letters

The final group of six letters.

DIST02B

Intro

Cutting

Sets 2

Greek

Inf Sets

Intro

NipTab

Cutting

Sets 2

Greek

Inf Sets

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

DIST02B

Intro

NipTab

Cutting

Sets 2

Greek

Inf Sets

・ロト ・ 四ト ・ ヨト ・ ヨト

DIST02B

A Few Greek Words (for practice)

κλιμαξ δραμα νεκταρ κωλ**ο**ν

κ**ο**σμ**ο**ς μαθημα βιβλι**ο** ιδεα Climax: $\kappa \lambda \iota \mu \alpha \xi$ Drama: $\delta \rho \alpha \mu \alpha$ Nectar: $\nu \epsilon \kappa \tau \alpha \rho$ Colon: $\kappa \omega \lambda o \nu$

Cosmos: $\kappa o \sigma \mu o \varsigma$ Maths: $\mu \alpha \theta \eta \mu \alpha$ Book: $\beta \iota \beta \lambda \iota o$ Idea: $\iota \delta \epsilon \alpha$

Intro

Cutting

Sets 2

G

Greek

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Inf Sets

A Few Greek Words (for practice)

κωμα ψυκη κρισις

αναθεμα αμβρ**ο**σια καταστρ**ο**φη **Coma:** *κωμα* **Psyche:** *ψυκη* **Crisis:** *κρισις*

Anathema: $\alpha \nu \alpha \theta \epsilon \mu \alpha$ Ambrosia: $\alpha \mu \beta \rho o \sigma \iota \alpha$ Catastrophe: $\kappa \alpha \tau \alpha \sigma \tau \rho o \phi \eta$

(日)

Inf Sets

Intro

Cutting

Sets 2

Greek

Outline

Introduction

- **The Nippur Tablet**
- **Cutting the Plane**
- **Set Theory II**
- **Greek Alphabet**
- **Counting Infinite Sets**

Distraction 2B: Books

DIST02B

Intro

NipTab

Cutting

Sets 2

Greek

Inf Sets

There is no Largest Number

Children often express bemusement at the idea that there is no largest number.

Given any number, 1 can be added to it to give a larger number.

But the implication that there is no limit to this process is perplexing.

The concept of infinity has exercised the greatest minds throughout the history of human thought.

NipTab

Sets 2

Inf Sets

Degrees of Infinity

In the late 19th century, Georg Cantor showed that there are different degrees of infinity.

In fact, there is an infinite hierarchy of infinities.

Cantor brought into prominence several paradoxical results that had a profound impact on the development of logic and of mathematics.

NipTab

Cutting

Georg Cantor (1845–1918)

Cantor discovered many remarkable properties of infinite sets.

Intro

Cutting

Sets 2

Greek

Inf Sets

(日)

DIST

Cardinality

Finite Sets have a finite number of elements.

Example: The Counties of Ireland form a finite set.

Counties = {Antrim, Armagh, ..., Wexford, Wicklow}

For a finite set A, the *cardinality* of A is: The number of elements in A

One-to-one Correspondence

A particular number, say 5, is associated with all the sets having five elements.

For any two of these sets, we can find a 1-to-1 correspondence between the elements of the two sets.

The number 5 is called the cardinality of these sets.

Generalizing this:

Any two sets are the same size (or cardinality) if there is a 1-to-1 correspondence between them.

Greek

Inf Sets

One-to-one Correspondence

Intro

NipTab

Cutting

Sets 2

(

Greek

Inf Sets

イロト イポト イヨト イヨト

DIST02B

э.

Equality of Set Size: 1-1 Correspondence

How do we show that two sets are the same size?

For finite sets, this is straightforward counting.

For infinite sets, we must find a 1-1 correspondence.

Intro

Cutting

Sets 2

Greek

Inf Sets

D

Cardinality

The number of elements in a set is called the cardinality of the set.

Cardinality of a set A is written in various ways:

 $|\mathbf{A}| \|\mathbf{A}\| \operatorname{card}(\mathbf{A}) \#(\mathbf{A})$

For example

#{Irish Counties} = 32

Cutting

Sets 2

Gr

Greek

= 200

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Inf Sets

The Empty Set

We call the set with no elements the empty set.

It is denoted by a special symbol

$$\varnothing = \{ \}$$

Clearly

$$\#\{ \} = 0.$$

We could have a philosophical discussion about the empty set. Is it related to a perfect vacuum?

The Greeks regarded the vacuum as an impossibility.

Sets 2

Greek

Inf Sets

< □ > < □ > < □ > < □ > < □ > < □ > < □ >

DIST02E

э.

The Natural Numbers ℕ

The counting numbers (positive whole numbers) are

1 2 3 4 5 6 7 8

They are also called the Natural Numbers.

The set of natural numbers is denoted \mathbb{N} .

This is our first infinite set.

We use a special symbol to denote its cardinality:

 $\#(\mathbb{N}) = \aleph_0$

NipTab

Sets 2

Greek

・ロット (母) ・ ヨ) ・ コ)

Inf Sets

= nan

DIST02B

Intro

Sets 2

Greek

Inf Sets

▲日 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

The Power Set

For any set, we can form a new one, the Power Set.

The Power Set is the set of all subsets of A.

Suppose the set A has just two elements:

$$A = \{3, 7\}$$

Here are the subsets of A:

$$\{ \} \{3\} \{7\} \{3,7\}$$

The power set is

$$\mathcal{P}[\mathbf{A}] = \left\{ \{ \ \}, \{\mathbf{3}\}, \{\mathbf{7}\}, \{\mathbf{3}, \mathbf{7}\} \right\}$$

Intro

Cutting

Sets 2

Greek

≻ ∢ ≣ ≻ ∢ ≣ ≻ Inf Sets

Cantor's Theorem

Cantor's theorem states that, for any set A, the power set of A has a strictly greater cardinality than A itself:

 $\#[\mathcal{P}(\mathbf{A})] > \#[\mathbf{A}]$

This holds for both finite and infinite sets.

This means that, for every cardinal number, there is a greater cardinal number.

A B A A B A

Inf Sets

Intro

Greek

One-to-one Correspondence

Take all the natural numbers,

 $\mathbb{N}=\{1,2,3,...\}$

as one set and all the even numbers

$$\mathbb{E}=\{2,4,6,...\}$$

as the other.

By associating each number $n \in \mathbb{N}$ with $2n \in \mathbb{E}$, we have a perfect 1-to-1 correspondence.

By Cantor's argument, the two sets are the same size:

$$\#[\mathbb{N}] = \#[\mathbb{E}]$$

Greek

Inf Sets

DIST02E

Again,

$\#[\mathbb{N}] = \#[\mathbb{E}]$

But this is *paradoxical*: The set of natural numbers contains all the even numbers:

 $\mathbb{E} \subset \mathbb{N}$

and also all the odd ones.

In an intuitive sense, \mathbb{N} is larger than \mathbb{E} .

The same paradoxical result had been deduced by Galileo some 250 years earlier.

Sets 2

Greek

(日)

Inf Sets

Cantor carried these ideas much further:

The set of all the real numbers has a degree of infinity, or cardinality, greater than the counting numbers:

 $\#[\mathbb{R}] > \#[\mathbb{N}]$

Cantor showed this using an ingenious approach called the diagonal argument.

This is a fascinating technique, but we will not give details here.

Intro

Cutting

Sets 2

Greek

(日)

Inf Sets

How Many Points on a Line?

Intro

Review: Infinities Without Limit

For any set A, the power set $\mathcal{P}(A)$ is the collection of all the subsets of A.

Cantor proved $\mathcal{P}(A)$ has cardinality greater than A.

For finite sets, this is obvious; for infinite ones, it was startling.

The result is now known as Cantor's Theorem, and Cantor used his diagonal argument in proving it.

Sets 2

Greek

He thus developed an entire hierarchy of transfinite cardinal numbers.

Cutting

Inf Sets

Intro

NipTab

Outline

Introduction

- **The Nippur Tablet**
- **Cutting the Plane**
- **Set Theory II**
- **Greek Alphabet**
- **Counting Infinite Sets**

Distraction 2B: Books

Intro

NipTab

Cutting

Sets 2

Greek

DIST02B

(日)

Inf Sets

Books on a Shelf

Six books are arranged on a shelf. They include an Almanac (A) and a Bible (B).

Suppose A must be to the left of B (not necssarily beside it).

How many possible arrangements are there?

Hint: Use the idea of symmetry.

ANSWER NEXT WEEK

Intro

Cutting

Sets 2

Greek

Inf Sets

DIST02B

Books on a Shelf

Six books are arranged on a shelf. They include an Almanac (A) and a Bible (B).

BIG IDEA: SYMMETRY.

Every SOLUTION correponds to a NON-SOLUTION: Just switch the positions of A and B!

The total number of arrangements is 6!. For half of these, A is to the left of B.

So, answer is $\frac{1}{2}(6 \times 5 \times \cdots \times 1) = \frac{1}{2} \times 6! = 360$

FD

Inf Sets

NipTab

Greek

Thank you

æ

Intro

NipTab

Cutting

Sets 2

Greek

Inf Sets

ヘロト 人間 とくほとくほど