AweSums

Marvels and Mysteries of Mathematics

LECTURE 2

Peter Lynch
School of Mathematics \& Statistics University College Dublin

Evening Course, UCD, Autumn 2021

Outline

Introduction

Polar Coordinates

The Beginnings
Shackleton's Rescue Voyage
Babylonian Numeration Game
Distraction 2A: Simpsons
Georg Cantor
Distraction 2B: Books
Set Theory I

Outline

Introduction

Polar Coordinates

The Beginnings
Shackleton's Rescue Voyage
Babylonian Numeration Game
Distraction 2A: Simpsons
Georg Cantor
Distraction 2B: Books
Sei Theory :

Meaning and Content of Mathematics

The word Mathematics comes from
Greek $\mu \alpha \theta \eta \mu \alpha$ (máthéma), meaning "knowledge" or "lesson" or "learning".

It is the study of topics such as

- Quantity (numbers)
- Structure (patterns)
- Space (geometry)
- Change (analysis).

Outline

Introduction

Polar Coordinates

The Beginnings

Shackleton's Rescue Voyage
Babylonian Numeration Game
Distraction 2A: Simpsons
Georg Cantor
Distraction 2B: Books
Set Theory I

Some Mathematical Spirals

Archimedes Spiral. Fermat Spiral. Hyperbolic Spiral.

Challenge: Find mathematical equations for these. Hint: Use polar coordinates (r, θ).

Some Mathematical Spirals

Archimedes Spiral. Fermat Spiral. Hyperbolic Spiral.

Challenge: Find mathematical equations for these. Hint: Use polar coordinates (r, θ).

You already know about polar coordinates!

Coordinate Systems

Coordinates are sets of numbers used to specify positions or locations in space.

Each coordinate system has an origin. Distances are measured from the origin.

The most familiar coordinates are called Cartesian Coordinates, after René Descartes.

The position in Cartesian coordinates is usually denoted by (x, y), where

- x measures horizontal distance,
- y measures vertical distance.

Cartesian Coordinates

The point P is determined by the coordinates (x, y).

Cartesian Coords: Chess and Sudoku

| | | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| a | | 4 | | 6 | 5 | | | | |
| b | 9 | | 6 | | | | | | |
| c | | 8 | | | | | 4 | | 5 |
| d | 1 | | | | | 5 | 8 | | |
| e | 4 | | | | 1 | 2 | 6 | | 9 |
| f | | | | 9 | 8 | | | | 4 |
| g | | | 4 | 8 | 6 | | | 3 | |
| h | | | | | | | 2 | 1 | |
| C | | | 5 | | 7 | 3 | | | 6 |

Geographic Coordinates. Origin at Athlone.

Dublin: $(x, y)=(120,0)$

Belfast: $(x, y)=(130,130)$.

Range and Bearing

Cartesian coordinates of Dublin, origin at Athlone:

- Dublin is at $(x, y)=(120,0)$
- Belfast is at $(x, y)=(130,130)$

Range and Bearing

Cartesian coordinates of Dublin, origin at Athlone:

- Dublin is at $(x, y)=(120,0)$
- Belfast is at $(x, y)=(130,130)$

Position via range and bearing from Athlone:

- Dublin is at $(120, \mathrm{E})$
- Belfast is at $(185, \mathrm{NE})$

Range and Bearing

Dublin: (120, E)

Belfast: (185, NE).

Range and Bearing

Dublin: (120, E)
Dublin: $\left(\mathbf{1 2 0}, 90^{\circ}\right)$

Belfast: (185, NE).
Belfast: $\left(185,45^{\circ}\right)$.

Compass Bearing versus Azimuth

Compass bearings are given in degrees clockwise from North.

Mathematical azimuth is measured counterclockwise from the x-axis.

We specify a position by giving
> r : The distance from the origin

- θ : The azimuth or polar angle.

Polar Coordinates (r, θ)

© 2011 Encyclopædia Britannica, Inc.
The polar coordinates of \mathbf{P} are (r, θ).

Polar Coordinates (r, θ)

You should now see that you already knew about polar coordinates.

You just didn't know that you knew!

Polar Coordinates (r, θ)

You should now see that you already knew about polar coordinates.

You just didn't know that you knew!
Message:
Nomenclature, or technical jargon can be a serious obstacle to understanding.

Polar Coordinates (r, θ)

You should now see that you already knew about polar coordinates.

You just didn't know that you knew!
Message:
Nomenclature, or technical jargon can be a serious obstacle to understanding.

Moral:
If I use a term that you don't understand, please be sure to ask for its meaning.

Polar Angle or Azimuth

Angle in Radians

The circumference of a circle is $2 \pi r$.
Angle in radians is arc length/radius. $360^{\circ}=2 \pi$ radians

Archimedean Spiral

The equation in polar coordinates is

$$
r=\theta / 2 \pi .
$$

Think about this! Have a go at the others.

Outline

Introduction

Poiar Coordinates

The Beginnings

Shackleton's Rescue Voyage
Babylonian Numeration Game
Distraction 2A: Simpsons
Georg Cantor
Distraction 2s: Books
Set Theory I
\qquad
(10
d

The Ancient Origins of Mathematics

Basic social living was possible without numbers
... but ...
elementary comparisons and measures are needed to ensure fairness and avoid conflicts.

The Ancient Origins of Mathematics

Basic social living was possible without numbers
... but ...
elementary comparisons and measures are needed to ensure fairness and avoid conflicts.

The need for mathematical thinking arose in problems like fair division of food.

The Ancient Origins of Mathematics

Basic social living was possible without numbers
... but ...
elementary comparisons and measures are needed to ensure fairness and avoid conflicts.

The need for mathematical thinking arose in problems like fair division of food.

Problem: How do you divide a woolly mammoth?

Division of Food

To divide a collection of apples, the idea of a one-to-one correspondence arose.

There was no direct need for numbers yet: the apples did not need to be counted, just broken into batches.

Division of Food

To divide a collection of apples, the idea of a one-to-one correspondence arose.

There was no direct need for numbers yet: the apples did not need to be counted, just broken into batches.

The problem of dividing up a slaughtered animal is more tricky: The forequarters and hindquarters of a woolly mammoth are not the same!

Fair Division: Main Idea

- Divide a set of goods or resources fairly between several people.
- Each person should receive his/her due share.
- Each person should be satisfied after the division (this is an envy-free solution).

Fair Division: Main Idea

- Divide a set of goods or resources fairly between several people.
- Each person should receive his/her due share.
- Each person should be satisfied after the division (this is an envy-free solution).

This problem arises in various real-world settings: Rent-splitting, divorce settlements, radio frequency allocation, airport traffic management.

It is an active research area in Mathematics, Economics, Conflict Resolution, and more.

I Cut and You Choose

For two people or two families, the familiar technique "I cut and you choose" should keep everyone happy.

This is the method used by children to divide a cake.
It works even for an inhomogeneous cake, say, half chocolate and half lemon sponge.

To divide fairly between all members of a family is much more difficult (as many of you know!).

For a family of 7, it is impossible to construct
a heptagon with a compass and ruler only.

Challenge: Try to devise a generalization of the "cut-and-choose" method that works for three people ... and one that works for four people.

This is a dfficult problem

To divide fairly between all members of a family is much more difficult (as many of you know!).

For a family of 7, it is impossible to construct
a heptagon with a compass and ruler only.

Challenge: Try to devise a generalization of the "cut-and-choose" method that works for three people ... and one that works for four people.

It seems like an abstract problem, but it has practical implications:

To divide fairly between all members of a family is much more difficult (as many of you know!).

For a family of 7, it is impossible to construct
a heptagon with a compass and ruler only.
Challenge: Try to devise a generalization of the "cut-and-choose" method that works for three people ... and one that works for four people.

It seems like an abstract problem, but it has practical implications:

Consider the partition of Berlin

Partition of Berlin (Potsdam Agreement, 1945)

Partition of Germany (Potsdam Agreement, 1945)

Books on Fair Division

Two books devoted exclusively to this problem and its variations

Hamilton Lecture, 2021: REMINDER

Glimpses into Hyperbolic Geometry Caroline Series, Warwick University Friday, October 15, 19:00
Free: booking at www. ria.ie

Tally Sticks

Keeping an account of sheep and such animals was done using a tally stick.

The number of notches corresponds to the number of sheep.

Again, for small flocks, no concept of actual numbers was essential.

One-to-one Correspondence

An injective non-surjective function (injection, not a bijection)

An injective surjective function (bijection)

Keeping Stock without Counting

Fred Flintstone's collection of flints.

Keeping Stock without Counting

Fred Flintstone's collection of flints.

Numbers

At some stage, the general notion of a number arose. Even in considering the fingers of a hand, numbers up to five would arise.

Numbers

At some stage, the general notion of a number arose. Even in considering the fingers of a hand, numbers up to five would arise.

Gradually the idea of five as a concept would emerge. Placing two hands together immediately gives us the idea of a one-to-one correspondence:

Both hands have five fingers.

Numbers

At some stage, the general notion of a number arose. Even in considering the fingers of a hand, numbers up to five would arise.

Gradually the idea of five as a concept would emerge. Placing two hands together immediately gives us the idea of a one-to-one correspondence:

Both hands have five fingers.
Through repetition and familiarity, the concept of five would become natural. Any set of objects that are in one-to-one correspondence with the fingers of the hand must have five elements.

Numerals

Gradually all the small natural numbers, at least up to about 10, came into use.

Numerals

Gradually all the small natural numbers, at least up to about 10, came into use.

Sometimes, the connection between say two sheep and two bushels of corn was obscured.

Irish has distinct words for two apples and two people

Numerals

Gradually all the small natural numbers, at least up to about 10, came into use.

Sometimes, the connection between say two sheep and two bushels of corn was obscured.

Irish has distinct words for two apples and two people
Eventually, numerals, or symbols for the numbers, emerged.

Numerals

Gradually all the small natural numbers, at least up to about 10, came into use.

Sometimes, the connection between say two sheep and two bushels of corn was obscured.

Irish has distinct words for two apples and two people
Eventually, numerals, or symbols for the numbers, emerged.

Much numerical material is found in writings from Mesopotamia and from Ancient Egypt.

The Fertile Crescent

The Fertile Crescent/Mesopotamia

Mesopotamia

Loosely called the Babylonian civilisation.
 A vast number of cuneiform tablets survive.

Mesopotamia

Loosely called the Babylonian civilisation.

A vast number of cuneiform tablets survive.

WE WILL RETURN TO BABYLON PRESENTLY AND READ A CUNEIFORM TABLET!

Bartering \& Money

One group might have surplus fish while another group have excess fruit. Both gain by agreeing to an exchange.

Bartering \& Money

One group might have surplus fish while another group have excess fruit. Both gain by agreeing to an exchange.

A common measure was needed. This eventually led to the idea of money.

Bartering \& Money

One group might have surplus fish while another group have excess fruit. Both gain by agreeing to an exchange.

A common measure was needed. This eventually led to the idea of money.

In several cultures, objects like cowrie shells were used as a medium of exchange.

In some cases, the currency had some inherent value or at least scarcity. In others, it had not.

Bartering \& Money

One group might have surplus fish while another group have excess fruit. Both gain by agreeing to an exchange.

A common measure was needed. This eventually led to the idea of money.

In several cultures, objects like cowrie shells were used as a medium of exchange.

In some cases, the currency had some inherent value or at least scarcity. In others, it had not.

Exercise: Discuss the opinion of Aristotle in his Ethics: "With money we can measure everything."

Outline

Introduction

Polar Coordinates

The Beginnings

Shackleton's Rescue Voyage

Babylonian Numeration Game

Distraction 2A: Simpsons
Georg Cantor
Distraction 2B: Books
Set Theory I

Sabivum

Who is this?

Who is this?

Who is this?

Ernest Shackleton Tom Crean

Ernest Shackleton Tom Crean

Two great Antarctic explorers, both born in Ireland

Shackleton's Imperial Trans-Antarctic Expedition (1914)

Shackleton's Imperial Trans-Antarctic Expedition (1914)

Shackleton's Imperial Trans-Antarctic Expedition (1914)

Endurance is Icebound

Shackleton's Imperial Trans-Antarctic Expedition (1914)

Shackleton's Imperial Trans-Antarctic Expedition (1914)

ث̂Ch (3)

Intro Polar Beginning TomCrean BabNum DIST02A Cantor DIST02B Sets 1

Six men sailed 800 miles across the Southern Ocean to South Georgia.

Six men sailed 800 miles across the Southern Ocean to South Georgia.

How did they find their way?

Six men sailed 800 miles across the Southern Ocean to South Georgia.

How did they find their way?

MATHEMATICS !!!

A sextant, used to determine latitude.

Angles used to calculate the latitude.

Angles used to calculate the latitude.

The boat journey to South Georgia was a spectacular feat of navigation.

It resulted in the saving of 28 lives.
This was possible thanks to
elementary geometry.

The boat journey to South Georgia was a spectacular feat of navigation.

It resulted in the saving of 28 lives.
This was possible thanks to
elementary geometry.

That's Maths!

Outline

Introduction

Polar Coordinates

The Beginnings
Shackleton's Rescue Voyage

Babylonian Numeration Game

Distraction 2A: Simpsons

Georg Cantor
Distraction 2B: Books
Set Theory I

Reading a Tablet

On the next slide we will see a cuneiform tablet. It was discovered in the Sumerian city of Nippur (in modern-day Iraq), and dates to around 1500 BC.

We're not completely sure what this is, but most scholars suspect that it is a homework exercise.

It is not preserved perfectly, and dealing with this is part of the challenge (and part of the fun).

If you study the picture closely, you should be able to discover a lot about Babylonian numerals.

The Nippur Tablet

The Nippur Tablet Challenge

1. How do Babylonian numerals work?
2. Describe the maths on this tablet.
3. Write the number 72 in Babylonian numerals.

The Nippur Tablet Challenge

1. How do Babylonian numerals work?
2. Describe the maths on this tablet.
3. Write the number 72 in Babylonian numerals.

Does this seem impossible? Have faith in yourself!

Try to Decode the Nippur Tablet

The Sexagesimal System

The Babylonian numerical system
used 60 as its base. Why?

The Sexagesimal System

The Babylonian numerical system
used 60 as its base. Why?
It is uncertain why, but reasonable to speculate that, since there there are about 360 days in a year 60 was chosen to facilitate astronomical calculations.

The Babylonian Numerals

71	4811	《 4821	熄7 31	464 41	4拞751
972	$\langle P\rangle 12$	\＄ 4 P9 22	罠PY 32	4 4	佼 9752
971	4PTP 13	\＄4P17 23		4tipm 43	昏9717 53
$5_{4} 4$	僧 14	偳 24	留雨 34	矢四44	
楽 5	脌 15	隹 25		始留45	昏楽55
器 6	鹳 16	楽 26	焦郘36	等鹗46	婎啊 56
骩 7	侮 17	敒努 27	集㷅 37	等桇 47	
楽 8	侐 18	你 28	然然 38	然㓎 48	达煖 58
稼 9	閭 19	伤哭 29	出興 39	近興49	拋開59
＜ 10	＜4 20	4K130	4 40	笑 50	

The Sexagesimal System

> The great advantage is that 60 has many divisors: $$
1,2,3,4,5,6,10,12,15,20,30 .
$$

This obviously facilitates all the division problems.

The Sexagesimal System

The great advantage is that 60 has many divisors:

$$
\text { 1, 2, 3, 4, 5, 6, 10, 12,15, 20, } 30 .
$$

This obviously facilitates all the division problems.
In Babylon, they wrote 70 = [1 | 10] and 254 = [4 | 14]
We can add these: 324 = [5 | 24].
Thus, basic arithmetic is possible with this system.

Outline

Introduction

Polar Coordinates

The Beginnings
Shackleton＇s Rescue Voyage
Babylonian Numeration Game
Distraction 2A：Simpsons
Georg Cantor
Distraction 2B：Books
Set Theory I

Distraction: The Simpsons

Several writers of the Simpsons scripts have advanced mathematical training.

They "sneak" jokes into the programmes.

Outline

Introduction

Poiar Coordinates

The Beginnings
Shackleton's Rescue Voyage
Babylonian Numeration Game
Distraction 2A: Simpsons

Georg Cantor

Distraction 2B: Books

Set Theory I

Georg Cantor

Inventor of Set Theory

Born in St. Petersburg, Russia in 1845.

Moved to Germany in 1856 at the age of 11.

His main career was at the University of Halle.

Dauben Biography of Cantor

GEORG CANTOR His Mathematics and
Pbilosophy of the Infinite

Joseph Warren Dauben

Georg Cantor (1845-1918)

- Invented Set Theory.
> One-to-one Correspondence.
- Infinite and Well-ordered Sets.
- Cardinal and Ordinal Numbers.
- Proved: $\#(\mathbb{Q})=\#(\mathbb{N})$.
- Proved: $\#(\mathbb{R})>\#(\mathbb{N})$.
- Infinite Hierarchy of Infinities.

Georg Cantor (1845-1918)

- Invented Set Theory.
- One-to-one Correspondence.
- Infinite and Well-ordered Sets.
- Cardinal and Ordinal Numbers.
- Proved: $\#(\mathbb{Q})=\#(\mathbb{N})$.
- Proved: $\#(\mathbb{R})>\#(\mathbb{N})$.
- Infinite Hierarchy of Infinities.

Outline Galileo's arguments on infinity.

Set Theory: Controversy

Cantor was strongly criticized by

- Leopold Kronecker.
> Henri Poincaré.
> Ludwig Wittgenstein.

Set Theory: Controversy

Cantor was strongly criticized by

- Leopold Kronecker.
> Henri Poincaré.
> Ludwig Wittgenstein.
Cantor is a "corrupter of youth" (LK). Set Theory is a "grave disease" (HP). Set Theory is "nonsense; laughable; wrong!" (LW).

Set Theory: Controversy

Cantor was strongly criticized by

- Leopold Kronecker.
> Henri Poincaré.
> Ludwig Wittgenstein.
Cantor is a "corrupter of youth" (LK). Set Theory is a "grave disease" (HP). Set Theory is "nonsense; laughable; wrong!" (LW).

Adverse criticism like this may well have contributed to Cantor's mental breakdown.

Set Theory: A Difficult Birth

Set Theory brought into prominence several paradoxical results.

Many mathematicians had great difficulty accepting some of the stranger results.

Some of these are still the subject of discussion and disagreement today.

Set Theory: A Difficult Birth

Cantor's Set Theory was of profound philosophical interest.

It was so innovative that many mathematicians could not appreciate its fundamental value and importance.

Set Theory: A Difficult Birth

Cantor's Set Theory was of profound philosophical interest.

It was so innovative that many mathematicians could not appreciate its fundamental value and importance.

Gösta Mittag-Leffler was reluctant to publish it in his Acta Mathematica. He said the work was "100 years ahead of its time".

David Hilbert said:
"We shall not be expelled from the paradise that Cantor has created for us."

A Passionate Mathematician

In 1874, Cantor married Vally Guttmann.
They had six children. The last one, a son named Rudolph, was born in 1886.

A Passionate Mathematician

In 1874, Cantor married Vally Guttmann.

They had six children. The last one, a son named Rudolph, was born in 1886.

According to Wikipedia:
"During his honeymoon in the Harz mountains, Cantor spent much time in mathematical discussions with Richard Dedekind."
[Cantor had met the renowned mathematician Dedekind two years earlier while he was on holiday in Switzerland.]

Outline

Introduction

Poiar Coordinates

The Beginnings
Shackleton＇s Rescue Voyage
Babylonian Numeration Game
Distraction 2A：Simpsons
Georg Cantor
Distraction 2B：Books
Set Theory I

Books on a Shelf

Six books are arranged on a shelf. They include an Almanac (A) and a Bible (B).
Suppose A must be to the left of B (not necssarily beside it).
How many possible arrangements are there?

Books on a Shelf

Six books are arranged on a shelf. They include an Almanac (A) and a Bible (B).
Suppose A must be to the left of B (not necssarily beside it).

How many possible arrangements are there?
Hint: Use the idea of symmetry.
ANSWER NEXT WEEK

Outline

Introduction

Polar Coordinates

The Beginninge
Shackleton's Rescue Voyage
Babylonian Numeration Game
Distraction 24: Simneons
Georg Cantor
Distraction 2B: Books

Set Theory I

Set Theory I

The concept of set is very general.

Sets are the basic building-blocks of mathematics.

Set Theory I

The concept of set is very general.
Sets are the basic building-blocks of mathematics.
Definition: A set is a collection of objects.
The objects in a set are called the elements.

Set Theory I

The concept of set is very general.
Sets are the basic building-blocks of mathematics.
Definition: A set is a collection of objects.
The objects in a set are called the elements.
Examples:

- All the prime numbers, \mathbb{P}
- All even numbers: $\mathbb{E}=\{2,4,6,8 \ldots\}$
> All the people in Ireland: See Census returns.
> The colours of the rainbow: \{Red, ..., Violet\}.
- Light waves with wavelength $\lambda \in[390-700 \mathrm{~nm}]$

Do You Remember Venn?

John Venn was a logician and philosopher, born in Hull, Yorkshire in 1834.

He studied at Cambridge University, graduating in 1857 as sixth Wrangler.

Venn introduced his diagrams in Symbolic Logic, a book published in 1881.

Venn Diagrams

Venn diagrams are very valuable for showing elementary properties of sets.

They comprise a number of overlapping circles.
The interior of a circle represents a collection of numbers or objects or perhaps a more abstract set.

The Universe of Discourse

We often draw a rectangle to represent the universe, the set of all objects under current consideration.

For example, suppose we consider all species of animals as the universe.

A rectangle represents this universe.
Two circles indicate subsets of animals of two different types.

The Birds and the Bees

Two-legged Animals
Flying Animals

The Birds and the Bees

Two-legged Animals
Flying Animals
Where do we fit in this diagram?

The Union of Two Sets

The aggregate of two sets is called their union.
Let one set contain all two-legged animals and the other contain all flying animals.

The Union of Two Sets

The aggregate of two sets is called their union.
Let one set contain all two-legged animals and the other contain all flying animals.

Bears, birds and bees (and we) are in the union.

The Intersection of Two Sets

The elements in both sets make up the intersection.
Let one set contain all two-legged animals and the other contain all flying animals.

Birds are in the intersection. Bears and bees are not.

The Notation for Union and Intersection

Let A and B be two sets
The union of the sets is

$$
A \cup B
$$

The intersection is

$$
A \cap B
$$

UCD

The Technical (Logical) Definitions

Let A and B be two sets.
The union of the sets $A \cup B$ is defined by

$$
[x \in A \cup B] \Longleftrightarrow[(x \in A) \vee(x \in B)]
$$

The intersection of the sets $A \cap B$ is defined by

$$
[x \in A \cap B] \Longleftrightarrow[(x \in A) \wedge(x \in B)]
$$

The Technical (Logical) Definitions

Let A and B be two sets.
The union of the sets $A \cup B$ is defined by

$$
[x \in A \cup B] \Longleftrightarrow[(x \in A) \vee(x \in B)]
$$

The intersection of the sets $A \cap B$ is defined by

$$
[x \in A \cap B] \Longleftrightarrow[(x \in A) \wedge(x \in B)]
$$

There is an intimate connection between Set Theory and Symbolic Logic.

Digression: A Simple Puzzle

Puzzle - Seeing Stars

What is the sum of all the marked angles in the five-pointed star?

Subset of a Set

For two sets A and B we write

$$
B \subset A \quad \text { or } \quad B \subseteq A
$$

to denote that B is a subset of A.

Subset of a Set

For two sets A and B we write

$$
B \subset A \quad \text { or } \quad B \subseteq A
$$

to denote that B is a subset of A.
For more on set theory, see website of Claire Wladis http://www. cwladis.com/math100/Lecture4Sets.htm

Intersections between 3 Sets

Example: Intersection of 3 Sets

In the diagram the elements of the universe are all the people from Connacht.

Three subsets are shown:

- Red-heads
> Singers
- Left-handers.

All are from Connacht.

These sets overlap and, indeed, there are some copper-topped, crooning cithogues in Connacht.

Three and Four Sets

8 Domains

14 Domains

How Many Possibilities?

With just one set A, there are 2 possibilities:

$$
x \in A \quad \text { or } \quad x \notin A
$$

How Many Possibilities?

With just one set A, there are 2 possibilities:

$$
x \in A \quad \text { or } \quad x \notin A
$$

With two sets, A and B, there are 4 possibilities:

$$
\begin{array}{lll}
(x \in A) \wedge(x \in B) & \text { or } & (x \in A) \wedge(x \notin B) \\
(x \notin A) \wedge(x \in B) & \text { or } & (x \notin A) \wedge(x \notin B)
\end{array}
$$

How Many Possibilities?

With just one set A, there are 2 possibilities:

$$
x \in A \quad \text { or } \quad x \notin A
$$

With two sets, A and B, there are 4 possibilities:

$$
\begin{array}{lll}
(x \in A) \wedge(x \in B) & \text { or } & (x \in A) \wedge(x \notin B) \\
(x \notin A) \wedge(x \in B) & \text { or } & (x \notin A) \wedge(x \notin B)
\end{array}
$$

With three sets there are 8 possible conditions.

How Many Possibilities?

With just one set A, there are 2 possibilities:

$$
x \in A \quad \text { or } \quad x \notin A
$$

With two sets, A and B, there are 4 possibilities:

$$
\begin{array}{lll}
(x \in A) \wedge(x \in B) & \text { or } & (x \in A) \wedge(x \notin B) \\
(x \notin A) \wedge(x \in B) & \text { or } & (x \notin A) \wedge(x \notin B)
\end{array}
$$

With three sets there are 8 possible conditions.
With four sets there are 16 possible conditions.

Three and Four Sets

8 Domains

14 Domains

Three and Four Sets

8 Domains

14 Domains

With three sets there are 8 possible conditions. With four sets there are 16 possible conditions.

The Intersection of 3 Sets

The three overlapping circles have attained an iconic status, seen in a huge range of contexts.

It is possible to devise Venn diagrams with four sets, but the simplicity of the diagram is lost.

Challenge: Four Set Venn Diagram

Can you modify the 4 -set diagram to cover all cases. (You will not be able to do it with circles only)

Hint: Venn Diagrams for 5 and 7 Sets

Image from Wolfram MathWorld: Venn Diagram
$-1+2-1$

Solution: Next Week (if you are lucky)

We will find a surprising connection with a Cube

Digression: A Simple Puzzle

Six random lines. How many regions?

Thank you

