

The Fun and Joy of Mathematics • TASTER LECTURE

Peter Lynch School of Mathematics & Statistics University College Dublin

Evening Course, UCD, Autumn 2020

< ロ > (四 > (四 > (三 > (三 >))) (三 =))

Outline

Introduction

Beautiful Spirals

The Golden Ratio

Symmetry

Recreational Mathematics

Intro

Spirals

Phi

Symmetry

・ロト ・聞 ト ・目 ト ・ ヨト

Outline

Introduction

Beautiful Spirals

The Golden Ratio

Symmetry

Recreational Mathematics

RecMath

Intro

Symmetry

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

WELCOME TO AweSums The Fun and Joy of Mathematics

Spirals

Phi

Symmetry

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

The course AweSums will run over six (6) lectures from 5 October to 16 November.

The aim of the course is to show you

- The tremendous beauty of mathematics;
- Its great utility in our daily lives;
- The fun we can have studying maths.

Taster Lecture

For several years I have taught a course called

Sum-enchanted Evenings.

It has worked well, and this year's course,

AweSums: The Majesty of Maths

will be similar, but with much new material.

In this Taster Lecture I will give a sample of some of the topics covered in the course.

(日)

Meaning and Content of Mathematics

The word Mathematics comes from Greek $\mu\alpha\theta\eta\mu\alpha$ (máthéma), meaning "knowledge" or "study" or "learning".

- It is the study of topics such as
 - Quantity (numbers)
 - Structure (patterns)
 - Space (geometry)
 - Change (analysis).

RecMath

(日)

Outline

Introduction

Beautiful Spirals

The Golden Ratio

Symmetry

Recreational Mathematics

Intro

Spirals

Phi

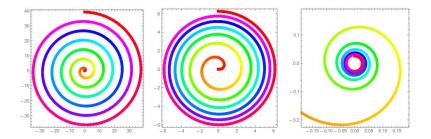
Symmetry

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

A Splendid Spiral in Booterstown

This sandbank, a beautiful spiral form, has slowly built up on the beach near Booterstown Station.

Spirals are found throughout the natural world.


RecMath

Phi

Symmetry

(日)

Some Mathematical Spirals

Archimedes Spiral. Fermat Spiral. Hyperbolic Spiral.

Symmetry

Intro

Phi

The Nautilus Shell: a logarithmic Spiral.

Intro

Spirals

Phi

Symmetry

The Sunflower: Groups of Spirals

Intro

Phi

Symmetry

Spirals in the Physical World

* * *

https://thatsmaths.com/

RecMath

Intro

Spirals

Phi

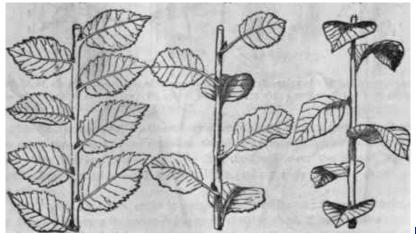
Symmetry

・ロット語 マイロマー

Fibonacci Numbers

- Count the petals on a flower.
- Count leaves on a stem or bumps on an asparagus.
- Look at patterns on pineapples/pine-cones.
- Study the geometry of seeds on sunflowers.

In all cases, we find numbers in the sequence:


1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

This is the famous Fibonacci sequence.

ヘロト 不良 トイロト イロト

Fibonacci and Phyllotaxis

Intro

Spirals

Phi

Symmetry

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Vi Hart's Videos

There are several mathematical videos on YouTube presented by Vi Hart.

Some of the ones on Fibonacci Numbers are at:

https://www.youtube.com/ watch?v=ahXIMUkSXX0

It is *much easier* to go to Youtube and search for

"Vi Hart Fibonacci"

Let's take a peek!

Outline

Introduction

Beautiful Spirals

The Golden Ratio

Symmetry

Recreational Mathematics

Intro

Symmetry

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

Golden Ratio and Fibonacci Numbers

The Golden Ratio is a number defined as

$$\phi = \frac{1 + \sqrt{5}}{2} \approx 1.618.$$

It is intimately connected with the *Fibonacci Numbers*.

RecMath

3 × 4 3 ×

Symmetry

Intro

Phi

Golden Rectangle

Ratio of breath to height is $\phi = \frac{1+\sqrt{5}}{2} \approx 1.6$.

Intro

Spirals

Symmetry

・ロト ・雪 ・ ・ ヨ ・ ・

Golden Rectangle in Your Pocket

Aspect ratio is about $\phi = \frac{1+\sqrt{5}}{2} \approx 1.618$.

Intro

Phi

Symmetry

イロト イヨト イヨト

Fibonacci Numbers

The Fibonacci sequence is the sequence

 $\{0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, \dots\}$

where *each number is the sum of the previous two.* The Fibonacci numbers obey a recurrence relation

$$F_{n+1}=F_n+F_{n-1}$$

with the starting values $F_0 = 0$ and $F_1 = 1$.

The explicit expression for the Fibonacci numbers is

$$F_n = \frac{1}{\sqrt{5}} \left[\frac{1+\sqrt{5}}{2} \right]'' - \frac{1}{\sqrt{5}} \left[\frac{1-\sqrt{5}}{2} \right]''$$
Spirals Phi Symmetry RecMath

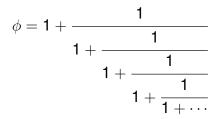
Fibonacci Numbers

Let's consider the sequence of ratios of terms

$$\frac{1}{1}, \ \frac{2}{1}, \ \frac{3}{2}, \ \frac{5}{3}, \ \frac{8}{5}, \ \frac{13}{8}, \ \frac{21}{13}, \ \frac{34}{21}, \ \dots$$

The ratios get closer and closer to the golden number:

$$rac{F_{n+1}}{F_n} o \phi$$
 as $n o \infty$



Symmetry

Intro

Exotic Expressions for ϕ

We can write ϕ as a *continued fraction*

We can also write it as a continued root

$$\phi = \sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + \cdots}}}}$$

These extraordinary expressions are actually quite easy to demonstrate!

RecMath

Intro

Phi

Fibonacci Numbers in Nature

Look at post

Sunflowers and Fibonacci: Models of Efficiency

on the ThatsMaths blog:

thatsmaths.com

RecMath

Outline

Introduction

Beautiful Spirals

The Golden Ratio

Symmetry

Recreational Mathematics

Intro

Spirals

Phi

Symmetry

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

Ubiquity and Beauty of Symmetry

Symmetry is all around us.

- Many buildings are symmetric.
- Our bodies have bilateral symmetry.
- Crystals have great symmetry.
- Viruses can display stunning symmetries.
- At the sub-atomic scale, symmetry reigns.
- Galaxies have many symmetries.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

The Taj Mahal

Intro

Spirals

Phi

Symmetry

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

A Face with Symmetry: Halle Berry

Halle Berry

Berry Halle

Intro

Spirals

Phi

Symmetry

<ロ> < 回 > < 回 > < 回 > < 回 > <</p>

An Asymmetric Face: You know Who!

Intro

Phi

Symmetry

・ロット語 マイロマー

RecMath

э.

Symmetry and Group Theory

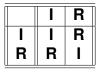
Symmetry is an essentially geometric concept.

The mathematical theory of symmetry is algebraic.

The key concept is that of a group.

A group is a *set of elements* such that any two elements can be combined to produce another.

Instead of giving the mathematical definition, I will give an example to make things clear.

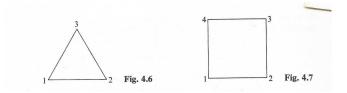

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

The Dihedral Group D₁

The group of symmetries of the human face and of all biological forms with bilateral symmetry. We could call D₁ the *Janus Group*.

- I: The Identity transformation
- **R**: Reflection about central line

 Table: First Dihedral Group D1.



This is how we combine, or multiply transformations.

RecMath

From 2 to 3 Dimensional Symmetry

Tetrahedron	Cube	Octahedron	Dodecahedron	Icosahedron
Four faces	Six faces	Eight faces	Twelve faces	Twenty faces
(Animation)	(Animation)	(Animation)	(Animation)	(Animation)

Intro

Phi

(日)

RecMath

3

Outline

Introduction

Beautiful Spirals

The Golden Ratio

Symmetry

Recreational Mathematics

RecMath

э.

Intro

Phi

Symmetry

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

Recreational Mathematics

Recreational mathematics puts the focus on insight, imagination and beauty.

Recreational Maths includes the study of

- The culture of mathematics,
- Its relevance to art, music and literature,
- Its role in technology,
- Mathematical games and puzzles,
- The lives of the great mathematicians.

(日)

Many Resources Available

Great variety of books on popular mathematics.

Wealth of literature suitable for a general audience

Magazines available free online.

One of the best is the e-zine Plus:

https://plus.maths.org/.

All past content is available and is a valuable resource for school students and teachers.

Content of an Earlier Course

Lecture	Content
1	Outline of Course. Emergence of Numbers.
2	Georg Cantor. Set Theory.
3	Pythagoras. Irrational Numbers.
4	Hilbert. Gauss. The Real Number Line
5	Powers. Logarithms. Prime Numbers.
6	Functions. Archimedes. Natural Logs.
7	Exponential Growth. Euler. Sequences & Series.
8	Trigonometry. Taylor Series.
9	Basel Problem. Complex Numbers. Euler's Formula.
10	Prime Number Theorem. Riemann Hypothesis.

This year's course will be different: Better!

RecMath

Intro

Phi

Symmetry

(日)

Thank you

RecMath

Intro

Spirals

Phi

Symmetry

(日)