AweSums

Marvels and Mysteries of Mathematics • LECTURE 10

Peter Lynch School of Mathematics & Statistics University College Dublin

Evening Course, UCD, Autumn 2019

< ロ > (四 > (四 > (三 > (三 >))) 문 (-)

Outline

Introduction Symmetries of Triangle and Square Möbius Band I **Cookie Row Moessner's Magic** The Golden Ratio **Hilbert's Problems Random Number Generators** The Sieve of Eratosthenes Numerical Weather Prediction

NWP

Intro

Cookie Row

Moessner's Magic

Phi

H23 RNG

Sieve

→ ∃→

Outline

Introduction

- Symmetries of Triangle and Square
- Möbius Band I
- **Cookie Row**
- **Moessner's Magic**
- **The Golden Ratio**
- **Hilbert's Problems**
- **Random Number Generators**
- **The Sieve of Eratosthenes**
- **Numerical Weather Prediction**

Intro

Symm2 Möb1

Cookie Row

Moessner's Magic

Phi

H23

Sieve

A (10) × (10) × (10) ×

RNG

Meaning and Content of Mathematics

The word Mathematics comes from Greek $\mu\alpha\theta\eta\mu\alpha$ (máthéma), meaning "knowledge" or "study" or "learning".

- It is the study of topics such as
 - Quantity (numbers)
 - Structure (patterns)
 - Space (geometry)
 - Change (analysis).

Intro

Svmm2 Möb1

Cookie Row Moe

Moessner's Magic

Phi

H23

RNG Sieve

Reminder: A square from A4 paper sheets.

PUZZLE: Is it possible to form a square out of sheets of A4 sized paper (without them overlapping)?

Remember: Ratio of width to height is $1 \pm \sqrt{2}$.

A Square from A4 Paper Sheets

Let dimensions be: Width = 1 unit. Height = $\sqrt{2}$ units.

Suppose there are *a* short sides and *b* long sides along the *lower horizontal edge* of the big square.

Then the length of the horizontal edge is

$$H = a.1 + b.\sqrt{2}$$

Suppose there are *c* short sides and *d* long sides along the *left vertical edge* of the big square.

So the length of the vertical edge is

$$V = c.1 + d\sqrt{2}$$

Symm2 Möb1

Cookie Row

Moessner's Magic

Phi

H23 RNG

< □ > < □ > < □ > < □ > < □ > < □ > < □ >

NWP

Since the region is square, V = H and we must have

$$a.1 + b.\sqrt{2} = c.1 + d\sqrt{2}$$

Therefore

$$\begin{array}{rcl} a+b\sqrt{2} &=& c+d\sqrt{2}\\ a-c &=& (d-b)\sqrt{2}\\ \left(\frac{a-c}{d-b}\right) &=& \sqrt{2} \end{array}$$

But the left side is a ratio of two whole numbers, whereas the right side is irrational.

This is impossible. There is no solution!

Outline

Symmetries of Triangle and Square

- Möbius Band I
- **Moessner's Magic**
- **Hilbert's Problems**
- **Bandom Number Generators**
- The Sieve of Fratosthenes
- Numerical Weather Prediction

Intro

Symm2 Möb1

Cookie Row

Moessner's Magic

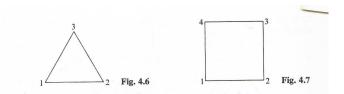
H23

伺 ト イ ヨ ト イ ヨ ト RNG

NWP

Symmetries of the Triangle and Square: The Dihedral Groups D₃ and D₄

Let's look at symmetries of the triangle and square.



They correspond to the dihedral groups D₃ and D₄.

Moessner's Magic

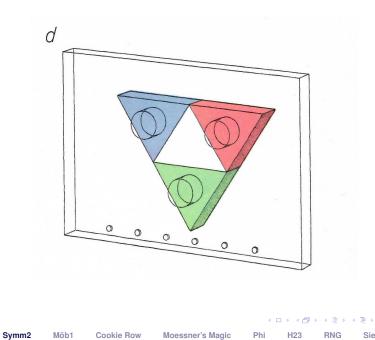
Intro

Svmm2

Möb1

Cookie Row

RNG



Möb1

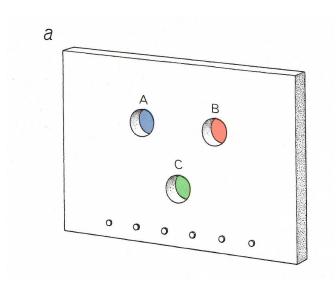
Cookie Row

Moessner's Magic

Phi

Sieve

NWP



Symm2 Möb1 **Cookie Row**

Moessner's Magic

Phi

▲□▶ ▲圖▶ ▲厘▶ ▲厘≯ H23

RNG Sieve NWP

OPERATION	RESULT
1. NO CHANGE:	
2. SWITCH A AND C:	
3. REPLACE A BY B, B BY C, C BY A:	
4. SWITCH C AND B:	
5. REPLACE A BY C, B BY A, C BY B:	
6. SWITCH A AND B:	

Symm2 Möb1

1

Cookie Row

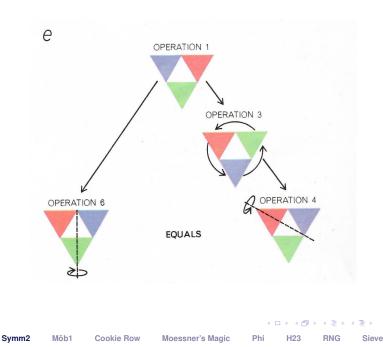
Moessner's Magic

Phi

▲ロト ▲圖ト ▲国ト ▲国ト H23 RNG

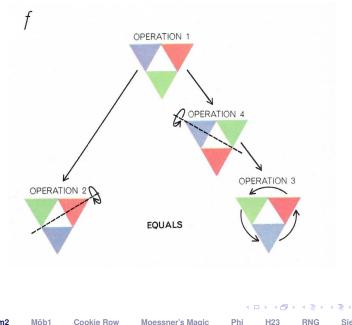
Sieve

NWP



æ

Intro



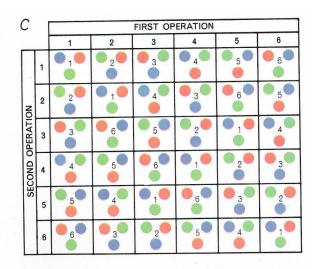
NWP

Intro

Symm2 Möb1 **Cookie Row**

Moessner's Magic

Phi



Symm2 Möb1

Cookie Row

Moessner's Magic

Phi

H23

RNG Sieve

< □ > < □ > < □ > < □ > < □ >

NWP

Skip to end of Section: Counting Symmetries

Intro

Symm2

Möb1

Cookie Row Mo

Moessner's Magic

Phi

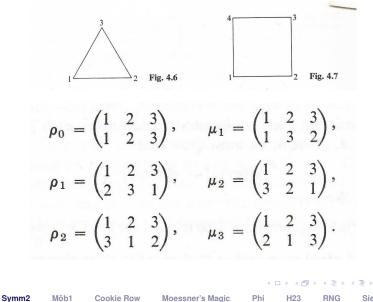
RNG

Sieve

A B > 4
 B > 4
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C

H23

Symbols for Transformations of Triangle



Intro

Sieve

The Third Dihedral Group D₃

() ÷	ρ	ρ ₁	ρ2	μ_1	μ_2	μ3
00	ρο	ρ1	ρ2	μ1	μ2	μ3
01	ρ1	ρ2	ρο	μ2	μ3	μ1
ρ ₂	ρ2	ρο	ρ1	μ3	μ1	μ2
μ1	μ1	μ3	μ2	ρ	ρ2	ρ1
μ_2	μ2	μ1	μ3	ρ1	ρ	ρ2
μ3	μ3	μ2	μ1	ρ2	ρ1	ρο

Intro

Symm2 Möb1

Cookie Row Moes

Moessner's Magic

Phi

H23

(日)

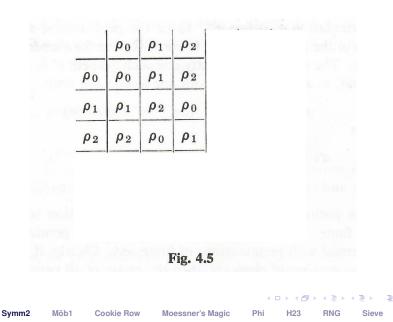
RNG

Sieve

NWP

э

Subgroup Z₃ of Third Dihedral Group D₃



NWP

Intro

The Third Dihedral Group D₃

() ÷	ρ	ρ ₁	ρ2	μ_1	μ_2	μ3
00	ρο	ρ1	ρ2	μ1	μ2	μ3
01	ρ1	ρ2	ρο	μ2	μ3	μ1
ρ ₂	ρ2	ρο	ρ1	μ3	μ1	μ2
μ1	μ1	μ3	μ2	ρ	ρ2	ρ1
μ_2	μ2	μ1	μ3	ρ1	ρ	ρ2
μ3	μ3	μ2	μ1	ρ2	ρ1	ρο

Intro

Symm2 Möb1

Cookie Row Moes

Moessner's Magic

Phi

H23

(日)

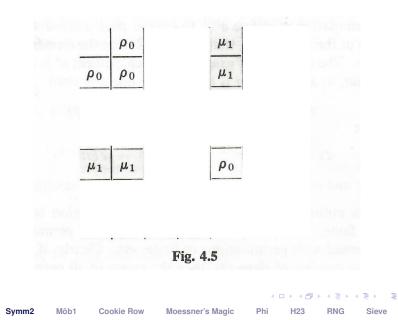
RNG

Sieve

NWP

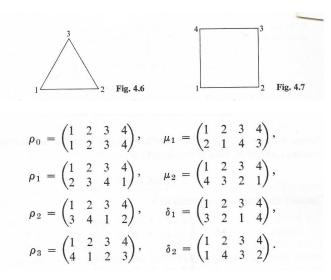
э

Subgroup Z₂ of Third Dihedral Group D₃



Intro

Symbols for Transformations of Square



Intro

Symm2 Möb1

Cookie Row Mo

Moessner's Magic

Phi

H23

A B A B A
 B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

RNG Sieve

The Fourth Dihedral Group D₄

13	ρ_0	ρ_1	ρ_2	ρ_3	μ1	μ2	δ1	δ2
ρ_0	ρ_0	ρ1	ρ_2	ρ3	μ1	μ_2	δ1	δ2
ρ1	ρ_1	ρ2	ρ_3	ρ	δ2	δ1	μ_1	μ2
ρ_2	ρ_2	ρ3	ρ	ρ1	μ2	μ1	δ2	δ1
ρ3	ρ3	ρο	ρ1	ρ2	δ1	δ_2	μ2	μ1
μ1	μ1	δ1	μ2	δ2	ρ	ρ2	ρ1	ρ3
μ_2	μ_2	δ2	μ1	δ1	ρ_2	ρ	ρ3	ρ1
δ1	δ1	μ_2	δ2	μ1	ρ3	ρ_1	ρ	ρ2
δ2	δ2	μ1	δ1	μ2	ρ1	ρ3	ρ2	ρ

Fig. 4.8

Intro

Phi

H23 RNG

(日)

Sieve

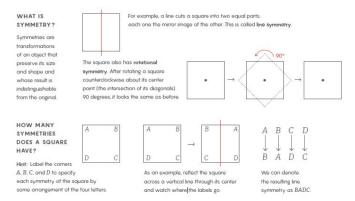
NWP

3

Counting Symmetries of the Square

Counting Symmetries

Can you find all the symmetries of the familiar square?



See worksheet: CountingSymmetriesWorksheet.pdf

Intro

Svmm2

Möb1 Cookie Row Moessner's Magic

RNG

- E

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Sieve

Outline

Symmetries of Triangle and Square Möbius Band I **Moessner's Magic Hilbert's Problems Bandom Number Generators** The Sieve of Eratosthenes Numerical Weather Prediction

Intro

Svmm2 Möb1 **Cookie Row**

Moessner's Magic

A (10) × (10) × (10) × RNG

H23

NWP

The Möbius Band

You may be familiar with the Möbius strip or Möbius band. It has one side and one edge.

It was discovered independently by August Möbius and Johann Listing in the same year, 1858.

Intro

Symm2 Möb1

Cookie Row

Moessner's Magic

Phi

123

RNG Sieve

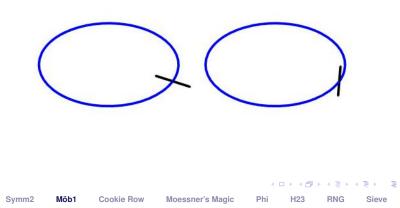
NV

Building the Band

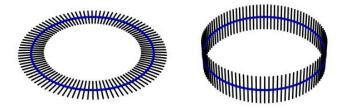
Intro

It is easy to make a Möbius band from a paper strip.

For a geometrical construction, we start with a circle and a small line segment with centre on this circle.



Now move the line segment around the circle:



To show the boundary of the surface, we color one end of the line segment red and the other magenta.

Intro

Symm2 Möb1

Cookie Row

Moessner's Magic

Phi

H23

RNG Sieve

IN

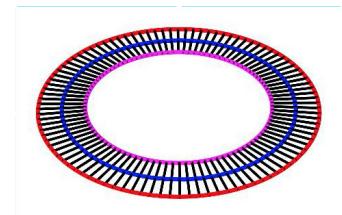


Figure : The boundary comprises two unlinked circles

Sieve

Intro

Symm2 Möb1

Cookie Row Moe

Moessner's Magic

Phi

H23

(日)

RNG

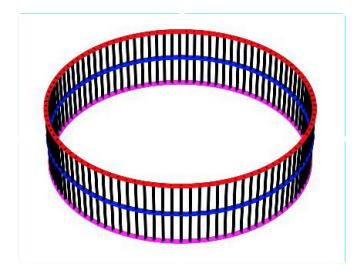


Figure : The boundary comprises two unlinked circles

Intro

Symm2 Möb1

Cookie Row

Moessner's Magic

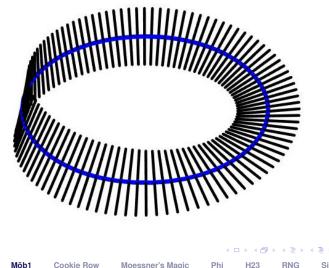
Phi

A 🕞 H23

RNG

The Möbius Band

Now, as the line moves, we give it a half-twist:



Intro

Svmm2

Moessner's Magic

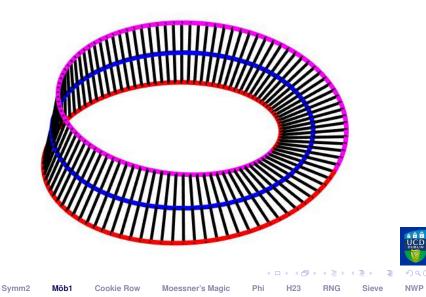
Phi

Sieve

The Möbius Band

Intro

The two boundary curves now join up to become one:



Svmm2

The Möbius Band has only one side.

It is possible to get from any point on the surface to any other point *without crossing the edge*.

The surface also has just one edge.

Band with a Full Twist

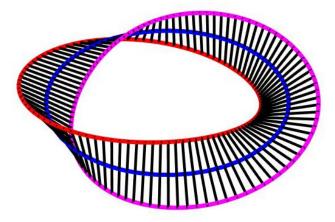


Figure : The boundary comprises two linked circles

Intro

Symm2 Möb1

Cookie Row Moess

Moessner's Magic

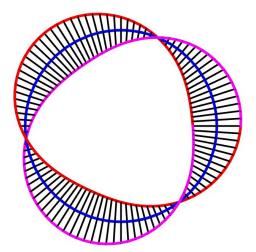
Phi

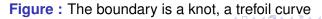
H23

RNG

• • • • • • • • • • • • • •

Band with Three Half-twists





Intro

Symm2 Möb1

Cookie Row

Moessner's Magic

Phi

H23

RNG

Symm2 Möb1 **Cookie Row**

Moessner's Magic

Phi

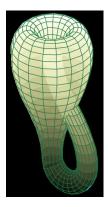
▲□▶ ▲圖▶ ▲厘▶ ▲厘≯ RNG

H23

NWP

æ

Two Möbius Bands make a Klein Bottle



A mathematician named Klein Thought the Möbius band was divine. Said he: "If you glue The edges of two, You'll get a weird bottle like mine."

NWP

Intro

Svmm2 Möb1

Cookie Row

Moessner's Magic

Phi

H23

RNG Sieve

周レイヨレイヨレ

Equations for the Möbius Band

The process of moving the line segment around the circle leads us to the equations for the Möbius band.

In cylindrical polar coordinates the circle is $(r, \theta, z) = (a, \theta, 0)$.

The tip of the segment, relative to its centre, is

$$(r, \theta, z) = (b \cos \phi, 0, b \sin \phi)$$

where $b = \frac{1}{2}\ell$ is half the segment length and $\phi = \alpha\theta$, with α determining the amount of twist.

The tip of the line has $(r, z) = (a + b \cos \alpha \theta, b \sin \alpha \theta)$.

Moessner's Magic

Phi

Cookie Row

Svmm2

Möb1

人口 医水晶 医水晶 医水白

RNG

Sieve

H23

Equations for the Möbius Band

In cartesian coordinates, the equations become

$$x = (a + b\cos\alpha\theta)\cos\theta$$

$$y = (a + b\cos\alpha\theta)\sin\theta$$

$$z = (b\sin\alpha\theta)$$

These are the parametric equations for the twisted bands, with $\theta \in [0, 2\pi]$ and $b \in [-\ell, \ell]$.

For the Möbius band, $\alpha = \frac{1}{2}$.

NWP

Intro

Symm2 Möb1

Cookie Row Mo

Moessner's Magic

gic Phi

RNG Sieve

(日)

H23

Outline

Symmetries of Triangle and Square Möbius Band I **Cookie Row Moessner's Magic Hilbert's Problems Random Number Generators** The Sieve of Eratosthenes Numerical Weather Prediction

Intro

Svmm2 Möb1 Cookie Row

Moessner's Magic

H23

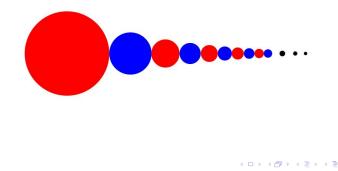
(4月) (4日) (4日) RNG

NWP

A Surprising Result

Let us consider an infinite row of cookies each smaller than the previous one.

Assume that the radius of the *n*-th cookie is 1/n. Then the surface area is π/n^2 .



Intro

Symm2 Möb1

Cookie Row Moe

Moessner's Magic

Phi

RNG

NWP

A Surprising Result

Svmm2

Möb1

The total length of the row of cookies is

This is the divergent harmonic series.

The total surface area of the cookies is

Cookie Row

$$\sum_{n=1}^{\infty} \pi \times \left(\frac{1}{n}\right)^2 = \pi \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^3}{6}$$

Moessner's Magic

Phi

H23

RNG

Sieve

This series is known as the Basel series, and it is convergent, with sum $\pi^2/6$.

Outline

Symmetries of Triangle and Square Möbius Band I **Moessner's Magic Hilbert's Problems Random Number Generators** The Sieve of Fratosthenes Numerical Weather Prediction

Intro

Symm2 Möb1

Cookie Row

Moessner's Magic

Phi

RNG

H23

NWP

Alfred Moessner's Conjecture

Svmm2

Möb1

Cookie Row

Aus den Sitzungsberichten der Bayerischen Akademie der Wissenschaften Mathematisch-naturwissenschaftliche Klasse 1951 Nr. 3

Eine Bemerkung über die Potenzen der natürlichen Zahlen Von Alfred Moessner in Gunzenhausen Vorgelegt von Herrn O. Perron am 2. März 1951

A Remark on the Powers of the Natural Numbers

Moessner's Magic

< □ > < □ > < □ > < □ > < □ >

RNG

Sieve

H23

Moessner's Construction: n=2

We start with the sequence of natural numbers:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ...

Now we delete *every second number* and calculate the sequence of partial sums:

1 2 3 4 5 6 7 8 9 10 12 13 11 14 15 16 9 16 1 25 36 49 64

The result is the sequence of perfect squares:

 1^2 2^2 3^2 4^2 5^2 6^2 7^2 8^2 ...

NWP

Intro

Symm2 Möb1

Cookie Row Moes

Moessner's Magic

Phi

H23 RNG

Moessner's Construction: n=3

Now we delete *every third number* and calculate the sequence of partial sums.

Then we delete *every second number* and calculate the sequence of partial sums:

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	3		7	12		19	27		37	48		61	75		91
1			8			27			64			125			216

The result is the sequence of perfect cubes:

Svmm2

Möb1

Cookie Row

 $1^3 \ 2^3 \ 3^3 \ 4^3 \ 5^3 \ 6^3$.

Moessner's Magic

Phi

H23

RNG

Sieve

Moessner's Construction: n=4

The Moessner Construction also works for larger n:

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	3	6		11	17	24		33	43	54		67	81	96	
1	4			15	32			65	108			175	256		
1				16				81				256			

The result is the sequence of fourth powers:

Moessner's Constructions

Remark:

Svmm2

Möb1

Using Moessner's construction, we can generate a table of squares, cubes or higher powers.

The only arithmetical operations used are *counting* and *addition*!

Cookie Row

Are there any other sequences generated in this way?

Moessner's Magic

H23

RNG

Moessner's Construction for n!

We begin by striking out the *triangular numbers*, $\{1, 3, 6, 10, 15, 21, ...\}$ and form partial sums.

Next, we delete the final entry in each group and form partial sums. This process is repeated indefinitely:

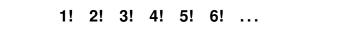
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	2		6	11		18	26	35		46	58	71	85		101
			6			24	50			96	154	225			326
						24				120	274				600
										120					720

This yields the *factorial numbers*:

Cookie Row

Svmm2

Möb1



Moessner's Magic

NWP

周レイモレイモレ

Sieve

RNG

H23

The beauty of maths? What do mathematicians think?

VIDEO: Beautiful Maths, available at

Try to disregard the antipodean exuberance!

Intro

Svmm2

Möb1 C

Cookie Row Mo

Moessner's Magic

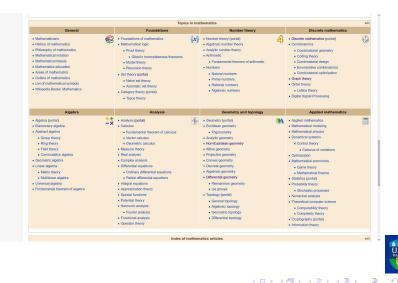
Phi

H23

RNG

Sieve

Wikipedia Mathematics Portal



Intro

Svmm2

Möb1

Cookie Row

Moessner's Magic

Phi

1

Sieve

RNG

Outline

Symmetries of Triangle and Square **Moessner's Magic** The Golden Ratio **Hilbert's Problems Random Number Generators** The Sieve of Eratosthenes Numerical Weather Prediction

Intro

Svmm2 Möb1 **Cookie Row**

Moessner's Magic

Phi

A (10) × (10) × (10) × RNG

H23

NWP

Golden Rectangle in Your Pocket

Aspect ratio is about $\phi = \frac{1+\sqrt{5}}{2} \approx 1.618$.

Intro

Symm2 Möb1

Cookie Row

Moessner's Magic

gic

Phi

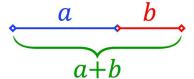
H23

RNG

イロト イポト イヨト イヨト

NWP

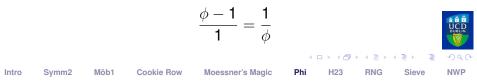
Geometric Ratio: a + b is to a as a is to b.



$$\begin{bmatrix} \frac{\text{Short Bit}}{\text{Long Bit}} \end{bmatrix} = \begin{bmatrix} \frac{\text{Long Bit}}{\text{Full Line}} \end{bmatrix}$$
 or $\frac{b}{a} = \frac{a}{a+b}$

Let the blue segment be a = 1 and the whole line ϕ .

Then $b = \phi - 1$ and we have



$$\phi - \mathbf{1} = \frac{\mathbf{1}}{\phi}$$

This means ϕ solves a guadratic equation:

 $\phi^2 - \phi - 1 = 0$

Recall the two solutions of a quadratic equation

$$ax^{2} + bx + c = 0$$
 are $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$

In the present case, this means that the roots are

$$\phi = \frac{1 \pm \sqrt{1+4}}{2}$$

We take the *positive root*, giving

$$\phi = \frac{1 + \sqrt{5}}{2} \approx 1.618$$

This is the golden ratio.

Intro

Svmm2 Möb1 Cookie Row

Moessner's Magic

Phi

H23

RNG

Check the Solution

The quadratic equation is

$$\phi^2 - \phi - 1 = 0$$
 or $\phi^2 = \phi + 1$

Suppose

$$\phi = \frac{1 + \sqrt{5}}{2}$$

Then

$$\phi + 1 = rac{3 + \sqrt{5}}{2}$$
 and $\phi^2 = rac{3 + \sqrt{5}}{2}$

Intro

Symm2 Möb1

Cookie Row Mo

Moessner's Magic

Phi

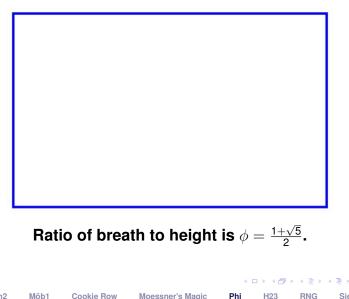
H23

► < ≣ ► RNG

< ∃⇒

Sieve

Golden Rectangle



Intro

Symm2 Möb1

Moessner's Magic

Phi

RNG

Sieve

Golden Rectangle in Your Pocket

Aspect ratio is about $\phi = \frac{1+\sqrt{5}}{2} \approx 1.618$.

Intro

Symm2 Möb1

Cookie Row

Moessner's Magic

gic

Phi

H23

RNG

イロト イポト イヨト イヨト

NWP

Terminology

Intro

Svmm2

Möb1

► Golden Ratio. Golden Number. Golden Mean.

Moessner's Magic

Phi

H23

- Golden Proportion. Golden Cut.
- Golden Section. Medial Section.
- Divine Proportion. Divine Section.
- Extreme and Mean Ratio.

Cookie Row

Various Other Terms.

- B

Sieve

RNG

Svmm2

Möb1

The Fibonacci sequence is the sequence

 $\{0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, \dots\}$

where each number is the sum of the previous two.

The Fibonacci numbers obey a recurrence relation

$$F_{n+1}=F_n+F_{n-1}$$

Moessner's Magic

Phi

with the starting values $F_0 = 0$ and $F_1 = 1$.

Cookie Row

Can we solve this recurrence relation for all F_n?

イロト イポト イヨト イヨト

RNG

Sieve

H23

The recurrence relation is

$$F_{n+1} = F_n + F_{n-1}$$

We assume that the solution is of the form $F_n = k\chi^n$, where we have to find χ (this is called an *Ansatz*).

Substitute this solution into the recurrence relation:

$$k\chi^{n+1} = k\chi^n + k\chi^{n-1}$$

Divide by $k\chi^{n-1}$ to get the quadratic equation

Cookie Row

Svmm2

Möb1

$$\chi^2 = \chi + 1$$
 or $\chi^2 - \chi - 1 = 0$

Moessner's Magic

Phi

This is the quadratic we got for the golden number.

RNG

We found that $F_n = k\phi^n$ where ϕ is a root of

$$\phi^2 - \phi - \mathbf{1} = \mathbf{0}$$

The two roots are

$$\frac{1+\sqrt{5}}{2}$$
 and $\frac{1-\sqrt{5}}{2}$

Then the full solution for the Fibonacci numbers is

$$F_n = rac{1}{\sqrt{5}} \left[rac{1+\sqrt{5}}{2}
ight]^n - rac{1}{\sqrt{5}} \left[rac{1-\sqrt{5}}{2}
ight]^n$$

Check that the conditions $F_0 = 0$ and $F_1 = 1$ are true.

Symm2 Möb1

Cookie Row

Moessner's Magic

Phi

23

RNG Sieve

A D A D A D A

NW

S٧

$$F_n = rac{1}{\sqrt{5}} \left[rac{1+\sqrt{5}}{2}
ight]^n - rac{1}{\sqrt{5}} \left[rac{1-\sqrt{5}}{2}
ight]^n$$

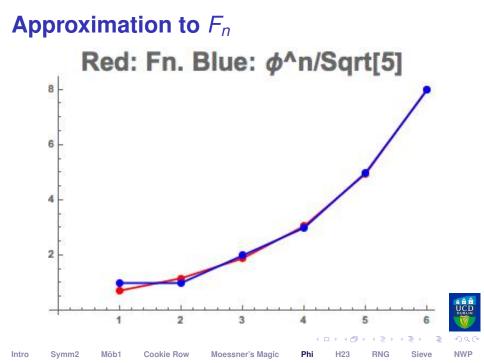
The first term in square brackets is greater than 1, so the powers grow rapidly with *n*.

The second term in square brackets is less than 1, so the powers *become small rapidly with n*.

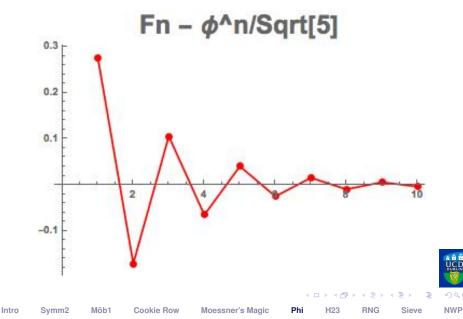
So, we ignore the second term and write

$$F_n \approx \frac{1}{\sqrt{5}} \left[\frac{1 + \sqrt{5}}{2} \right]^n \quad \text{or} \quad F_n \approx \frac{\phi^n}{\sqrt{5}}$$

$$(1 + \sqrt{5})^n \quad (2 + \sqrt{5$$



Oscillating Error of Approximation



$$F_n \approx \frac{\phi^n}{\sqrt{5}} \implies \frac{F_n}{F_{n-1}} \approx \phi$$

Let's consider the sequence of ratios of terms

$$\frac{2}{1}, \frac{3}{2}, \frac{5}{3}, \frac{8}{5}, \frac{13}{8}, \frac{21}{13}, \frac{34}{21}, \dots$$

The ratios get closer and closer to ϕ :

$$rac{F_{n+1}}{F_n} o \phi$$
 as $n o \infty$

Intro

Symm2 Möb1 (

Cookie Row Moe

Moessner's Magic

Phi

.

H23

RNG

ヨト・モヨト

Sieve

Continued Fraction for ϕ

$$\phi^2 - \phi - 1 = 0 \implies \phi = 1 + \frac{1}{\phi}$$

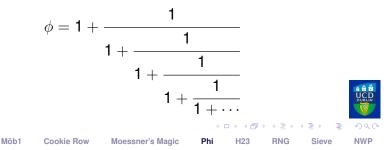
Now use the equation to replace ϕ on the right:

$$\phi = \mathbf{1} + \frac{1}{\phi} = \mathbf{1} + \frac{1}{\mathbf{1} + \frac{1}{\phi}} = \mathbf{1} + \frac{1}{\mathbf{1} + \frac{1}{\frac{1}{\phi}}}$$

Eventually

Intro

Svmm2



Continued Root for ϕ

$$\phi^2 - \phi - \mathbf{1} = \mathbf{0} \implies \phi = \sqrt{\mathbf{1} + \phi}$$

Now use the equation to replace ϕ on the right:

$$\phi = \sqrt{1 + \phi} = \sqrt{1 + \sqrt{1 + \phi}} = \sqrt{1 + \sqrt{1 + \sqrt{1 + \phi}}}$$

Eventually

$$\phi = \sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + \cdots}}}}}$$
Symm2 Möb1 Cookie Row Moessner's Magic Phi H23 RNG Sieve

NWP

Intro

Fibonacci Numbers in Nature

Look at post

Sunflowers and Fibonacci: Models of Efficiency on the *ThatsMaths* blog.

Intro

Symm2 Möb1

Cookie Row Mo

Moessner's Magic

Phi

H23

Vi Hart's Videos

Svmm2

Möb1

Vi Hart has many mathematical videos on YouTube.

- On Fibonacci Numbers: https: //www.youtube.com/watch?v=ahXIMUkSXX0
- On the Three Utilities Problem: https://www.youtube.com/watch?v= CruQylWSfoU&feature=youtu.be

Cookie Row

On Continued Fractions: https: //www.youtube.com/watch?v=a5z-OEIfw3s

Moessner's Magic

Phi

H23

RNG

Outline

Symmetries of Triangle and Square Möbius Band I **Moessner's Magic Hilbert's Problems Random Number Generators** The Sieve of Eratosthenes Numerical Weather Prediction

Intro

Svmm2 Möb1 **Cookie Row**

Moessner's Magic

H23

(4月) (4日) (4日) RNG

NWP

David Hilbert (1862–1943)

David Hilbert, from a contemporary postcard.

Intro

Symm2

Möb1 **Cookie Row**

Moessner's Magic

Phi

 A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 RNG

H23

Sieve

Hilbert's Problems

In August 1900, David Hilbert addresed the *International Congress of Mathematicians* in the Sorbonne in Paris:

"Who of us would not be glad to lift the veil behind which the future lies hidden; to cast a glance at the next advances of our science and at the secrets of its development during future centuries?"

Hilbert presented 23 problems that challenged mathematicians through the twentieth century.

Sieve

Intro

Cookie Row Moes

Moessner's Magic

Phi

H23 RNG

Hilbert's Problems

Svmm2

Möb1

Cookie Row

BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 37, Number 4, Pages 407–436 S 0273-0979(00)00881-8 Article electronically published on June 26, 2000

MATHEMATICAL PROBLEMS

DAVID HILBERT

Lecture delivered before the International Congress of Mathematicians at Paris in 1900.

Hilbert's eighth problem concerned itself with what is called the Riemann Hypothesis (RH).

RH is generally regarded as the deepest and most important unproven mathematical problem.

Anyone who can prove it is assured of lasting fame.

Moessner's Magic

NWP

< □ > < □ > < □ > < □ > < □ >

RNG

Sieve

H23

Why is RH Important?

Intro

Svmm2

Möb1

Cookie Row

A large number of mathematical theorems (1000's) depend for their validity on the RH.

Were RH to turn out to be false, many of these mathematical arguments would simply collapse.

In 2000, industrialist Landon Clay donated \$7M, with \$1M for each of 7 problems in mathematics.

The Riemann hypothesis is one of these problems.

http://www.claymath.org/millennium-problems

Moessner's Magic

Phi

< □ > < □ > < □ > < □ > < □ >

RNG

Sieve

H23

Why is RH Important?

Whoever proves Riemann's hypothesis will have completed thousands of theorems that start like this:

"Assuming that the Riemann hypothesis is true".

Moessner's Magic

Phi

H23

He or she will be assured of lasting fame.

Cookie Row

Svmm2

Möb1

Those who establish fundamental mathematical results probably come closer to immortality than almost anyone else.

Outline

Symmetries of Triangle and Square Möbius Band I **Moessner's Magic Hilbert's Problems Random Number Generators** The Sieve of Fratosthenes Numerical Weather Prediction

Intro

Svmm2 Möb1 **Cookie Row**

Moessner's Magic

H23

A (10) × (10) × (10) × RNG

NWP

What is Randomness?

Randomness is a *slippery concept,* defying precise definition.

Toss a coin and get a sequence like 1001110100.

Some uses of Random Numbers:

- Computer simulations of fluid flow.
- Interactions of subatomic particles.
- Evolution of galaxies.

Tossing coins is impractical. We need more effective methods.

NWP

Moessner's Magic

Phi

H23

RNG

Defining Randomness?

Richard von Mises (1919): A binary sequence is random if the proportion of zeros and ones approaches 50% and if this is also true for any sub-sequence. Consider (0101010101).

Andrey Kolmogorov defined the complexity of a binary sequence as the length of a computer program or algorithm that generates it.

The phrase a sequence of one million 1s completely defines a sequence.

Non-random sequences are compressible. Randomness and incompressibility are equivalent.

Intro

Cookie Row Moe

Moessner's Magic

Phi

H23

RNG

(日)

NWP

Pseudo-random versus Truly Random

Pseudo-random number generators are algorithms that use mathematical formulae to produce sequences of numbers.

The sequences appear completely random and satisfy various statistical conditions for randomness.

Moessner's Magic

H23

RNG

Sieve

Pseudo-random numbers are valuable for many applications but they have serious difficiencies.

Svmm2

Möb1

Cookie Row

Truly Random Number Generators

True random number generators extract randomness from physical phenomena that are completely unpredictable.

Atmospheric noise is the static generated by lightning [globally there are 40 flashes/sec]. It can be detected by an ordinary radio.

NWP

Sieve

Intro

Svmm2

Möb1

Cookie Row Moess

Moessner's Magic

Phi

123 RNG

Truly Random Number Generators

Atmospheric noise passes all the statistical checks for randomness.

Dr Mads Haahr of Trinity College, Dublin uses atmospheric noise to produce random numbers.

Results available on on the website: random.org.

20 Random Coin Tosses

Intro

Symm2 Möb1

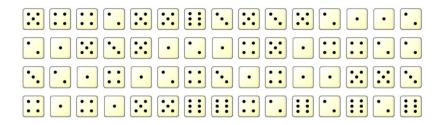
Moessner's Magic

Phi

RNG

Sieve

60 Dice Rolls



Intro

Symm2 Möb1

Cookie Row M

Moessner's Magic

Phi

H23

- 17 ▶

RNG

► < ≣ ► Sieve

100 Random Numbers in [0,99]

17	60	57	66	4	71	59	36	8	49
87	64	94	82	6	38	14	87	76	72
97	38	44	59	56	24	20	6	24	97
0	40	14	77	18	98	41	39	6	79
21	59	49	86	91	81	65	64	3	11
92	17	65	6	37	98	84	17	70	93
60	52	1	98	20	2	65	9	57	3
48	86	27	3	71	51	57	56	2	2
13	14	73	65	11	32	17	7	91	37
3	8	10	67	Θ	72	Θ	42	15	24

Intro

Symm2 Möb1

Cookie Row Mo

Moessner's Magic

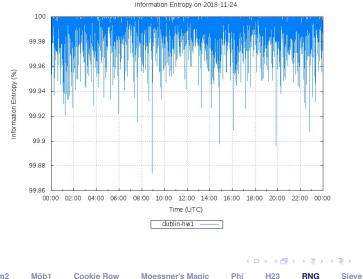
Phi

H23

RNG

Sieve

Quality of Random Numbers



RANDOM.ORG

Symm2

Intro

Möb1 **Cookie Row**

Moessner's Magic

Phi

RNG

PRNG versus TRNG

Characteristic	Pseudo-Random Number Generators	True Random Number Generators
Efficiency	Excellent	Poor
Determinism	Determinstic	Nondeterministic
Periodicity	Periodic	Aperiodic

Intro

Symm2 Möb1

Cookie Row Mo

Moessner's Magic

Phi

RNG

イロト イヨト イヨト イヨト

H23

NWP

э

Outline

Symmetries of Triangle and Square Möbius Band I **Moessner's Magic Hilbert's Problems Bandom Number Generators** The Sieve of Eratosthenes Numerical Weather Prediction

Intro

Symm2 Möb1

Cookie Row

Moessner's Magic

Phi

H23

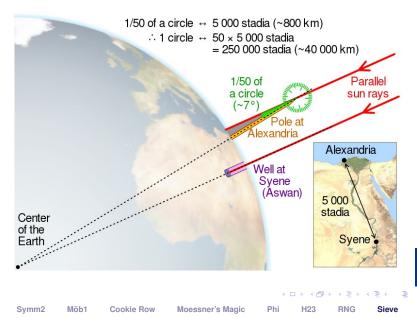
RNG

Sieve

A (10) × (10) × (10) ×

Eratosthenes Measured the Earth

Intro



Eratosthenes was the Librarian in Alexandria when Archimedes flourished in Syracuse.

They were "pen-pals".

Svmm2

Möb1

Eratosthenes estimated size of the Earth.

Cookie Row

He devised a systematic procedure for generating the prime numbers: the Sieve of Eratosthenes.

Moessner's Magic

H23

RNG

The idea:

- List all natural numbers up to n.
- Circle 2 and strike out all multiples of two.
- Move to the next number, 3.
- Circle it and strike out all multiples of 3.
- Continue till no more numbers can be struck out.

The numbers that have been circled are the prime numbers. Nothing else survives.

It is sufficient to go as far as \sqrt{n} .



Moessner's Magic

lagic P

hi H23

通 ト イ ヨ ト イ ヨ ト

Sieve

RNG

	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	<mark>4</mark> 3	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Intro

Symm2 Möb1

Cookie Row

Moessner's Magic

Phi

li i

- 17 ▶

H23

< E → < E → RNG Sieve

	2 3	5	7	9
11	13	15	17	19
21	23	25	27	29
31	33	35	37	39
41	43	45	47	49
51	53	55	57	59
61	63	65	67	69
71	73	75	77	79
81	83	85	87	89
91	93	95	97	99

Intro

Symm2 Möb1

Cookie Row

Moessner's Magic

Phi

H23

< ∃⇒ RNG Sieve

TH 16

NWP

э

	2	3	5	7	
11		13		17	19
		23	25		29
31			35	37	
41		43		47	49
		53	55		59
61			65	67	
71		73		77	79
		83	85		89
91			95	97	

Intro

Symm2 Möb1

Cookie Row Mo

Moessner's Magic

; F

Phi

H23

RNG Sieve

NWP

3) J

	2	3	5	7	
11		13		17	19
		23			29
31				37	
41		43		47	49
		53			59
61				67	
71		73		77	79
		83			89
91				97	

Intro

Symm2 Möb1

Cookie Row M

Moessner's Magic

igic

Phi

RNG Sieve

イロト イポト イヨト イヨト

H23

NWP

э

	2	3	5	7	
11		13		17	19
		23			29
31				37	
41		43		47	
		53			59
61				67	
71		73			79
		83			89
				97	

Intro

Symm2 Möb1

Cookie Row M

Moessner's Magic

P

Phi

- 17 ▶

H23

RNG Sieve

- B

	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Intro

Symm2 Möb1

Cookie Row Moess

Moessner's Magic

Phi

H23

∃ >Sieve

RNG

Is There a Pattern in the Primes?

It is a simple matter to make a list of all the primes less that 100 or 1000.

Svmm2

Möb1

Cookie Row

It becomes clear very soon that there is no clear pattern emerging.

The primes appear to be scattered at random.

Figure : Prime numbers up to 100

Moessner's Magic

H23

RNG

The grand challenge is to find patterns in the sequence of prime numbers.

This is an enormously difficult problem that has taxed the imagination of the greatest mathematicians for centuries.

Intro

Symm2 Möb1

Cookie Row

Moessner's Magic

Phi

H23

RNG Sieve

Outline

Symmetries of Triangle and Square Möbius Band I **Moessner's Magic Hilbert's Problems Bandom Number Generators** The Sieve of Eratosthenes Numerical Weather Prediction

Intro

Svmm2 Möb1 **Cookie Row**

Moessner's Magic

Phi

H23

(4月) (4日) (4日) RNG

NWP

Numerical Weather Prediction

Outline of a talk on NWP given at UCC, March 2018.

 \sim /Dropbox/TALKS/NWP-UCC/NWP-UCC.pdf

https://maths.ucd.ie/~plynch/Talks/ See also HiRes Image on my website.

Intro

Svmm2 Möb1

Cookie Row M

Moessner's Magic

Phi

H23

Thank you

Intro

Symm2 Möb1

Cookie Row M

Moessner's Magic

Phi

4 □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ □ `

≣ ► E Sieve