AweSums

Marvels and Mysteries of Mathematics

LECTURE 8

Peter Lynch
School of Mathematics \& Statistics University College Dublin

Evening Course, UCD, Autumn 2019

Outline

Introduction
Pascal's Triangle
Euler's Gem
Distraction 6A: Slicing a Pizza (Again)
Distraction 7: Plus Magazine
Astronomy II
Distraction 8: Sum by Inspection
Carl Friedrich Gauss

Outline

Introduction

Pascal＇s Triangle

Euler＇s Gem
Distraction 6A：Slicing a Pizza（Again）
Distraction 7：Plus Magazine

Astronomy II

Distraction 8：Sum by Inspection

Carl Friedrich Gauss

Meaning and Content of Mathematics

The word Mathematics comes from
Greek $\mu \alpha \theta \eta \mu \alpha$ (máthéma), meaning "knowledge" or "study" or "learning".

It is the study of topics such as

- Quantity (numbers)
- Structure (patterns)
- Space (geometry)
- Change (analysis).

Outline

Introduction

Pascal's Triangle

Euler's Gem

Distraction 6A: Slicing a Pizza (Again)
Distraction 7: Plus Magazine
Astronomy II
Distraction 8: Sum by Inspection
Carl Friedrich Gauss

Pascal's Triangle

Combinatorial Symbol

$$
\binom{n}{r}
$$

" n choose $r "$

This symbol represents the number of combinations of r objects selected from a set of n objects.

Pascal's Triangle: Combinations

$$
\begin{aligned}
& \binom{0}{0} \\
& \binom{1}{0} \quad\binom{1}{1} \\
& \binom{2}{0} \quad\binom{2}{1} \quad\binom{2}{2} \\
& \binom{3}{0} \quad\binom{3}{1} \quad\binom{3}{2} \quad\binom{3}{3} \\
& \binom{4}{0} \quad\binom{4}{1} \quad\binom{4}{2} \quad\binom{4}{3} \quad\binom{4}{4} \\
& \binom{5}{0} \quad\binom{5}{1} \quad\binom{5}{2} \quad\binom{5}{3} \quad\binom{5}{4} \quad\binom{5}{5}
\end{aligned}
$$

のの

Pascal's Triangle

Pascal's triangle is a triangular array of the binomial coefficients.

It is named after French mathematician Blaise Pascal.
It was studied centuries before him in:

- India (Pingala, C2BC)
- Persia (Omar Khayyam, C11AD)
- China (Yang Hui, C13AD).

Pascal's Traité du triangle arithmétique (Treatise on Arithmetical Triangle) was published in 1665.

Draw Pascal's triangle on the board.

Pascal's Triangle

The rows of Pascal's triangle are numbered starting with row $\mathbf{n}=0$ at the top (0 -th row).

The entries in each row are numbered from the left beginning with $k=0$.

The triangle is easily constructed:

- A single entry 1 in row 0.
- Add numbers above for each new row.

The entry in the nth row and k-th column of Pascal's triangle is denoted $\binom{n}{k}$.

The entry in the topmost row is $\binom{0}{0}=1$.

Pascal's Identity

The construction of the triangle may be written:

$$
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}
$$

This relationship is known as Pascal's Identity.

Pascal's Triangle \& Fibonacci Numbers.

Figure : Pascal's Triangle and Fibonacci Numbers

Where are the Fibonacci Numbers hiding here?

Sierpinski's Gasket

$\Delta \mathbf{A} \boldsymbol{A} \boldsymbol{A}$

Sierpinski's Gasket is constructed by starting with an equilateral triangle, and successively removing the central triangle at each scale.

Sierpinski's Gasket at Stage 6

Figure : Result after 6 subdivisions

Sierpinski＇s Gasket in Pascal＇s Triangle

Figure ：Odd numbers are in black

今 今 今
UCD

Remember Walking in Manhattan?

骂	1	1	1
1	2	3	4
1	3	6	10
1	4	10	20

Figure : Number of routes for a rook in chess.

Geometric Numbers in Pascal's Triangle

$1 \sqrt{ }$ Natural numbers,
$11 \downarrow^{\text {Triangular numbers, }}$
$121 \quad \nabla^{\text {Tetrahedral numbers, } T e_{n}=C(n+2,3)}$
$1 \begin{array}{lllll}1 & 3 & 3 & 1 & \nabla^{\text {Pentatope numbers }}=C(n+3,4)\end{array}$
$1 \quad 4 \quad 6 \quad 4 \quad 1 \quad \downarrow^{5 \text {-simplex }(\{3,3,3,3\})}$ numbers
$\begin{array}{llllllll}1 & 5 & 10 & 10 & 5 & 1 & \nabla^{6} \text {-simplex }\end{array}$
($\{3,3,3,3,3\}$) numbers
$\begin{array}{llllllll}1 & 6 & 15 & 20 & 15 & 6 & 1 & \downarrow 7 \text {-simplex }\end{array}$
$\begin{array}{llllllll}1 & 7 & 21 & 35 & 35 & 21 & 7 & 1\end{array}\left(\begin{array}{ll}\{3,3,3,3,3,3\})\end{array}\right)$ numbers
$\begin{array}{llllllll}1 & 8 & 28 & 56 & 70 & 56 & 28 & 8\end{array} 1$

UCD

Outline

Introduction

Pascal's Triangle

Euler's Gem

Distraction 6A: Slicing a Pizza (Again)

Distraction 7: Plus Magazine

Astronomy II

Distraction 8: Sum by Inspection
Carl Friedrich Gauss

っの\&

Euler's polyhedron formula.

Carving up the globe.

Regular Polygons

The Platonic Solids (polyhedra)

Tetrahedron (four faces)	Cube or hexahedron (six faces)	Octahedron (eight faces)	Dodecahedron (twelve faces)	Icosahedron (twenty faces)

These five regular polyhedra were discovered in ancient Greece, perhaps by Pythagoras.

Plato used them as models of the universe.
They are analysed in Book XIII of Euclid's Elements.

There are only five Platonic solids.

But Archimedes found, using different types of polygons, that he could construct 13 new solids.

The Thirteen Archimedean Solids

Check V-E + F for the Truncated Cube UCD dublin

Euler's Polyhedron Formula

The great Swiss mathematician, Leonard Euler, noticed that, for all (convex) polyhedra,

$$
V-E+F=2
$$

where

- V = Number of vertices
- $\mathrm{E}=$ Number of edges
- F = Number of faces

Mnemonic: Very Easy Formula

For example, a Cube

Number of vertices: $\mathbf{V}=\mathbf{8}$ Number of edges: $\mathrm{E}=12$ Number of faces: F=6

$$
(V-E+F)=(8-12+6)=2
$$

Mnemonic: Very Easy Formula

Pentagons and Hexagons

UCD
$\frac{\text { aublin }}{y / y}$

The Truncated Icosahedron

An Archimedean solid with pentagonal and hexagonal faces.

The Truncated Icosahedron

Whare have you seen this before?

The Truncated Icosahedron

The "Buckyball", introduced at the 1970 World Cup Finals in Mexico.

It has $\mathbf{3 2}$ panels: $\mathbf{2 0}$ hexagons and $\mathbf{1 2}$ pentagons.

Buckminsterfullerene

Buckminsterfullerene is a molecule with formula C_{60} It was first synthesized in 1985.

Graphene

A hexagonal pattern of carbon one atom thick

Euler's Polyhedron Formula

$\mathbf{V}-\mathbf{E}+\mathrm{F}=\mathbf{2}$ still holds.

Topology is often called Rubber Sheet Geometry

童

Topology and the London Underground Topographical Map

Topology and the London Underground Topological Map

Outline

Introduction
 Pascal＇s Triangle
 Euler＇s Gem
 Distraction 6A：Slicing a Pizza（Again）

Distraction 7：Plus Magazine
Astronomy II
Distraction 8：Sum by Inspection
Carl Friedrich Gauss

EG
DIST06A
DIST07
Astro2
DIST08

ゆのく

Distraction 6A: Slicing a Pizza (Again)

Cut the pizza using
only straight cuts.
There should be exactly one piece of pepperoni on each slice of pizza.

Minimum number of cuts?

Abstract Formulation

Last Week's Problem:
Plane cut by n lines. How many regions are formed?

Cuts	Segments (1D)	Regions (2D)	Solids (3D)
0	1	1	1
1	2	2	2
2	3	4	4
3	4	7	8
4	5	11	15
5	6	16	26
6	7	22	42

What is the pattern here?

Cutting Lines, Planes and Spaces

Cuts	Segments (1D)	Regions (2D)	Solids (3D)
0	1	1	1
1	2	2	2
2	3	4	4
3	4	7	8
4	5	11	15
5	6	16	26
6	7	22	42

There is a pattern here.
It is reminiscent of Pascal's Triangle.

Distraction 6A: Doughnut-Slicing Problem

BRILLIANT

Courses
Practice
Community

Cutting an Annulus
Discrete Mathematics Level 2

What is the maximum number of pieces into which a ring can be cut by 3 straight lines?
In the image above, the ring is cut into 6 pieces by 3 lines.
$\stackrel{A}{\hat{3}} \stackrel{A}{B}$
UCD
UCED

Distraction 6A: Slicing a (Flat) Doughnut

ค

Distraction 6A: Slicing a (Flat) Doughnut

Distraction 6A: Slicing a (Flat) Doughnut

ゆa^

Distraction 6A: Brilliant Website

https://brilliant.org/

कิ 불 UCD

Outline

Introduction

Pascal's Triangle

Euler's Gem

Distraction 6A: Slicing a Pizza (Again)

Distraction 7: Plus Magazine

Astronomy II

Distraction 8: Sum by Inspection
Carl Friedrich Gauss

คa\&

Distraction 7: Plus Magazine

Cut your cake and eat it (eventually)

Computer scientists have made a breakthrough in the theory of cake cutting.

PLUS: The Mathematics e-zine https://plus.maths.org/

のac

Outline

Introduction
 Pascal＇s Triangle
 Euler＇s Gem
 Distraction 6A：Slicing a Pizza（Again）
 Distraction 7：Plus Magazine
 Astronomy II

Distraction 8：Sum by Inspection
Carl Friedrich Gauss

The Scientific Revolution

INTRODUCTION

This week, we will look at developments in the sixteenth and seventeenth centuries.

Nicolaus Copernicus 1473-1543

Tycho Brahe
1546-1601

Johannes Kepler 1571-1630

Galileo Galilei
1564-1642

Figure from mathigon.org

The Heliocentric Model

In 1543, Nicolaus Copernicus (1473-1543) published "On the Revolutions of the Celestial Spheres".

He explained that the Sun is at the centre of the universe and that the Earth and planets move around it in circular orbits.

Danish astronomer Tycho Brahe (1546-1601) made very accurate observations of the movements of the planets, and developed his own model of the solar system.

Johannes Kepler (1571-1630)

Johannes Kepler (1571-1630) succeeded Brahe as imperial mathematician.

After many years of struggling, Kepler succeeded in formulating his three Laws of Planetary Motion.

Kepler's Laws describe the solar system much as we know it to be true today.

Kepler's Laws

- The planets move on elliptical orbits, with the Sun at one of the two foci.
This explains why the Sun appears larger at
some times of the year and smaller at others.
- A line joining the planet and the Sun sweeps out equal areas in equal times.
This means that a planet moves faster when
close to the Sun, and slower when further away.
- The square of the orbital period is proportional to the cube of the mean radius of the orbit.
This law allows us to find the orbital time
of a planet if we know the size of the orbit.

Jovian Year from Kepler's Third Law

- Distance from Sun to Earth: 1.0 AU
- Distance from Sun to Jupiter: 5.2 AU
- Rotation Period of Earth: 1 Year
- Rotation Period of Jupiter: To Be Found

$$
\begin{gathered}
\frac{P_{J}{ }^{2}}{P_{E}{ }^{2}}=\frac{R_{J}{ }^{3}}{R_{E}{ }^{3}} \\
P_{J}{ }^{2}=R_{J}{ }^{3} \\
P_{J}=R_{J}^{\frac{3}{2}} \quad P_{J}=(5.2)^{\frac{3}{2}} \approx 12 \text { Years }
\end{gathered}
$$

The Mysterium Cosmographicum

There were six known planets in Kepler's time: Mercury, Venus, Earth, Mars, Jupiter, Saturn.

There are precisely five platonic solids:

Tetrahedron

Icosahedron

Dodecahedron

Octahedron

Cube

This gave Kepler an extraordinary idea!

https://thatsmaths.com/2016/10/13/
\keplers-magnificent-mysterium-cosmographicum/

Galileo Galelii (1564-1630)

Galileo introduced the telescope to astronomy, and made some dramatic discoveries.

He observed the four large moons of Jupiter revolving around that planet.

He established the laws of inertia that underlie Newton's dynamical laws.

Four Remarkable Scientists

Nicolaus Copernicus 1473-1543

Tycho Brahe
1546-1601

Johannes Kepler
1571-1630

Galileo Galilei
1564-1642

Figure from mathigon.org

Isaac Newton (1642-1727)

In 1687, Isaac Newton published the Principia Mathematica. He established the mathematical foundations of dynamics.

Between any two masses there is a force:

$$
F=\frac{G M m}{r^{2}}
$$

This is the force of gravity and gravity is what makes the planets move around the Sun.

Newton's Laws imply and explain Kepler's laws.

Outline

Introduction
Pascal＇s Triangle
Euler＇s Gem
Distraction 6A：Slicing a Pizza（Again）
Distraction 7：Plus Magazine
Astronomy II

Distraction 8：Sum by Inspection
Carl Friedrich Gauss

EG
DIST06A
DIST07
Astro2
DIST08

っのく

Distraction 8: Sum by Inspection

Can you guess the sum of this series:

$$
\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{4}\right)^{2}+\left(\frac{1}{8}\right)^{2}+\left(\frac{1}{16}\right)^{2}+\cdots
$$

Distraction 8: Sum by Inspection

We will find the shaded area without calculation

Proof by Inspection

Look at the figure in two different ways
At each scale, we have three squares the same size, and we keep one of them (red) and omit the others.

So, the area of the shaded squares is $\frac{1}{3}$.
However, it is also given by the series

$$
\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{4}\right)^{2}+\left(\frac{1}{8}\right)^{2}+\left(\frac{1}{16}\right)^{2}+\cdots
$$

Therefore we can sum the series:

$$
\frac{1}{4}+\frac{1}{16}+\frac{1}{64}+\frac{1}{256}+\cdots=\frac{1}{3}
$$

Outline

Introduction

Pascal's Triangle

Euler's Gem
Distraction 6A: Slicing a Pizza (Again)
Distraction 7: Plus Magazine
Astronomy II
Distraction 8: Sum by Inspection

Carl Friedrich Gauss

Gauss

Carl Friedrich Gauss (1777-1855)

Carl Friedrich Gauss (1777-1855)

A German mathematician who made profound contributions to many fields of mathematics:

- Number theory
- Algebra
- Statistics
- Analysis
- Differential geometry
- Geodesy \& Geophysics
- Mechanics \& Electrostatics

- Astronomy

One of the greatest mathematicians of all time.

Gauss Outsmarts his Teacher

Gauss was a genius. He was known as
The Prince of Mathematicians.
When very young, Gauss outsmarted his teacher.
I can now reveal a fact unknown to historians:
The teacher got his own back. Ho! ho! ho!

Gauss Outsmarts his Teacher

Gauss's school teacher tasked the class:

- Add up all the whole numbers from 1 to 100.

Gauss solved the problem in a flash.
He wrote the correct answer,

$$
5,050
$$

on his slate and handed it to the teacher.
How did Gauss do it?

First, Gauss wrote the numbers in a row:

$$
123 \ldots 9899100
$$

Next he wrote them again, in reverse order:

$$
\begin{array}{ccccccc}
1 & 2 & 3 & \ldots & 98 & 99 & 100 \\
100 & 99 & 98 & \ldots & 3 & 2 & 1
\end{array}
$$

Then he added the two rows, column by column:

1	2	3	\ldots	98	99	100
100	99	98	\cdots	3	2	1
---	-----	---	--	---	---	
101	101	101	\cdots	101	101	101

Clearly, the total for the two rows is $\mathbf{1 0 , 1 0 0}$.
But every number from 1 to 100 is counted twice.

$$
\therefore 1+2+3+\cdots+98+99+100=5,050
$$

Triangular Numbers

Gauss had calculated the 100-th triangular number.
Let us take a geometrical look at the sums of the first few natural numbers:

We see that the sums can be arranged as triangles.

Triangular Numbers

The first few triangular numbers are $\{1,3,6,10,15,21\}$.

$$
T_{5}=15 \quad T_{6}=21
$$

っの

Let's look at the 10th triangular number.
For $n=10$ the pattern is:

How do we compute its value? Gauss's method!

It is easy to show that the n-th triangular number is

$$
T_{n}=(1+2+3+\cdots+n)=\frac{1}{2} n(n+1)
$$

We do just as Gauss did, and list the numbers twice:

1	2	3	\ldots	$n-1$	n
n	$n-1$	$n-2$	\ldots	2	1
---	---	---	\ldots	---	---
$n+1$	$n+1$	$n+1$	\ldots	$n+1$	$n+1$

There are n columns, each with total $n+1$.
So the grand total is $n \times(n+1)$.
Each number has been counted twice, so

$$
T_{n}=\frac{1}{2} n(n+1)
$$

Let's check this for Gauss's problem of $n=100$:

$$
T_{100}=1+2+3+\cdots+100=\frac{100 \times 101}{2}=5,050
$$

Gauss's approach was to look at the problem from a new angle.

Such lateral thinking is very common in mathematics:
Problems that look difficult can sometimes be solved easily when tackled from a different angle.

Two Triangles Make a Square

A nice property of consecutive triangular numbers:

$$
T_{3}+T_{4}=6+10=16=4^{2}
$$

-

Triangular Numbers

We have seen, by means of geometry that the sum of two consecutive triangular numbers is a square.

Now let us prove this algebraically:

$$
\begin{aligned}
T_{n}+T_{n+1} & =\frac{1}{2} n(n+1)+\frac{1}{2}(n+1)(n+2) \\
& =\frac{1}{2}(n+1)[n+(n+2)] \\
& =\frac{1}{2}(n+1)[2(n+1)] \\
& =(n+1)^{2}
\end{aligned}
$$

The result is a perfect square.

Puzzle

What is the sum of all the numbers from 1 up to 100 and back down again?

The answer is in the video coming up now.

A Video from the Museum of Mathematics

VIDEO: Beautiful Maths, available at

http://momath.org/home/beautifulmath/ Video by James Tanton

Gauss Outsmarted by his Teacher

The teacher thought that he would have a half-hour of peace and quiet while the pupils grappled with the problem of adding up the first 100 numbers.

He was annoyed when Gauss came up almost immediately with the correct answer 5,050 .

So, he said:
"Oh, you zink you are zo zmart!
Zo, multiply ze first 100 numbers."
EXERCISE: Zink about that!

A Lateral Thinking Puzzle

- Jill is 23 years younger than her father.
- What age was she when she was half his age?

Let Jill's age be J. Let her father's age be F.

$$
F-J=23
$$

Hint: Be Smart
There is no need for tricky algebra.

Thank you

