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Meaning and Content of Mathematics

The word Mathematics comes from
Greek µαθηµα (máthéma), meaning
“knowledge” or “study” or “learning”.

It is the study of topics such as
I Quantity (numbers)
I Structure (patterns)
I Space (geometry)
I Change (analysis).
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Volume of a Sphere

Figure : Archimedes found a formula for VSPHERE
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Who First Proved that C/D is Constant?

For every circle, the distance around it is
just over three times the distance across it.

This has been “common knowledge”
since the earliest times.

But mathematicians don’t trust common knowledge.

They demand proof.

Who was first to prove that the ratio of circumference
C to diameter D has the same value for all circles?
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What about Euclid?
You might expect to find a proof in Euclid’s
Elements of Geometry. But Euclid couldn’t prove it.

Euclid’s Prop. XII.2 says the areas of circles are
to one another as the squares of their diameters:

A1

D2
1

=
A2

D2
2
.

We would expect to find an analogous theorem:
The circumferences of circles vary as their diameters:

C1

D1
=

C2

D2

but we do not find this anywhere in Euclid.
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Archimedes Rules OK!

It required the genius of Archimedes
to prove that C/D is the same for all circles.

He needed axioms beyond those of Euclid.

In his work Measurement of a Circle,
Archimedes found the area of a circle.

It is equal to the area of a right-angled triangle
with one leg equal to R and the other equal to C:

A = 1
2RC .
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Archimedes determined π accurately by
considering polygons within and around a circle.
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He determined the area of a circle
by slicing it up into small triangles.
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“Unzipping” the circle,
Archimedes obtained a triangle.
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Lengths and Areas both involve π

Archimedes’ theorem, together with Euclid’s
Proposition XII.2, implies that

C
D

= π

is the same for every circle.

It also follows that the area constant is also π:

A
R2 =

C
2R

=
C
D

= π .
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Sphere+Cone=Cylinder

Figure : Volume: Sphere plus Cone equals Cylinder
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On the Sphere and Cylinder

One of the most remarkable and important
mathematical results obtained by Archimedes
was the formula for the volume of a sphere.

Archimedes used a technique of sub-dividing the
volume into slices and adding up, or integrating,
the volumes of the slices.

This was essentially an application of the integral
calculus formulated by Newton and Leibniz.
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On the Sphere and Cylinder
Archimedes considered three volumes, a cylinder,
cone and sphere, all on bases with the same area.

Figure : Cone, sphere and cylinder on the same base.
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On the Sphere and Cylinder

Archimedes showed that the three
volumes are in the ratio 1 : 2 : 3.

Thus, in particular, the volume of the sphere
is two thirds of the volume of the cylinder.

If we ‘rearrange’ the volume of the cone,
things become much clearer:

We replace the cone by two cones, each of height r .
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On the Sphere and Cylinder

Figure : Cone, sphere and cylinder on the same base.
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On the Sphere and Cylinder

We let z denote the vertical coordinate,
and ∆z be a small increment of height.

The cross-sections of the cone and sphere are

∆VCON = πz2∆z

∆VSPH = π(
√

r 2 − z2)2∆z = π(r 2 − z2)∆z .

Add to get the cross-sectional area of the cylinder:

∆VCON + ∆VSPH = ∆VCYL = πr 2∆z ,

This does not vary with height z.
It is the same as for the cylinder.
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On the Sphere and Cylinder

REPLACE OR SUPPLEMEMT ABOVE SLIDE WITH A FIGURE
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On the Sphere and Cylinder

Adding up the volumes of all slices:

∆VCON + ∆VSPH = ∆VCYL = πr 2H = 2πr 3 .

It is not quite so simple to show that

∆VCON = 1
3∆VCYL = 1

3πr 2H = 2
3πr 3

∆VSPH = 2
3∆VCYL = 2

3πr 2H = 4
3πr 3 .

However, this was well within the capability
of the brilliant mathematician Archimedes.
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On the Sphere and Cylinder

This result was carved on Archimedes’ tomb.
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Archimedes’ Tomb as it appears today
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What are Axioms?

How can we prove a theorem,
if we have nothing to start from?

We cannot prove something using nothing.
We need some starting point.

The basic building blocks are called Axioms.

Axioms are not proved, but are assumed true.
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What are Axioms?

Axioms are important because the entire
body of mathematics rests upon them.

If there are too few axioms, we can prove
very little of interest from them.

If there are too many axioms, we can
prove almost any result from them.

Consistency:
We must not have axioms that contradict each other.
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What are Axioms?
Mathematicians assume that axioms are
true without being able to prove them.

This is not problematic, because axioms
are normally intuitively obvious.

There are usually only a few axioms.
For example, we may assume that

a× b = b × a

for any two numbers a and b.

But Hamilton found that for quaternions,

A× B 6= B × A .
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Different sets of axioms lead to
different kinds of mathematics.

Every area of mathematics has
its own set of basic axioms.

When mathematicians have proven a theorem,
they publish it for other mathematicians to check.

In principle, it is possible to break a proof
into steps starting from the basic axioms.

Sometimes a mistake in the proof is found.
Sometimes an error is not found for many years
(e.g., an early “proof” of the Four Colour Theorem.)
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Euclid’s Axioms of Geomery
Euclid based his “Elements of Geometry”
on a set of five postulates or axioms:

The fifth postulate, the parallel postulate, has been
a great source of controversy and confusion.
This has led to completely new areas of mathematics.
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Peano’s Axioms of Arithmetic
Giuseppi Peano constructed five axioms
to build up the set N of natural numbers:

The natural numbers may then be extended to the
integers, rational numbers and real numbers.
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Axioms of Set Theory

Set theory is the basic language of mathematics.

Many mathematical problems can be formulated
in the language of set theory.

To prove them we need the Set Theory Axioms.

The most widely accepted axioms are the
set of nine Zermelo-Fraenkel (ZF) axioms.

A tenth axiom, may also be assumed,
the Axiom of Choice.
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Zermelo-Fraenkel axioms

Image from Mathigon.org
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Zermelo-Fraenkel axioms

Image from Mathigon.org
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Axiom of Choice

Image from Wikipedia
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Axiom of Choice
The Axiom of Choice (AC) looks just as
innocuous as the other nine axioms.
However it has unexpected consequences.

We can use AC to prove that it is possible to cut a
sphere into five pieces and reassemble them into
two spheres, each identical to the initial sphere.

This result is called the Banach-Tarski Theorem.
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Banach-Tarski Theorem

The five pieces have fractal boundaries:
they can’t actually be made in practice.

Also, they are not measurable:
they have no definite volume.
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The Current Status

There is ongoing debate among logicians about
whether or not to accept the Axiom of Choice.

Every collection of axioms forms a different
“mathematical world”. Different theorems
may be true in different worlds.

The question is:
Are we happy to live in a world where
we can make two spheres from one.

See Wikipedia article: Axiom of Choice
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Three Utilities Problem: Abstract
Is the complete 3× 3 bipartite graph K3,3 planar?

This is an abstract, jargon-filled question in
topological graph theory.
We look at a simple, concrete version.
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Three Utilities Problem: Concrete
We have to connect 3 utilities to 3 houses.

I Electricity
I Water
I Gas

The lines must not cross.
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Three Utilities Problem: Have a Go
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Three Utilities Problem: Solution!

http://www.archimedes-lab.org/How_to_Solve/Water_gas.html
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Three Utilities Problem: No Solution!

http://www.archimedes-lab.org/How_to_Solve/Water_gas.html
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Three Utilities Problem
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Three Utilities Problem: Application
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Three Utilities Problem for Mugs
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Three Utilities Problem on a Torus

K3,3 is a toroidal graph.

Vi Hart: https://www.youtube.com/watch?v=CruQylWSfoU&feature=youtu.be&t=9
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Three Utilities: Kuratowski’s Theorem

If a graph contains K3,3 or K5 as a sub-graph, it is
non-planar. If it does not contain either, it is planar.
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Three Utilities: Equivalent Graphs

The two forms shown are equivalent.

There are crossings in both.
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Distraction 12: Conditional Probability
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Distraction 12: Conditional Probability

Possibile outcomes of the experiment:

W1W2 W1B2 B1W2 B1B2

Are all four possibilities equally likely?

P(B2) = P(W1)P(B2|W1) + P(B1)P(B2|B1)

P(W1) = 1
2 P(B1) = 1

2 P(B2|W1) = 2
3 P(B2|B1) = 1

3
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Babylonian Numerals
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Ancient Egyptian Numerals
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Ancient Hebrew and Greek Numerals
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Mayan Numerals
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Various Numeral Systems

Wikipedia: Hindu-Arabic Numeral System
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Roman Numerals

In order: M D C L X V I = 1666
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How to Multiply Roman Numbers

Table : Multiplication Table for Roman Numbers.

I V X L C D M
I I V X L C D M
V V XXV L CCL D MMD V
X X L C D M V X
L L CCL D MMD V XXV L
C C D M V X L C
D D MMD V XXV L CCL D
M M V X L C D M
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A Roman Abacus
Replica of a Roman abacus from 1st century AD.

Abacus is a Latin word, which comes
from the Greek αβακας (board or table).
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A Chinese Abacus: Suan Pan
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A Japanese Abacus: Soroban
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A Different Angle on Numerals

Delightful theory. Almost certainly wrong.
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Arguments “for”
1. It is a very simple idea
2. It links symbols to numerical values

Arguments “against”
1. Number forms modified to fit model
2. Complete lack of historical evidence.

The great tragedy of science —

the slaying of a beautiful hypothesis by an ugly fact (T H Huxley)
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Estimating π with Series
There are many ways of estimating π.

For example, we can sum up the Basel Series:

π2

6
= 1 +

1
22 +

1
32 +

1
42 + · · · .

Another way is with the Gregory-Leibniz series,
discovered much earlier by Madhava (c. 1340–1425).

π

4
= 1− 1

3
+

1
5
− 1

7
+ · · · .

We have already seen Archimedes’ method.

We now give a completely different approach.
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Estimating π with Probability
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Estimating π with Probability

Area of Square: 4

Area of Circle: π

Probability point is within circle: π
4

Thus, the following ratio should approach π:

4× Number of points within Circle
Number of points within Square

→ π .
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Estimating π with n = 250
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Estimating π with n = 2500
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Estimating π with n = 25000
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Numerical Results

Table : Estimates of π

250 3.23506. . .
2500 3.15407. . .
25000 3.13177. . .

...
...

∞ 3.14159. . .

Comment on uses of Monte Carlo method.
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A Hierarchy of Numbers

We will introduce a hierarchy of numbers.

Each set is contained in the next one.

They are like a set of nested Russian Dolls:

Matryoshka
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The Natural Numbers N

The counting numbers were the first to emerge:

1 2 3 4 5 6 7 8 . . .

They are also called the Natural Numbers.

We can arange the natural numbers in a list.

This list is like a toy computer.
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A Primitive Sliderule
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The Natural Numbers N

The set of natural numbers is denoted N.

If n is a natural number, we write n ∈ N.

Natural numbers can be added: 4 + 2 = 6 ∈ N

But not always subtracted: 4− 6 = −2 6∈ N.

To allow for subtraction we have to extend N.
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The Integers Z

We extend the set of counting numbers
by including the negative whole numbers:

. . . -3 -2 -1 0 1 2 3 4 . . .

The whole numbers are also called the Integers.

The set of integers is denoted Z.

If k is an integer, we write k ∈ Z.

Clearly,
N ⊂ Z
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Integers can be added and subtracted.

They can also multiplied:

6× 4 = 24 ∈ Z .

However, they cannot usually be divided:

6
4

= 11
2 6∈ Z .

To allow for division we have to extend Z.
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The Rational Numbers Q

We extend the integers by including fractions:

r =
p
q

where p and q are integers.

These rational numbers are ratios of integers.

The set of rational numbers is denoted Q.

If r is a rational number, we write r ∈ Q.

Clearly,
Z ⊂ Q
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With the Rational Numbers, we can:

Add, Subtract, Multiply and Divide

That is, for any p ∈ Q and q ∈ Q, all of

{ p + q p − q p × q p ÷ q }

are rational numbers.

We say that Q is closed under addition,
subtraction, multiplication and division.

But we are not yet finished. R is yet to come.
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The Hierarchy of Numbers

N ⊂ Z ⊂ Q ⊂ R ⊂ C
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The Hierarchy of Numbers

Each set is contained in the next one.

They are like a set of nested Russian Dolls:

Matryoshka
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The Quadrivium

The Pythagorean model of mathematics
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The Ancient Greeks

Mathematics and Astronomy are intimately linked.

Two of the strands of the Quadrivium were
Geometry (static) and Cosmology (dynamic space).

Greek astronomer Claudius Ptolemy (c.90–168AD)
placed the Earth at the centre of the universe.

The Sun and planets move around the Earth in orbits
that are of the most perfect of all shapes: circles.
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Aristarchus of Samos (c.310–230 BC)

Aristarchus of Samos (’Aρισταρχoς), astronomer and
mathematician, presented the first model that placed
the Sun at the center of the universe.

The original writing of Aristarchus is lost, but
Archimedes wrote in his Sand Reckoner:

“His hypotheses are that the fixed stars and the Sun
remain unmoved, that the Earth revolves about the
Sun on the circumference of a circle, ... "
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Eratosthenes (c.276–194 BC)
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Eratosthenes (c.276–194 BC)
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Hipparchus (c.190–120 BC)

Hipparchus of Nicaea (′Iππαρχoς) was a Greek
astronomer, geographer, and mathematician.

Regarded as the greatest astronomer of antiquity.

Often considered to be the founder of trigonometry.

Famous for
I Precession of the equinoxes
I First comprehensive star catalog
I Invention of the astrolabe
I Invention (perhaps) of the armillary sphere.
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Claudius Ptolemy (c.AD 100–170)
Claudius Ptolemy was a Greco-Roman astronomer,
mathematician, geographer and astrologer.

He lived in the city of Alexandria.

Ptolemy wrote several scientific treatises:
I An astronomical treatise (the Almagest)

originally called Mathematical Treatise
(Mathematike Syntaxis).

I A book on geography.
I An astrological treatise.

Ptolemy’s Almagest is the only surviving
comprehensive ancient treatise on astronomy.
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Ptolemy’s Model
Ptolemy’s model was universally accepted
until the appearance of simpler heliocentric
models during the scientific revolution.

O is the earth and S the planet.
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“Adding Epicycles”

According to Norwood Russell Hanson
(science historian):

There is no bilaterally symmetrical, nor eccentrically
periodic curve used in any branch of astrophysics or
observational astronomy which could not be smoothly
plotted as the resultant motion of a point turning within a
constellation of epicycles, finite in number, revolving
around a fixed deferent.

“The Mathematical Power of Epicyclical Astronomy", 1960

Any path — periodic or not, closed or open — can be
represented by an infinite number of epicycles.
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Ptolemaic Epicycles
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Conic Sections

Circles are special cases
of conic sections.

They are formed by a plane
cutting a cone at an angle.

Conics were studied by Apollonius of Perga
(late 3rd – early 2nd centuries BC).

https://en.wikipedia.org/wiki/Conic_section
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The Scientific Revolution
TRAILER

Next week, we will look at developments
in the sixteenth and seventeenth centuries.

Figure from mathigon.org
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Thank you
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