AweSums

Marvels and Mysteries of Mathematics • LECTURE 6

Peter Lynch School of Mathematics & Statistics University College Dublin

Evening Course, UCD, Autumn 2019

Outline

Introduction Archimedes' Theorem Axioms and Proof Three Utilities Problem **Distraction 12: Conditional Probability** Numbers Monte Carlo Method The Number Line Astronomy I

Intro

til

12

Numbers

NumLine

Outline

Introduction

- Archimedes' Theorem
- **Axioms and Proof**
- **Three Utilities Problem**
- **Distraction 12: Conditional Probability**
- Numbers
- **Monte Carlo Method**
- **The Number Line**
- Astronomy I

Intro

SphConCyl

il

12

Numbers

MC

NumLine

Meaning and Content of Mathematics

The word Mathematics comes from Greek $\mu\alpha\theta\eta\mu\alpha$ (máthéma), meaning "knowledge" or "study" or "learning".

It is the study of topics such as

- Quantity (numbers)
- Structure (patterns)
- Space (geometry)
- Change (analysis).

Intro

SphConCvl Axi

3-Util

T12

Numbers

NumLine

MC

Outline

Archimedes' Theorem

Intro

SphConCyl

til

T12

Numbers

NumLine

Volume of a Sphere

Figure : Archimedes found a formula for V_{SPHERE}

SphConCyl Axioms

Numbers

NumLine

Who First Proved that C/D is Constant?

For every circle, the distance around it is just over three times the distance across it.

This has been "common knowledge" since the earliest times.

But mathematicians don't trust common knowledge.

They demand proof.

Who was first to prove that the ratio of circumference C to diameter D has the same value for all circles?

Intro

SphConCvl

3-Util

Numbers

Numl ine

What about Euclid?

You might expect to find a proof in Euclid's *Elements of Geometry*. But Euclid couldn't prove it.

Euclid's Prop. XII.2 says the areas of circles are to one another as the squares of their diameters:

$$rac{A_1}{D_1^2} = rac{A_2}{D_2^2}$$

We would expect to find an analogous theorem: The circumferences of circles vary as their diameters:

$$\frac{C_1}{D_1} = \frac{C_2}{D_2}$$

Numbers

but we do not find this anywhere in Euclid.

3-Util

Astro1

Numl ine

SphConCvl

Axioms

Archimedes Rules OK!

It required the genius of Archimedes to prove that C/D is the same for all circles.

He needed axioms beyond those of Euclid.

In his work *Measurement of a Circle*, Archimedes found the area of a circle.

It is equal to the area of a right-angled triangle with one leg equal to R and the other equal to C:

 $A = \frac{1}{2}RC$.

SphConCvl

Intro

3-Util

Numbers

Numl ine

Archimedes determined π accurately by considering polygons within and around a circle.

Intro

SphConCyl Axioms

-Util

DIST12

Numbers

ers

MC

NumLine

He determined the area of a circle by slicing it up into small triangles.

Intro

SphConCyl

Axioms

Itil

DIST12

Numbers

N

NumLine

"Unzipping" the circle, Archimedes obtained a triangle.

Axioms

SphConCyl

Numbers

NumLine

Lengths and Areas both involve π

Archimedes' theorem, together with Euclid's Proposition XII.2, implies that

$$\frac{C}{D} = \pi$$

is the same for every circle.

It also follows that the area constant is also π :

$$rac{A}{R^2}=rac{C}{2R}=rac{C}{D}=\pi\,.$$

Intro

SphConCvl

Axioms

3-Util

[12

Numbers

MC

NumLine

Sphere+Cone=Cylinder

Figure : Volume: Sphere plus Cone equals Cylinder

Intro

SphConCyl Axioms

3-Util

DIST12

Numbers

'S

NumLine

A

One of the most remarkable and important mathematical results obtained by Archimedes was the formula for the volume of a sphere.

Archimedes used a technique of sub-dividing the volume into slices and adding up, or integrating, the volumes of the slices.

This was essentially an application of the integral calculus formulated by Newton and Leibniz.

Numbers

3-Util

Astro1

Numl ine

Intro

SphConCvl

Archimedes considered three volumes, a cylinder, cone and sphere, all on bases with the same area.

Figure : Cone, sphere and cylinder on the same base.

Intro

SphConCvl Axioms 3-Util

Numbers

MC

Numl ine

Archimedes showed that the three volumes are in the ratio 1 : 2 : 3.

Thus, in particular, the volume of the sphere is two thirds of the volume of the cylinder.

If we 'rearrange' the volume of the cone, things become much clearer:

3-Util

We replace the cone by two cones, each of height r.

Numbers

Astro1

Numl ine

Intro

SphConCvl

Figure : Cone, sphere and cylinder on the same base.

Intro

SphConCyl

Axioms

til

ST12

Numbers

M

NumLine

We let z denote the vertical coordinate, and Δz be a small increment of height.

The cross-sections of the cone and sphere are

$$egin{array}{rll} \Delta V_{
m CON} &=& \pi z^2 \Delta z \ \Delta V_{
m SPH} &=& \pi (\sqrt{r^2-z^2})^2 \Delta z = \pi (r^2-z^2) \Delta z \,. \end{array}$$

Add to get the cross-sectional area of the cylinder:

$$\Delta V_{\rm CON} + \Delta V_{\rm SPH} = \Delta V_{\rm CYL} = \pi r^2 \Delta z \,,$$

Numbers

This does not vary with height *z*. It is the same as for the cylinder.

3-Util

Axioms

Astro1

Numl ine

Intro

SphConCvl

REPLACE OR SUPPLEMEMT ABOVE SLIDE WITH A FIGURE

Axioms

SphConCyl

Numbers

Numl ine

Adding up the volumes of all slices:

$$\Delta V_{
m CON} + \Delta V_{
m SPH} = \Delta V_{
m CYL} = \pi r^2 H = 2\pi r^3$$
 .

It is not quite so simple to show that

$$\begin{array}{rcl} \Delta V_{\rm CON} & = & \frac{1}{3} \Delta V_{\rm CYL} = \frac{1}{3} \pi r^2 H = \frac{2}{3} \pi r^3 \\ \Delta V_{\rm SPH} & = & \frac{2}{3} \Delta V_{\rm CYL} = \frac{2}{3} \pi r^2 H = \frac{4}{3} \pi r^3 \,. \end{array}$$

However, this was well within the capability of the brilliant mathematician Archimedes.

Intro

SphConCyl Axio

3-Util

IST12

Numbers

ers

MC

NumLine

This result was carved on Archimedes' tomb.

Intro

SphConCyl

Axioms

til

IST12

Numbers

MC

NumLine

Archimedes' Tomb as it appears today

Intro

SphConCyl Axioms

3-Util

DIST12

Numbers

rs

NumLine

Outline

Axioms and Proof

Intro

SphConCyl

til

ST12

Numbers

C NumLine

As

How can we prove a theorem, if we have nothing to start from?

We cannot prove something using nothing. We need some starting point.

The basic building blocks are called Axioms.

Axioms are not proved, but are assumed true.

3-Util

Numbers

Astro1

Numl ine

Intro

SphConCvl

Axioms

Axioms are important because the entire body of mathematics rests upon them.

If there are too few axioms, we can prove very little of interest from them.

3-Util

If there are too many axioms, we can prove almost any result from them.

Consistency: We must not have axioms that contradict each other.

Numbers

Astro1

Numl ine

Intro

SphConCvl

Axioms

Mathematicians assume that axioms are true without being able to prove them.

This is not problematic, because axioms are normally intuitively obvious.

Intro

SphConCyl Axioms

3-Util

DIST12

Numbers

ers

IC

NumLine

Mathematicians assume that axioms are true without being able to prove them.

This is not problematic, because axioms are normally intuitively obvious.

3-Util

There are usually only a few axioms. For example, we may assume that

 $a \times b = b \times a$

Numbers

for any two numbers a and b.

Axioms

Astro1

Numl ine

Intro

SphConCvl

Mathematicians assume that axioms are true without being able to prove them.

This is not problematic, because axioms are normally intuitively obvious.

There are usually only a few axioms. For example, we may assume that

 $a \times b = b \times a$

for any two numbers a and b.

But Hamilton found that for guaternions,

 $A \times B \neq B \times A$.

Intro

SphConCvl

3-Util

Numbers

Numl ine

Different sets of axioms lead to different kinds of mathematics.

Every area of mathematics has its own set of basic axioms.

SphConCyl Axioms

Numbers

Numl ine

Different sets of axioms lead to different kinds of mathematics.

Every area of mathematics has its own set of basic axioms.

When mathematicians have proven a theorem, they publish it for other mathematicians to check.

In principle, it is possible to break a proof into steps starting from the basic axioms.

Intro

SphConCyl

3-Util

ST12

Numbers

MC

NumLine

Different sets of axioms lead to different kinds of mathematics.

Every area of mathematics has its own set of basic axioms.

When mathematicians have proven a theorem, they publish it for other mathematicians to check.

In principle, it is possible to break a proof into steps starting from the basic axioms.

Sometimes a mistake in the proof is found. Sometimes an error is not found for many years (e.g., an early "proof" of the Four Colour Theorem.)

Intro

SphConCyl

3-Util I

DIST12

Numbers

MC

NumLine

Euclid's Axioms of Geomery

Euclid based his "Elements of Geometry" on a set of five postulates or axioms:

"Let the following be postulated":

- 1. "To draw a straight line from any point to any point."
- 2. "To produce [extend] a finite straight line continuously in a straight line."
- 3. "To describe a circle with any centre and distance [radius]."
- 4. "That all right angles are equal to one another."
- 5. The parallel postulate: "That, if a straight line falling on two straight lines make the interior angles on the same side less than two right angles, the two straight lines, if produced indefinitely, meet on that side on which are the angles less than the two right angles."

The fifth postulate, the parallel postulate, has been a great source of controversy and confusion. This has led to completely new areas of mathematics.

Intro

3-Util E

IST12

Numbers

MC

NumLine

Peano's Axioms of Arithmetic

Giuseppi Peano constructed five axioms to build up the set \mathbb{N} of natural numbers:

 $\exists 0: 0 \in \mathbb{N}$ $\forall n \in \mathbb{N} : \exists n' \in \mathbb{N}$ $\neg (\exists n \in \mathbb{N} : n' = 0)$ $\forall m, n \in \mathbb{N} : m' = n' \Rightarrow m = n$ $\forall A \subseteq \mathbb{N} : (0 \in A \land (n \in A \Rightarrow n' \in A)) \Rightarrow A = \mathbb{N}$

The natural numbers may then be extended to the integers, rational numbers and real numbers.

Intro

SphConCvl

3-Util

DIST12

Numbers

rs

NumLine

Axioms of Set Theory

Set theory is the basic language of mathematics.

Many mathematical problems can be formulated in the language of set theory.

To prove them we need the Set Theory Axioms.

The most widely accepted axioms are the set of nine Zermelo-Fraenkel (ZF) axioms.

A tenth axiom, may also be assumed, the Axiom of Choice.

Intro

SphConCyl

3-Util I

12

Numbers

MC

NumLine

Zermelo-Fraenkel axioms

AXIOM OF EXTENSION

If two sets have the same elements, then they are equal.

AXIOM OF SEPERATION We can form a subset of a set, which consists of some elements.

There is a set with no members, written as {} or Ø.

UNION AXIOM We can form the union of two or more sets.

POWER SET AXIOM

Given any set, we can form the set of all subsets (the power set).

Image from Mathigon.org

SphConCvl Axioms

Numbers

Numl ine

Zermelo-Fraenkel axioms

AXIOM OF INFINITY There is a set with infinitely many elements.

AXIOM OF FOUNDATION

Sets are built up from simpler sets, meaning that every (nonempty) set has a minimal member.

AXIOM OF REPLACEMENT If we apply a function to every element in a set, the answer is still a set.

AXIOM OF CHOICE

Given infinitely many non-empty sets, you can choose one element from each of these sets.

Axiom of Choice

Intro

Axioms

3-Util

T12

Numbers

rs

NumLine

Astı

Axiom of Choice

The Axiom of Choice (AC) looks just as innocuous as the other nine axioms. However it has unexpected consequences.

We can use AC to prove that it is possible to cut a sphere into five pieces and reassemble them into two spheres, each identical to the initial sphere.

Intro

SphConCyl

Axioms

3-Util

T12

Numbers

5

NumLine

Axiom of Choice

Intro

The Axiom of Choice (AC) looks just as innocuous as the other nine axioms. However it has unexpected consequences.

We can use AC to prove that it is possible to cut a sphere into five pieces and reassemble them into two spheres, each identical to the initial sphere.

This result is called the Banach-Tarski Theorem.

Banach-Tarski Theorem

The five pieces have fractal boundaries: they can't actually be made in practice.

Also, they are not measurable: they have no definite volume.

Intro

SphConCvl Axioms

3-Util

Numbers

MC

Numl ine

The Current Status

There is ongoing debate among logicians about whether or not to accept the Axiom of Choice.

Every collection of axioms forms a different "mathematical world". Different theorems may be true in different worlds.

The question is: Are we happy to live in a world where we can make two spheres from one.

See Wikipedia article: Axiom of Choice

Intro

SphConCvl Axioms 3-Util

Numbers

Numl ine

Outline

Three Utilities Problem

Intro

SphConCyl

3-Util

T12

Numbers

NumLine

Three Utilities Problem: Abstract

Is the complete 3×3 bipartite graph $K_{3,3}$ planar?

SphConCyl Axioms 3-Util

Numbers

NumLine

Three Utilities Problem: Abstract

Is the complete 3×3 bipartite graph $K_{3,3}$ planar?

Numbers

This is an abstract, jargon-filled question in topological graph theory. We look at a simple, concrete version.

3-Util

Axioms

Astro1

Numl ine

Intro

SphConCvl

Three Utilities Problem: Concrete

We have to connect 3 utilities to 3 houses.

- Electricity
- Water
- ► Gas

SphConCvl

Intro

3-Util

IST12

Numbers

|

NumLine

Three Utilities Problem: Have a Go

Axioms

3-Util

Numbers

Three Utilities Problem: Solution!

Axioms

3-Util

Numbers

NumLine

Three Utilities Problem: No Solution!

http://www.archimedes-lab.org/How to Solve/Water gas.html

3-Util

Numbers

NumLine

Three Utilities Problem

Astro⁻

Three Utilities Problem: Application

3-Util

Numbers

NumLine

Three Utilities Problem for Mugs

Intro

I Axioms

3-Util

IST12

Numbers

s

NumLine

Three Utilities Problem on a Torus

$K_{3,3}$ is a toroidal graph.

Vi Hart: https://www.youtube.com/watch?v=CruQylWSfoU&feature=youtu.be&t=9

Intro

SphConCyl

Axioms

3-Util

IST12

Numbers

1

NumLine

Three Utilities: Kuratowski's Theorem

If a graph contains $K_{3,3}$ or K_5 as a sub-graph, it is non-planar. If it does not contain either, it is planar.

SphConCvl Axioms 3-Util

Numbers

MC

Numl ine

Three Utilities: Equivalent Graphs

The two forms shown are equivalent.

There are crossings in both.

Intro

SphConCyl Axioms

3-Util

ST12

Numbers

MC

NumLine

Outline

Distraction 12: Conditional Probability

Intro

SphConCyl

til

DIST12

Numbers

MC

NumLine

Distraction 12: Conditional Probability

Conditional Probability

Conditional Probability: Level 3 Challenges

A box contains two white marbles and two black marbles. I pick a marble at random and set it aside. Then, I pick a second marble and notice that it is black.

Is it more likely that the first marble was white or black?

Intro

SphConCyl Axioms

3-Util

DIST12

Numbers

NumLine

Distraction 12: Conditional Probability

Possibile outcomes of the experiment:

 $W_1 W_2 = W_1 B_2 = B_1 W_2$ B_1B_2

Are all four possibilities equally likely?

Intro

SphConCvl

Axioms

DIST12

Numbers

Numl ine

Distraction 12: Conditional Probability

Possibile outcomes of the experiment:

 $W_1 W_2 = W_1 B_2 = B_1 W_2$ $B_1 B_2$

Are all four possibilities equally likely?

 $P(B_2) = P(W_1)P(B_2|W_1) + P(B_1)P(B_2|B_1)$ $P(W_1) = \frac{1}{2}$ $P(B_1) = \frac{1}{2}$ $P(B_2|W_1) = \frac{2}{3}$ $P(B_2|B_1) = \frac{1}{3}$

Intro

DIST12

Numbers

Numl ine

Outline

Numbers

Intro

SphConCyl

til

T12

Numbers

NumLine

Babylonian Numerals

8	1	∢	7	11	ŧ	(7	21	₩7	31	129	41	100	51
7 7	2	1	7	12	*	(77	22	*** 77	32	12.17	42	1 17	52
٢Y	3	∢	ĨĨ	13	*	(777	23	*** ???	33	100	43	11 × 11	53
Ѽ	4	₹ 9	Y	14	*	(W	24	衾殘	34	夜母	44	续每	54
₩	5	₹ !	¥	15	*	(W	25	₩\$\$	35	₹₩	45	续辑	55
***	6		₩	16	*	***	26	₩₩	36	検報	46	续報	56
₩	7		¥	17	*	A	27	衾辂	37	夜報	47	续報	57
₩	8		₽	18	*	₩	28	 《 日本	38	夜報	48	续租	58
퐦	9	4	Ħ	19	*	稱	29	维	39	夜報	49	续辑	59
∢ 1	LO	4	1	20	4	K	30	₹\$	40	***	50		

Numbers

NumLine

Ancient Egyptian Numerals

2= 11 20= ∩∩ 200= 99 2000= 2 3= 111 30= ∩∩∩ 300= 999 3000= 2	
3 = ∭ 30 = ∩∩∩ 300 = 999 3000 = £	\$
	£
	22
4= 40= 23 4000=	244 A
5= 50= AA 500= 999 5000= 4	

Axioms

Numbers

NumLine

Ancient Hebrew and Greek Numerals

ň	7	6 1	5	4	3	2	×
Chet	Zayin	Vav	Hey	Dalet	Gimmel	Bet	Aleph
D	S	I	ຈາ	3	ک	ン	IC
70 2	60 D	50	40 7	30	20	10 •	Ď
Ayin	Samekh	Nun	Mem	Lamed	Kaf	Yod	Tet
X	O	J	N		O	?	G

1	α	alpha	10	ι	iota	100	ρ	rho
2	β	beta	20	к	kappa	200	σ	sigma
3	γ	gamma	30	λ	lambda	300	τ	tau
4	δ	delta	40	μ	mu	400	v	upsilon
5	e	epsilon	50	ν	nu	500	ϕ	phi
6	S	vau*	60	ξ	xi	600	x	chi
7	ζ	zeta	70	0	omicron	700	ψ	psi
8	η	eta	80	π	pi	800	ω	omega
9	θ	theta	90	9	koppa*	900	X	sampi

*vau, koppa, and sampi are obsolete characters

SphConCyl

Numbers

NumLine

Mayan Numerals

0	•	• • 2	• • • 3	•••• 4
5	6	•• 7	8	•••• 9
10	11	12	13	14
15	16	17	18	19

Axioms

Numbers

NumLine

Various Numeral Systems

Wikipedia: Hindu-Arabic Numeral System

Intro

SphConCvl

Axioms

3-Util

Numbers

Numl ine

Roman Numerals

-					
I	1	XXI	21	XLI	41
п	2	XXII	22	XLII	42
ш	3	XXIII	23	XLIII	43
IV	4	XXIV	24	XLIV	44
V	5	XXV	25	XLV	45
VI	6	XXVI	26	XLVI	46
VII	7	XXVII	27	XLVII	47
VIII	8	XXVIII	28	XLVIII	48
IX	9	XXIX	29	XLIX	49
Х	10	XXX	30	L	50
XI	11	XXXI	31	LI	51
XII	12	XXXII	32	LII	52
XIII	13	XXXIII	33	LIII	53
XIV	14	XXXIV	34	LIV	54
XV	15	XXXV	35	LV	55
XVI	16	XXXVI	36	LVI	56
XVII	17	XXXVII	37	LVII	57
XVIII	18	XXXVIII	38	LVIII	58
XIX	19	XXXIX	39	LIX	59
XX	20	XL	40	LX	60

In order: M D C L X V I = 1666

Intro SphConCyl

til

IST12

Numbers

MC

NumLine

How to Multiply Roman Numbers

Table : Multiplication Table for Roman Numbers.

Intro

3-Util

IST12

Numbers

ers

MC

NumLine

A Roman Abacus Replica of a Roman abacus from 1st century AD.

Abacus is a Latin word, which comes from the Greek $\alpha\beta\alpha\kappa\alpha\varsigma$ (board or table).

Intro

SphConCvl

3-Util

DIST12

Numbers

MC

NumLine

A Chinese Abacus: Suan Pan

Axioms

Numbers

NumLine

A Japanese Abacus: Soroban

Intro

yl Axioms

3-Util

DIST12

Numbers

ers

C NumLine

e

A Different Angle on Numerals

Delightful theory. Almost certainly wrong.

Intro

Axioms

SphConCvl

3-Util

DIST12

Numbers

ers

NumLine

е

Arguments "for"

- 1. It is a very simple idea
- 2. It links symbols to numerical values

Intro

SphConCyl

til

ST12

Numbers

MC

NumLine

Arguments "for"

1. It is a very simple idea

Axioms

2. It links symbols to numerical values

Arguments "against"

1. Number forms modified to fit model

3-Util

2. Complete lack of historical evidence.

Astro1

MC

Numbers

Numl ine

Intro

SphConCvl

Arguments "for"

- 1. It is a very simple idea
- 2. It links symbols to numerical values

Arguments "against"

- 1. Number forms modified to fit model
- 2. Complete lack of historical evidence.

Outline

Monte Carlo Method

Astronomy |

Intro

SphConCyl

til

12

Numbers

MC

NumLine

Estimating π with Series

SphConCvl

Axioms

Intro

There are many ways of estimating π .

For example, we can sum up the Basel Series:

$$\frac{\pi^2}{6} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots$$

Another way is with the Gregory-Leibniz series, discovered much earlier by Madhava (c. 1340–1425).

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$$

Numbers

MC

Numl ine

We have already seen Archimedes' method.

We now give a completely different approach.

3-Util

Estimating π with Probability

Intro

Estimating π with Probability

Area of Square: 4

Area of Circle: π

Probability point is within circle: $\frac{\pi}{4}$

Thus, the following ratio should approach π :

 $4\times \frac{\text{Number of points within Circle}}{\text{Number of points within Square}} \to \pi \,.$

Numbers

MC

Numl ine

Astro1

Intro

SphConCvl

Axioms

3-Util

Estimating π with n = 250

Intro

Axioms

til

ST12

umbers

MC

NumLine

As

Estimating π with n = 2500

Axioms

Numbers

MC

NumLine

Estimating π with n = 25000

NumLine

Numerical Results

Comment on uses of Monte Carlo method.

Intro

SphConCyl Axioms

3-Util

DIST12

Numbers

MC

NumLine

Outline

Introduction Archimedes' Theore Axioms and Proof

Three Utilities Problem

Distraction 12: Conditional Probability

Numbers

Monte Carlo Method

The Number Line

Astronomy I

Intro

SphConCyl

Util

Г12

Numbers

NumLine

A Hierarchy of Numbers

We will introduce a hierarchy of numbers.

- Each set is contained in the next one.
- They are like a set of nested Russian Dolls:

Matryoshka

Intro

Axioms 3-Util

Numbers

Numl ine

MC

The counting numbers were the first to emerge: 1 2 3 4 5 6 7 8 ... They are also called the Natural Numbers.

Intro

SphConCvl Axioms

Numbers

Numl ine

The counting numbers were the first to emerge:

1 2 3 4 5 6 7 8 ...

They are also called the Natural Numbers.

We can arange the natural numbers in a list.

This list is like a toy computer.

Intro

SphConCvl Axioms

3-Util

Numbers

Numl ine

A Primitive Sliderule

Axioms

Numbers

NumLine

The set of natural numbers is denoted \mathbb{N} .

If *n* is a natural number, we write $n \in \mathbb{N}$.

Intro

Numbers

Numl ine

The set of natural numbers is denoted \mathbb{N} .

If *n* is a natural number, we write $n \in \mathbb{N}$.

Natural numbers can be added: $4 + 2 = 6 \in \mathbb{N}$

But not always subtracted: $4 - 6 = -2 \notin \mathbb{N}$.

Intro

SphConCyl Axioms

3-Util

DIST12

Numbers

ers

NumLine

The set of natural numbers is denoted \mathbb{N} .

- If *n* is a natural number, we write $n \in \mathbb{N}$.
- Natural numbers can be added: $4 + 2 = 6 \in \mathbb{N}$

Numbers

But not always subtracted: $4 - 6 = -2 \notin \mathbb{N}$.

3-Util

To allow for subtraction we have to extend \mathbb{N} .

Astro1

Numl ine

Intro

SphConCvl

Axioms

The Integers \mathbb{Z}

We extend the set of counting numbers by including the negative whole numbers:

> -3 -2 -1 0 1 2 3 4 ...

The whole numbers are also called the Integers.

Intro

SphConCvl Axioms

3-Util

Numbers

MC

Numl ine

The Integers \mathbb{Z}

We extend the set of counting numbers by including the negative whole numbers:

... -3 -2 -1 0 1 2 3 4 ...

The whole numbers are also called the Integers.

The set of integers is denoted \mathbb{Z} .

If *k* is an integer, we write $k \in \mathbb{Z}$.

Clearly,

 $\mathbb{N} \subset \mathbb{Z}$

र र ≣ १

Intro

SphConCyl

Axioms

3-Util

2 1

Numbers

NumLine

Integers can be added and subtracted.

They can also multiplied:

 $6 imes 4 = 24 \in \mathbb{Z}$.

Intro

SphConCyl A

Axioms _____

til I

ST12

Numbers

M

NumLine

Integers can be added and subtracted.

They can also multiplied:

 $6 imes 4=24\in\mathbb{Z}$.

However, they cannot usually be divided:

$$\frac{6}{4} = \mathbf{1}\frac{1}{2} \notin \mathbb{Z} \,.$$

Intro

SphConCyl Ax

Axioms

ltil 🛛

ST12

Numbers

'S

NumLine

Integers can be added and subtracted.

They can also multiplied:

 $6 imes 4=24\in\mathbb{Z}$.

However, they cannot usually be divided:

$$\frac{6}{4} = \mathbf{1}\frac{1}{2} \notin \mathbb{Z} \,.$$

To allow for division we have to extend \mathbb{Z} .

Intro

SphConCyl

Axioms

3-Util

T12

Numbers

MC

NumLine

The Rational Numbers Q

We extend the integers by including fractions:

$$r = \frac{p}{q}$$
 where *p* and *q* are integers.

These rational numbers are ratios of integers.

Intro

Util

ST12

Numbers

MC

NumLine

The Rational Numbers Q

We extend the integers by including fractions:

$$r = \frac{p}{q}$$
 where *p* and *q* are integers.

These rational numbers are ratios of integers.

The set of rational numbers is denoted \mathbb{Q} .

If *r* is a rational number, we write $r \in \mathbb{Q}$.

3-Util

Clearly,

SphConCvl

Axioms

 $\mathbb{Z} \subset \mathbb{Q}$

Numbers

Numl ine

Astro1

Intro

With the Rational Numbers, we can: Add, Subtract, Multiply and Divide That is, for any $p \in \mathbb{Q}$ and $q \in \mathbb{Q}$, all of $\{ p+q \quad p-q \quad p \times q \quad p \div q \}$

are rational numbers.

Intro

SphConCvI A

Axioms 3-

DI

12

Numbers

MC

NumLine

With the Rational Numbers, we can:

Add, Subtract, Multiply and Divide

That is, for any $ho \in \mathbb{Q}$ and $q \in \mathbb{Q}$, all of

 $\{ p+q \quad p-q \quad p \times q \quad p \div q \}$

Numbers

are rational numbers.

Axioms

We say that Q is closed under addition, subtraction, multiplication and division.

3-Util

Astro1

Numl ine

Intro

SphConCvl

With the Rational Numbers, we can:

Add, Subtract, Multiply and Divide

That is, for any $ho \in \mathbb{Q}$ and $q \in \mathbb{Q}$, all of

 $\{ p+q \quad p-q \quad p \times q \quad p \div q \}$

Numbers

are rational numbers.

Axioms

We say that Q is closed under addition, subtraction, multiplication and division.

3-Util

But we are not yet finished. \mathbb{R} is yet to come.

Astro1

Numl ine

Intro

SphConCvl

The Hierarchy of Numbers

Axioms

Numbers

NumLine

The Hierarchy of Numbers

Each set is contained in the next one.

They are like a set of nested Russian Dolls:

Matryoshka

Intro

SphConCyl Axioms

Util

IST12

Numbers

MC

NumLine

Outline

Astronomy I

Intro

il

12

Numbers

NumLine

The Quadrivium

The Pythagorean model of mathematics

Intro

SphConCyl Axioms

3-Util

DIST12

Numbers

rs

MC

NumLine

The Ancient Greeks

Mathematics and Astronomy are intimately linked.

Two of the strands of the Quadrivium were Geometry (static) and Cosmology (dynamic space).

Greek astronomer Claudius Ptolemy (c.90–168AD) placed the Earth at the centre of the universe.

The Sun and planets move around the Earth in orbits that are of the most perfect of all shapes: circles.

Numbers

Astro1

Numl ine

Intro

SphConCvl

Axioms

3-Util

Aristarchus of Samos (c.310–230 BC)

Aristarchus of Samos (' $A\rho\iota\sigma\tau\alpha\rho\chi\sigma\varsigma$), astronomer and mathematician, presented the first model that placed the Sun at the center of the universe.

The original writing of Aristarchus is lost, but Archimedes wrote in his Sand Reckoner:

"His hypotheses are that the fixed stars and the Sun remain unmoved, that the Earth revolves about the Sun on the circumference of a circle, ... "

Numbers

Astro1

Numl ine

Intro

SphConCvl

Axioms

3-Util

Eratosthenes (c.276–194 BC)

Eratosthenes (c.276–194 BC)

Hipparchus (c.190–120 BC)

Hipparchus of Nicaea (' $l\pi\pi\alpha\rho\chi o_{S}$) was a Greek astronomer, geographer, and mathematician.

Regarded as the greatest astronomer of antiquity.

Often considered to be the founder of trigonometry.

Famous for

SphConCvl

- Precession of the equinoxes
- First comprehensive star catalog

3-Util

Invention of the astrolabe

Axioms

Invention (perhaps) of the armillary sphere.

Numbers

Astro1

Numl ine

Intro

Claudius Ptolemy (c.AD 100–170)

Claudius Ptolemy was a Greco-Roman astronomer, mathematician, geographer and astrologer.

He lived in the city of Alexandria.

Ptolemy wrote several scientific treatises:

- An astronomical treatise (the Almagest) originally called Mathematical Treatise (Mathematike Syntaxis).
- A book on geography.

Axioms

An astrological treatise.

Ptolemy's Almagest is the only surviving comprehensive ancient treatise on astronomy.

Numbers

3-Util

Astro1

Numl ine

Intro

SphConCvl

Ptolemy's Model Ptolemy's model was universally accepted until the appearance of simpler heliocentric models during the scientific revolution.

Intro

SphConCvl

Axioms

3-Util

ST12

Numbers

MC

NumLine

"Adding Epicycles"

According to Norwood Russell Hanson (science historian):

There is no bilaterally symmetrical, nor eccentrically periodic curve used in any branch of astrophysics or observational astronomy which could not be smoothly plotted as the resultant motion of a point turning within a constellation of epicycles, finite in number, revolving around a fixed deferent.

"The Mathematical Power of Epicyclical Astronomy", 1960

Any path — periodic or not, closed or open — can be represented by an infinite number of epicycles.

Intro

SphConCvl

3-Util

DIST12

Numbers

\$

NumLine

Ptolemaic Epicycles

Conic Sections

Circles are special cases of conic sections.

They are formed by a plane cutting a cone at an angle.

Conics were studied by Apollonius of Perga (late 3rd – early 2nd centuries BC).

https://en.wikipedia.org/wiki/Conic_section

Intro

SphConCvl Axioms 3-Util

Numbers

Numl ine

The Scientific Revolution

Next week, we will look at developments in the sixteenth and seventeenth centuries.

Nicolaus Copernicus 1473 - 1543

Tycho Brahe 1546 – 1601

Johannes Kepler 1571 – 1630

Galileo Galilei 1564 – 1642

Intro

Thank you

