AweSums

The Fun and Joy of Mathematics

TASTER LECTURE

Peter Lynch
School of Mathematics & Statistics
University College Dublin

Evening Course, UCD, Autumn 2019

Outline

Introduction

Beautiful Spirals

The Golden Ratio

Symmetry

Beautiful Symmetry

The Utility of Mathematics

Euler's Gem

Shackleton's Rescue Voyage

Recreational Mathematics

Outline

Introduction

Beautiful Spirals

The Golden Ratio

Symmetry

Beautiful Symmetry

The Utility of Mathematics

Euler's Gem

Shackleton's Rescue Voyage

Recreational Mathematics

WELCOME TO

AweSums

The Fun and Joy of Mathematics

Taster Lecture

The course AweSums will run over ten (10) lectures from 30 September to 9 December.

The aim of the course is to show you

- The tremendous beauty of mathematics;
- Its great utility in our daily lives;
- The fun we can have studying maths.

Taster Lecture

For several years I have taught a course called

► Sum-enchanted Evenings.

It has worked well, and this year's course,

AweSums: The Majesty of Maths
 will be similar, but with much new material.

In this Taster Lecture I will give a sample of some of the topics covered in the course.

Meaning and Content of Mathematics

The word Mathematics comes from Greek $\mu\alpha\theta\eta\mu\alpha$ (máthéma), meaning "knowledge" or "study" or "learning".

It is the study of topics such as

- Quantity (numbers)
- Structure (patterns)
- Space (geometry)
- Change (analysis).

Outline

Introduction

Beautiful Spirals

The Golden Ratio

Symmetry

Beautiful Symmetry

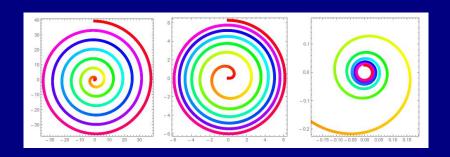
The Utility of Mathematics

Euler's Gem

Shackleton's Rescue Voyage

Recreational Mathematics

A Splendid Spiral in Booterstown


This sandbank, a beautiful spiral form, has slowly built up on the beach near Booterstown Station.

Spirals are found throughout the natural world.

Some Mathematical Spirals

Archimedes Spiral. Fermat Spiral. Hyperbolic Spiral.

The Nautilus Shell: a logarithmic Spiral.

Intro Spirals

The Sunflower: Groups of Spirals

Spirals in the Physical World

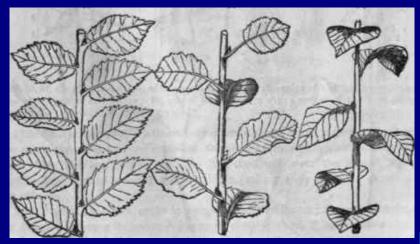
Spirals in the Physical World

https://thatsmaths.com/

- Count the petals on a flower.
- Count leaves on a stem or bumps on an asparagus.
- Look at patterns on pineapples/pine-cones.
- Study the geometry of seeds on sunflowers.

TomCrean

- Count the petals on a flower.
- Count leaves on a stem or bumps on an asparagus.
- ► Look at patterns on pineapples/pine-cones.
- Study the geometry of seeds on sunflowers.


In all cases, we find numbers in the sequence:

This is the famous Fibonacci sequence.

Fibonacci and Phyllotaxis

Vi Hart's Videos

There are several mathematical videos on YouTube presented by Vi Hart.

Some of the ones on Fibonacci Numbers are at:

https://www.youtube.com/
watch?v=ahXIMUkSXX0

It is much easier to go to Youtube and search for

"Vi Hart Fibonacci"

Vi Hart's Videos

There are several mathematical videos on YouTube presented by Vi Hart.

Some of the ones on Fibonacci Numbers are at:

https://www.youtube.com/ watch?v=ahXIMUkSXX0

It is much easier to go to Youtube and search for

"Vi Hart Fibonacci"

Let's take a peek!

Outline

Introduction

Beautiful Spirals

The Golden Ratio

Symmetry

Beautiful Symmetry

The Utility of Mathematics

Euler's Gem

Shackleton's Rescue Voyage

Recreational Mathematics

Golden Ratio and Fibonacci Numbers

The Golden Ratio is a number defined as


$$\phi = \frac{1+\sqrt{5}}{2} \approx 1.618.$$

It is intimately connected with the Fibonacci Numbers.

Golden Rectangle

Ratio of breath to height is $\phi = \frac{1+\sqrt{5}}{2} \approx 1.6$.

Golden Rectangle in Your Pocket

Aspect ratio is about $\phi = \frac{1+\sqrt{5}}{2} \approx 1.618$.

The Fibonacci sequence is the sequence

$$\{0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, \dots\}$$

where each number is the sum of the previous two.

The Fibonacci sequence is the sequence

$$\{0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, \dots\}$$

where each number is the sum of the previous two.

The Fibonacci numbers obey a recurrence relation

$$F_{n+1} = F_n + F_{n-1}$$

with the starting values $F_0 = 0$ and $F_1 = 1$.

The Fibonacci sequence is the sequence

$$\{0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, \dots\}$$

where each number is the sum of the previous two.

The Fibonacci numbers obey a recurrence relation

$$F_{n+1} = F_n + F_{n-1}$$

with the starting values $F_0 = 0$ and $F_1 = 1$.

The explicit expression for the Fibonacci numbers is

$$F_n = \frac{1}{\sqrt{5}} \left[\frac{1+\sqrt{5}}{2} \right]^n - \frac{1}{\sqrt{5}} \left[\frac{1-\sqrt{5}}{2} \right]^n$$

Let's consider the sequence of ratios of terms

$$\frac{1}{1}$$
, $\frac{2}{1}$, $\frac{3}{2}$, $\frac{5}{3}$, $\frac{8}{5}$, $\frac{13}{8}$, $\frac{21}{13}$, $\frac{34}{21}$, ...

Let's consider the sequence of ratios of terms

$$\frac{1}{1}$$
, $\frac{2}{1}$, $\frac{3}{2}$, $\frac{5}{3}$, $\frac{8}{5}$, $\frac{13}{8}$, $\frac{21}{13}$, $\frac{34}{21}$, ...

The ratios get closer and closer to the golden number:

$$\frac{F_{n+1}}{F_n} o \phi$$
 as $n o \infty$

Exotic Expressions for ϕ

We can write ϕ as a continued fraction

$$\phi = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \dots}}}$$

Exotic Expressions for ϕ

We can write ϕ as a continued fraction

$$\phi = 1 + \cfrac{1}{1 + \cfrac{1}{1 + \cfrac{1}{1 + \cfrac{1}{1 + \cdots}}}}$$

We can also write it as a continued root

$$\phi = \sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + \cdots}}}}$$

Exotic Expressions for ϕ

We can write ϕ as a continued fraction

$$\phi = 1 + \cfrac{1}{1 + \cfrac{1}{1 + \cfrac{1}{1 + \cfrac{1}{1 + \cdots}}}}$$

We can also write it as a continued root

$$\phi = \sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + \cdots}}}}$$

These extraordinary expressions are actually quite easy to demonstrate!

Intro

Fibonacci Numbers in Nature

Look at post

Sunflowers and Fibonacci: Models of Efficiency on the *ThatsMaths* blog:

thatsmaths.com

Outline

Introduction

Beautiful Spirals

The Golden Ratio

Symmetry

Beautiful Symmetry

The Utility of Mathematics

Euler's Gem

Shackleton's Rescue Voyage

Recreational Mathematics

Ubiquity and Beauty of Symmetry

Symmetry is all around us.

- Many buildings are symmetric.
- Our bodies have bilateral symmetry.
- Crystals have great symmetry.
- Viruses can display stunning symmetries.
- At the sub-atomic scale, symmetry reigns.
- Galaxies have many symmetries.

The Taj Mahal

RecMath

A Face with Symmetry: Halle Berry

Berry Halle

TomCrean

RecMath

Intro Spirals Phi Symmetry Beauty Useful EG

An Asymmetric Face: You know Who!

Symmetry and Group Theory

Symmetry is an essentially geometric concept.

The mathematical theory of symmetry is algebraic.

The key concept is that of a group.

Symmetry and Group Theory

Symmetry is an essentially geometric concept.

The mathematical theory of symmetry is algebraic.

The key concept is that of a group.

A group is a set of elements such that any two elements can be combined to produce another.

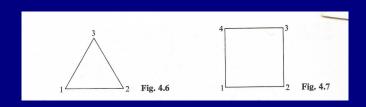
Instead of giving the mathematical definition, I will give an example to make things clear.

The *Dihedral Group* D₁

The group of symmetries of the human face and of all biological forms with bilateral symmetry. We could call D_1 the *Janus Group*.

I: The Identity transformation

R: Reflection about central line


Table: First Dihedral Group D₁.

This is how we combine, or multiply transformations.

From 2 to 3 Dimensional Symmetry

Tetrahedron	Cube	Octahedron	Dodecahedron	Icosahedron
Four faces	Six faces	Eight faces	Twelve faces	Twenty faces
(Animation)	(Animation)	(Animation)	(Animation)	(Animation)

Outline

Introduction

Beautiful Spirals

The Golden Ratio

Symmetry

Beautiful Symmetry

The Utility of Mathematics

Euler's Gem

Shackleton's Rescue Voyage

Recreational Mathematics

Mathematics and Art

The link between maths and art goes back thousands of years.

- Greek Architecture
- Renaissance Painting
- Gothic Cathedrals
- **Oriental Carpets**
- · Islamic Mosaics

Intro

Rose window, Chartres

Raphael's School of Athens

Mosaics in the Alhambra

Persian Carpet

Alloy Wheels

Outline

Introduction

Beautiful Spirals

The Golden Ratio

Symmetry

Beautiful Symmetry

The Utility of Mathematics

Euler's Gem

Shackleton's Rescue Voyage

Recreational Mathematics

TomCrean

I hope you agree that maths is Beautiful

But is it any use?

Useful: Maths is crucial for technology

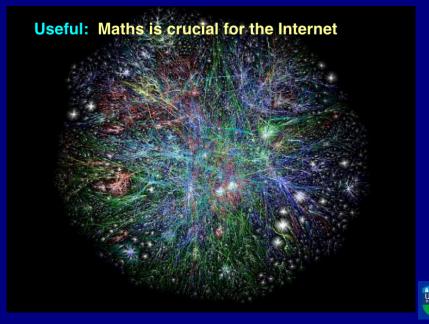
Useful

Maths is used in many aspects of our lives.

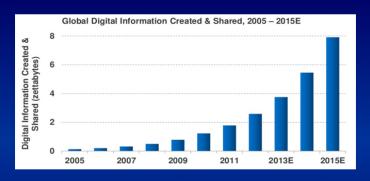
Searching for information: Google matrix [algebra].

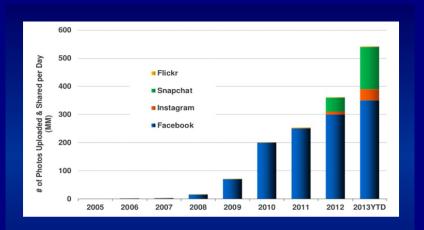
Facebook & Twitter: Network analysis. Graph Theory.

Download music or photos: Data compression [MP3,JPEG].


Commerce and Finance: Coding and Cryptography.

Biology and medicine. CAT Scans. Epidemiology.


Etc. etc. etc.



Digital Information is growing exponentially: > 3 Zbytes shared in 2013.

1 Zettabyte is $10^{21} = 1,000,000,000,000,000,000,000,000$ bytes

500 million photos uploaded EVERY DAY. That's half a billion !!!

Useful: Maths is crucial for Security

Outline

Introduction

Beautiful Spirals

The Golden Ratio

Symmetry

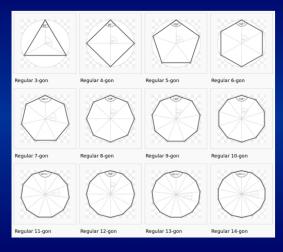
Beautiful Symmetry

The Utility of Mathematics

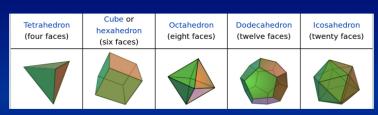
Euler's Gem

Shackleton's Rescue Voyage

Recreational Mathematics


Euler's polyhedron formula.

Carving up the globe.


Regular Polygons

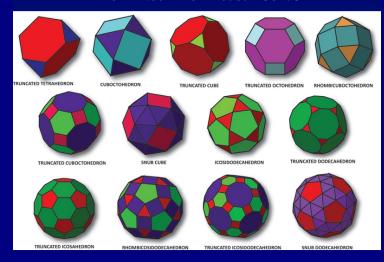
The Platonic Solids (polyhedra)

These five regular polyhedra were discovered in ancient Greece, perhaps by Pythagoras.

Plato used them as models of the universe.

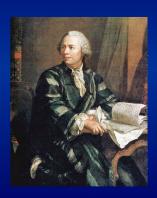
They are analysed in Book XIII of Euclid's Elements.

There are only five Platonic solids.


But Archimedes found, using different types of polygons, that he could construct 13 new solids.

The Thirteen Archimedean Solids

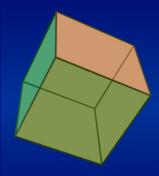
Euler's Polyhedron Formula


The great Swiss mathematician, Leonard Euler, noticed that, for all (convex) polyhedra,

$$V - E + F = 2$$

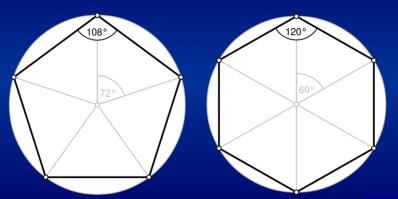
where

- V = Number of vertices
- E = Number of edges
- · F = Number of faces

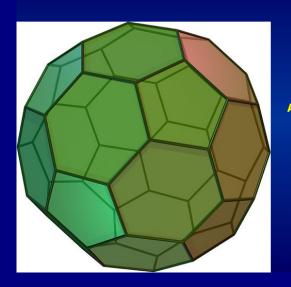

Mnemonic: Very Easy Formula

For example, a Cube

Number of vertices: V = 8 Number of edges: E = 12 Number of faces: F = 6


$$(V-E+F)=(8-12+6)=2$$

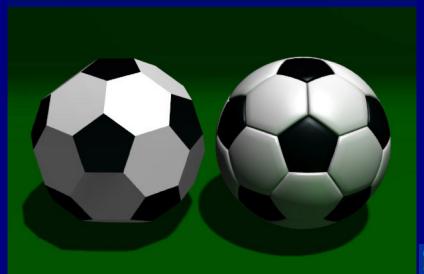
Mnemonic: Very Easy Formula


Pentagons and Hexagons

The Truncated Icosahedron

An Archimedean solid with pentagonal and hexagonal faces.

The Truncated Icosahedron



Whare have you seen this before?

The Truncated Icosahedron

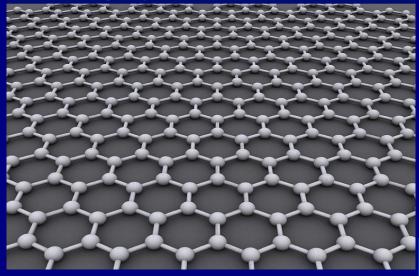
Intro Spirals Phi Symmetry Beauty Useful EG TomCrean RecMath

The "Buckyball", introduced at the 1970 World Cup Finals in Mexico.

It has 32 panels: 20 hexagons and 12 pentagons.

EG

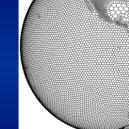
Buckminsterfullerene


Buckminsterfullerene is a molecule with formula C₆₀

It was first synthesized in 1985.

GrapheneA hexagonal pattern of carbon one atom thick

EG

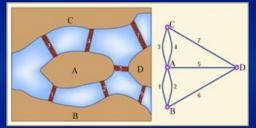


EG

Euler's Polyhedron Formula

V - E + F = 2

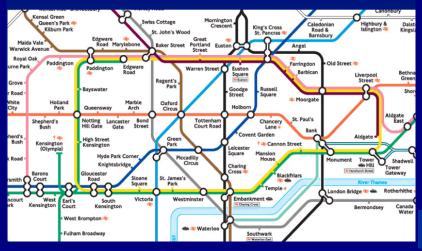
still holds.



Topology is often called Rubber Sheet Geometry

EG

Topology and the London Underground Topographical Map



FG

Topology and the London Underground Topological Map

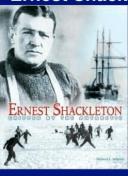
FG

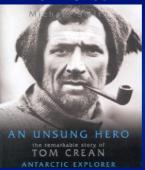
Outline

Shackleton's Rescue Voyage

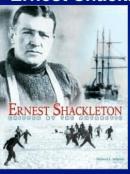
Who is this?

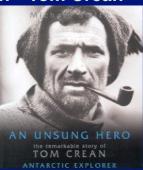
Who is this?


Who is this?



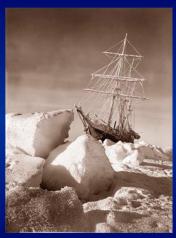
Ernest Shackleton Tom Crean





Ernest Shackleton Tom Crean

Two great Antarctic explorers, both born in Ireland

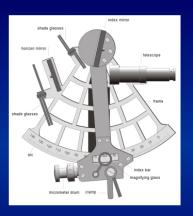


Endurance is Icebound

Six men sailed 800 miles across the Southern Ocean to South Georgia.

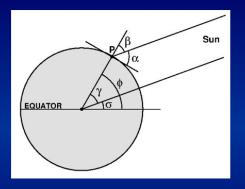
Six men sailed 800 miles across the Southern Ocean to South Georgia.

How did they find their way?

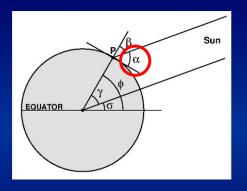

Six men sailed 800 miles across the Southern Ocean to South Georgia.

How did they find their way?

MATHEMATICS !!!



A sextant, used to determine latitude.



Angles used to calculate the latitude.

Angles used to calculate the latitude.

The boat journey to South Georgia was a spectacular feat of navigation.

It resulted in the saving of 28 lives.

This was possible thanks to elementary geometry.

The boat journey to South Georgia was a spectacular feat of navigation.

It resulted in the saving of 28 lives.

This was possible thanks to elementary geometry.

That's Maths!

Outline

Introduction

Beautiful Spirals

The Golden Ratio

Symmetry

Beautiful Symmetry

The Utility of Mathematics

Euler's Gem

Shackleton's Rescue Voyage

Recreational Mathematics

Recreational Mathematics

Recreational mathematics puts the focus on insight, imagination and beauty.

Recreational Maths includes the study of

- The culture of mathematics.
- Its relevance to art, music and literature.
- Its role in technology.
- Mathematical games and puzzles,
- The lives of the great mathematicians.

Many Resources Available

Great variety of books on popular mathematics.

Wealth of literature suitable for a general audience

Magazines available free online.

One of the best is the e-zine Plus:

```
https://plus.maths.org/.
```

All past content is available and is a valuable resource for school students and teachers.

Content of an Earlier Course

Lecture	Content
1	Outline of Course. Emergence of Numbers.
2	Georg Cantor. Set Theory.
3	Pythagoras. Irrational Numbers.
4	Hilbert. Gauss. The Real Number Line
5	Powers. Logarithms. Prime Numbers.
6	Functions. Archimedes. Natural Logs.
7	Exponential Growth. Euler. Sequences & Series.
8	Trigonometry. Taylor Series.
9	Basel Problem. Complex Numbers. Euler's Formula.
10	Prime Number Theorem. Riemann Hypothesis.

This year's course will be different. If you want to know how, come along!

Thank you

