# Sum-Enchanted Evenings 

The Fun and Joy of Mathematics

## LECTURE 7

Peter Lynch
School of Mathematics \& Statistics University College Dublin

Evening Course, UCD, Autumn 2018


## Outline

Introduction
Irrational Numbers
Distraction 6: Slicing a Pizza
The Real Number Line
Greek 5
Pascal's Triangle
Numerical Weather Prediction

## Outline

## Introduction

## Irrational Numbers

## Distraction 6: Slicing a Pizza

The Real Number Line

## Greek 5

## Pascal's Triangle

## Numerical Weather Prediction

## Meaning and Content of Mathematics

The word Mathematics comes from
Greek $\mu \alpha \theta \eta \mu \alpha$ (máthéma), meaning "knowledge" or "study" or "learning".

It is the study of topics such as

- Quantity (numbers)
- Structure (patterns)
- Space (geometry)
- Change (analysis).


## Outline

## Introduction

## Irrational Numbers

## Distraction 6: Slicing a Pizza

The Real Number Line

## Greek 5

Pascal's Triangle

Intro
$\qquad$
$\square$
(

## The Hierarchy of Numbers



$$
\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}
$$

## Incommensurability

Suppose we have two line segments


Can we find a unit of measurement such that both lines are a whole number of units?

Can they be co-measured? Are they commensurable?

## Are $\ell_{1}$ and $\ell_{2}$ commensurable?

If so, let the unit of measurement be $\lambda$.

## Then

$$
\begin{array}{ll}
\ell_{1}=m \lambda, \quad m \in \mathbb{N} \\
\ell_{2}=n \lambda, \quad n \in \mathbb{N}
\end{array}
$$

## Are $\ell_{1}$ and $\ell_{2}$ commensurable?

If so, let the unit of measurement be $\lambda$.

## Then

$$
\begin{array}{ll}
\ell_{1}=m \lambda, \quad m \in \mathbb{N} \\
\ell_{2}=n \lambda, \quad n \in \mathbb{N}
\end{array}
$$

Therefore

$$
\frac{\ell_{1}}{\ell_{2}}=\frac{m \lambda}{n \lambda}=\frac{m}{n}
$$

Are $\ell_{1}$ and $\ell_{2}$ commensurable?
If so, let the unit of measurement be $\lambda$.

## Then

$$
\begin{array}{ll}
\ell_{1}=m \lambda, \quad m \in \mathbb{N} \\
\ell_{2}=n \lambda, \quad n \in \mathbb{N}
\end{array}
$$

Therefore

$$
\frac{\ell_{1}}{\ell_{2}}=\frac{m \lambda}{n \lambda}=\frac{m}{n}
$$

If not, then $\ell_{1}$ and $\ell_{2}$ are incommensurable.

## Irrational Numbers

If the side of a square is of length 1 , then the diagonal has length $\sqrt{2}$ (by the Theorem of Pythagoras).


## Irrational Numbers

If the side of a square is of length 1 , then the diagonal has length $\sqrt{2}$ (by the Theorem of Pythagoras).


## Irrational Numbers

If the side of a square is of length 1 , then the diagonal has length $\sqrt{2}$ (by the Theorem of Pythagoras).


The ratio between the diagonal and the side is:

## $\frac{\text { Diagonal }}{\text { Side Length }}=\sqrt{2}$

## Irrationality of $\sqrt{2}$

For the Pythagoreans, numbers were of two types: 1. Whole numbers
2. Ratios of whole numbers

There were no other numbers.

## Irrationality of $\sqrt{2}$

For the Pythagoreans, numbers were of two types: 1. Whole numbers
2. Ratios of whole numbers

There were no other numbers.
Let's suppose that $\sqrt{2}$ is a ratio of whole numbers:

$$
\sqrt{2}=\frac{p}{q}
$$

We can suppose that $p$ and $q$ have no common factors. Otherwise, we just cancel them out.

## Irrationality of $\sqrt{2}$

For the Pythagoreans, numbers were of two types: 1. Whole numbers
2. Ratios of whole numbers

## There were no other numbers.

Let's suppose that $\sqrt{2}$ is a ratio of whole numbers:

$$
\sqrt{2}=\frac{p}{q}
$$

We can suppose that $p$ and $q$ have no common factors. Otherwise, we just cancel them out.

For example, suppose $p=42$ and $q=30$. Then

$$
\frac{p}{q}=\frac{42}{30}=\frac{7 \times 6}{5 \times 6}=\frac{7}{5}
$$

## Remarks on Reductio ad Absurdum.

## Remarks on Reductio ad Absurdum.

## Sherlock Holmes:

"How often have I said to you that when you have eliminated the impossible, whatever remains, however improbable, must be the truth?"

The Sign of the Four (1890)

## Remarks on Reductio ad Absurdum.

## Sherlock Holmes:

"How often have I said to you that when you have eliminated the impossible, whatever remains, however improbable, must be the truth?"

## The Sign of the Four (1890)

The Sign of the Four (1890)

## We say that $p$ and $q$ are relatively prime if they have no common factors.

In particular, $p$ and $q$ cannot both be even numbers.

We say that $p$ and $q$ are relatively prime
if they have no common factors.
In particular, $p$ and $q$ cannot both be even numbers.
Now square both sides of the equation $\sqrt{2}=p / q$ :

$$
2=\frac{p}{q} \times \frac{p}{q}=\frac{p^{2}}{q^{2}} \quad \text { or } \quad p^{2}=2 q^{2}
$$

This means that $p^{2}$ is even. Therefore, $p$ is even.

We say that $p$ and $q$ are relatively prime if they have no common factors.

In particular, $p$ and $q$ cannot both be even numbers.
Now square both sides of the equation $\sqrt{2}=p / q$ :

$$
2=\frac{p}{q} \times \frac{p}{q}=\frac{p^{2}}{q^{2}} \quad \text { or } \quad p^{2}=2 q^{2}
$$

This means that $p^{2}$ is even. Therefore, $p$ is even.
Let $p=2 r$ where $r$ is another whole number. Then

$$
p^{2}=(2 r)^{2}=4 r^{2}=2 q^{2} \quad \text { or } \quad 2 r^{2}=q^{2}
$$

We say that $p$ and $q$ are relatively prime

## if they have no common factors.

In particular, $p$ and $q$ cannot both be even numbers.
Now square both sides of the equation $\sqrt{2}=p / q$ :

$$
2=\frac{p}{q} \times \frac{p}{q}=\frac{p^{2}}{q^{2}} \quad \text { or } \quad p^{2}=2 q^{2}
$$

This means that $p^{2}$ is even. Therefore, $p$ is even.
Let $p=2 r$ where $r$ is another whole number. Then

$$
p^{2}=(2 r)^{2}=4 r^{2}=2 q^{2} \quad \text { or } \quad 2 r^{2}=q^{2}
$$

But this means that $q^{2}$ is even. So, $q$ is even.

## Both $p$ and $q$ are even. This is a contradiction.

## Both $p$ and $q$ are even. This is a contradiction.

The supposition was that $\sqrt{2}$ is a ratio of two integers that have no common factors:

$$
\sqrt{2}=\frac{p}{q}
$$

## This assumption has led to a contradiction.

## Both $p$ and $q$ are even. This is a contradiction.

The supposition was that $\sqrt{2}$ is a ratio of two integers that have no common factors:

$$
\sqrt{2}=\frac{p}{q}
$$

This assumption has led to a contradiction.
By reductio ad absurdum, $\sqrt{2}$ is irrational.
It is not a ratio of whole numbers.

Both $p$ and $q$ are even. This is a contradiction.
The supposition was that $\sqrt{2}$ is a ratio of two integers that have no common factors:

$$
\sqrt{2}=\frac{p}{q}
$$

This assumption has led to a contradiction.
By reductio ad absurdum, $\sqrt{2}$ is irrational.
It is not a ratio of whole numbers.
To the Pythagoreans, $\sqrt{2}$ was not a number.

$$
\kappa \rho \iota \sigma \eta \quad \kappa \alpha \tau \alpha \sigma \tau \rho O \phi \eta!
$$

The discovery of irrational quantities had a dramatic effect on the development of mathematics.

Legend has it that the discoveror of this fact was thrown from a ship and drowned.

The result was that focus now fell on geometry, and arithmetic or number theory was neglected.

The problems were not resolved for many centuries.

## Outline

## Introduction

## Irrational Numbers

## Distraction 6: Slicing a Pizza

## The Real Number Line

## Greek 5

Pascal's Triangle

## Distraction 6: Slicing a Pizza



Cut the pizza using
only straight cuts.
There should be exactly one piece of pepperoni on each slice of pizza.

Minimum number of cuts?

## Abstract Formulation

Let us pretend we are pure mathematicians.
Problem:
If the plane is cut by $n$ lines, how many regions are formed?

## Abstract Formulation

Let us pretend we are pure mathematicians.
Problem:
If the plane is cut by $n$ lines, how many regions are formed?

| $n$ Lines | $k$ Regions |
| :---: | :---: |
| 0 | 1 |
| 1 | 2 |
| 2 | $?$ |
| 3 | $?$ |
| 4 | $?$ |

## Distraction 6: Slicing a Pizza



## Try This For Fun

Problem:
How many regions are formed by $n$ cuts?

| $n$ Lines | $k$ Regions |
| :---: | :---: |
| 0 | 1 |
| 1 | 2 |
| 2 | $?$ |
| 3 | $?$ |
| 4 | $?$ |
| 5 | $?$ |
| 6 | $?$ |

Complete this table. Can you find a general formula?

## Outline

## Introduction

## Irrational Numbers

## Distraction 6: Slicing a Pizza

The Real Number Line

## Greek 5

Pascal's Triangle

## The Real Numbers

We need to be able to assign a number to a line of any length.

The Pythagoreans found that no number known to them gave the diagonal of a unit square.

It is as if there are gaps in the number system.
We look at the rational numbers and show how to complete them: how to fill in the gaps.

The set $\mathbb{N}$ is infinite, but each element is isolated.


The set $\mathbb{N}$ is infinite, but each element is isolated.

The set $\mathbb{Q}$ is infinite and also dense: between any two rationals there is another rational.

PROOF: Let $r_{1}=p_{1} / q_{1}$ and $r_{2}=p_{2} / q_{2}$ be rationals.

$$
\bar{r}=\frac{1}{2}\left(r_{1}+r_{2}\right)=\frac{1}{2}\left(\frac{p_{1}}{q_{1}}+\frac{p_{2}}{q_{2}}\right)=\frac{p_{1} q_{2}+q_{1} p_{2}}{2 q_{1} q_{2}}
$$

is another rational between them: $r_{1}<\bar{r}<r_{2}$.

Although $\mathbb{Q}$ is dense, there are gaps. The line of rationals is discontinuous.

We complete it-filling in the gaps-by defining the limit of any sequence of rationals as a real number.

Although $\mathbb{Q}$ is dense, there are gaps. The line of rationals is discontinuous.

We complete it-filling in the gaps-by defining the limit of any sequence of rationals as a real number.

WARNING:
We are glossing over a number of
fundamental ideas of mathematical analysis:

- What is an infinite sequence?
- What is the limit of a sequence?

To give a particular example, we know that

$$
\sqrt{2}=1.41421356 \ldots
$$

To give a particular example, we know that

$$
\sqrt{2}=1.41421356 \ldots
$$

We construct a sequence of rational numbers

$$
\{1,1.4,1.41,1.414,1.4142,1.41421,1.414213, \ldots\}
$$

To give a particular example, we know that

$$
\sqrt{2}=1.41421356 \ldots
$$

We construct a sequence of rational numbers

$$
\{1,1.4,1.41,1.414,1.4142,1.41421,1.414213, \ldots\}
$$

In terms of fractions, this is the sequence

$$
\left\{\frac{1}{1}, \frac{14}{10}, \frac{141}{100}, \frac{1414}{1000}, \frac{14142}{10000}, \frac{141421}{100000}, \frac{1414213}{1000000}, \ldots\right\}
$$

These rational numbers get closer and closer to $\sqrt{2}$.

To give a particular example, we know that

$$
\sqrt{2}=1.41421356 \ldots
$$

We construct a sequence of rational numbers

$$
\{1,1.4,1.41,1.414,1.4142,1.41421,1.414213, \ldots\}
$$

In terms of fractions, this is the sequence

$$
\left\{\frac{1}{1}, \frac{14}{10}, \frac{141}{100}, \frac{1414}{1000}, \frac{14142}{10000}, \frac{141421}{100000}, \frac{1414213}{1000000}, \ldots\right\}
$$

These rational numbers get closer and closer to $\sqrt{2}$.
EXERCISE:
Construct a sequence in $\mathbb{Q}$ that tends to $\pi$.

## The Real Number Line


#### Abstract

The set of Real Numbers, $\mathbb{R}$, contains all the rational numbers in $\mathbb{Q}$ and also all the limits of sequences of rationals [technically, all 'Cauchy sequences'].


## The Real Number Line

The set of Real Numbers, $\mathbb{R}$, contains all the rational numbers in $\mathbb{Q}$ and also all the limits of sequences of rationals [technically, all 'Cauchy sequences'].

We may assume that

- Every point on the number line corresponds to a real number.
- Every real number corresponds to a point on the number line.


## The Real Number Line

The set of Real Numbers, $\mathbb{R}$, contains all the rational numbers in $\mathbb{Q}$ and also all the limits of sequences of rationals [technically, all 'Cauchy sequences'].

We may assume that

- Every point on the number line corresponds to a real number.
- Every real number corresponds to a point on the number line.

PHYSICS: There are unknown aspects
of the microscopic structure of spacetime!
These go beyond our 'Universe of Discourse'.

## Now we have the chain of sets:

$$
\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}
$$

Now we have the chain of sets:

$$
\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}
$$

We can also consider the prime numbers $\mathbb{P}$. They are subset of the natural numbers, so

$$
\mathbb{P} \subset \mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}
$$

## Outline

## Introduction

## Irrational Numbers

## Distraction 6: Slicing a Pizza

The Real Number Line

## Greek 5

Pascal's Triangle

## Numerical Weather Prediction

## The Greek Alphabet, Part 5

Campa

Figure : 24 beautiful letters

## The Full Alphabet

| $\alpha$ | $\beta$ | $\gamma$ | $\delta$ | $\epsilon$ | $\zeta$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $A$ | $B$ | $\Gamma$ | $\Delta$ | $E$ | $Z$ |
| $\eta$ | $\theta$ | $\iota$ | $\kappa$ | $\lambda$ | $\mu$ |
| H | $\Theta$ | I | K | $\wedge$ | M |
| $\nu$ | $\xi$ | 0 | $\pi$ | $\rho$ | $\sigma$ |
| N | $\equiv$ | O | $\Pi$ | P | $\Sigma$ |
| $\tau$ | $v$ | $\phi$ | $\chi$ | $\psi$ | $\omega$ |
| T | $\Upsilon$ | $\phi$ | X | $\psi$ | $\Omega$ |

## The Full Monty

| Letter | Name | Sound |  | Letter | Name | Sound |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Ancient ${ }^{[5]}$ | Modern ${ }^{[6]}$ |  |  | Ancient ${ }^{[5]}$ | Modern ${ }^{[6]}$ |
| A $\alpha$ | alpha, ${ }^{\text {d }} \lambda \varphi \rho \alpha$ | [a] [a:] | [a] | N v | nu, vu | [ n ] | [ n ] |
| B $\beta$ | beta, $\beta$ ¢́ta | [b] | [v] | 三 $\zeta$ | xi, §ı | [ks] | [ks] |
| $\Gamma Y$ | gamma, үáu ${ }^{\text {a }}$ | [g], [n] ${ }^{[7]}$ | $\begin{gathered} {[\mathrm{y]} \sim[\mathrm{j}]} \\ {[n]^{[8]} \sim[\mathrm{n}]^{[9]}} \end{gathered}$ | Oo | omicron, ófıкроv | [0] | [0] |
|  |  |  |  | Пп | pi, $\quad$ ו | [p] | [p] |
| $\Delta \delta$ | delta, $\overline{\text { ® }}$ ¢ $\lambda$ Ta | [d] | [ ${ }^{\text {® }}$ ] | P $\rho$ | rho, $\mathrm{\rho} \dot{\text { u }}$ | [r] | [r] |
| E \& | epsilon, £́ $\psi 1 \lambda$ ov | [e] | [e] |  | sigma, бiypa | [s] | [s] |
| Z ろ | zeta, $¢$ ¢́тa | $[z d]^{\text {A }}$ | [z] | $\Sigma \sigma / \varsigma^{[13]}$ |  |  |  |
| H | eta, ¢́т¢ | [ $\varepsilon$ :] | [i] | T T | tau, tau | [t] | [t] |
|  |  |  |  | Yu | upsilon, úчıı̇ıv | [y] [y:] | [i] |
| $\Theta \theta$ | theta, Өńta | [ $\mathrm{t}^{\text {n }}$ ] | [ $\theta$ ] |  |  | [ $p^{\text {n }}$ ] | [f] |
| 11 | iota, ıढ́та | [i] [i:] | [i], [j] ${ }^{[10]}[\mathrm{n}]^{[11]}$ | $\Phi \varphi$ | phi, $\varphi$ ו |  |  |
| K к | kappa, кর́ттт | [k] | [k] ~ [c] | X X | chi, $\chi$ I | [ $\mathrm{k}^{\mathrm{h}}$ ] | [x] ~ [ç] |
|  |  |  |  | $\Psi \psi$ | psi, $\Psi$ ı | [ps] | [ps] |
| $\wedge \lambda$ |  | [1] | [1] | $\Omega \omega$ | omega, $\omega \mu \varepsilon \chi^{\prime} \alpha$ | [כ] | [0] |
| $\mathrm{M} \mu$ | mu, $\mu \mathrm{u}$ | [m] | [m] |  |  |  |  |

Figure : Wikipedia: "Greek Alphabet"

## A Few Greek Words With Large Letters

＇EヘNAㄷ
ПへATON АКРОПОЛІГ

API $\Sigma$ TOTENH $\Sigma$
ПҮӨАГÓРАइ
гOфOKへHइ

## A Few Greek Words With Large Letters

＇EMAAE<br>ПヘATON АКРОПОАІГ

API $\Sigma$ TOTEAH $\Sigma$
ПイӨАГÓРАг
гOфOK＾Hइ

HELLAS：ÉMAE
PLATO：П＾ATON
ACROPOLIS：AKPOПONİ
ARISTOTLE：APIटTOTEAH $\Sigma$
PYTHAGORAS：ПイӨAГÓPA乏
SOPHOCLES：ᄃOФOK＾H $\Sigma$

## Robinson's Anemometer on East Pier




Figure : Inscription on Church in Sean McDermott Street

## I asked Cosetta Cadau, Department of Classics Trinity College Dublin about this inscription.

Here is how she replied:

## I asked Cosetta Cadau, Department of Classics Trinity College Dublin about this inscription.

Here is how she replied:


The text is not complete (the last word is cut), but what I can read is

$$
\begin{gathered}
M O N \Omega \Sigma O \Phi \Omega \Theta E \Omega \\
\Sigma \Omega T H P I H M \Omega N
\end{gathered}
$$

which can be translated as To God, Our Only Saviour

# End of Greek 105 

## Collect Your Diploma

## Your Diploma



## $\Delta$ IП $\Lambda \Omega$ МА

Avтó 兀o $\delta$ í $\pi \lambda \omega \mu \alpha \alpha \pi \sigma v \varepsilon ́ \mu \varepsilon \tau \alpha \_~ \sigma \tau o v / \sigma \tau \eta v:$
 $\mu \pi о \rho \varepsilon i ́ v \alpha \mu \varepsilon \tau \alpha \gamma \rho \alpha ́ \varphi \varepsilon$ о оо́ $\mu \alpha \tau \alpha \alpha v \theta \rho \omega ́ \pi \omega v$ $\kappa \alpha \iota ~ \tau о ́ \pi \omega \nu \alpha \pi$ о́ то $\varepsilon \lambda \lambda \eta \nu ı \kappa$ ќ $\pi \rho о \varsigma$ то $\lambda \alpha \tau ı v \iota \kappa o ́ \alpha \lambda \varphi \alpha ́ \beta \eta \tau о$. $\Sigma v \gamma \chi \alpha \rho \eta \tau \eta \rho \rho \alpha$.

This diploma is awarded to ( $===$ NAME $===$ ) who has learned the Greek alphabet and who can transliterate names of people and places from the Greek to the Roman alphabet.

Congratulations.

## Outline

Introduction

## Irrational Numbers

## Distraction 6: Slicing a Pizza

The Real Number Line
Greek 5

## Pascal's Triangle

## Numerical Weather Prediction

## Pascal's Triangle



## Combinatorial Symbol

This symbol represents the number of combinations of $r$ objects selected from a set of $n$ objects.

## Pascal's Triangle: Combinations



## Pascal's Triangle

Pascal's triangle is a triangular array of the binomial coefficients.

It is named after French mathematician Blaise Pascal.
It was studied centuries before him in:

- India (Pingala, C2BC)
- Persia (Omar Khayyam, C11AD)
- China (Yang Hui, C13AD).

Pascal's Traité du triangle arithmétique (Treatise on Arithmetical Triangle) was published in 1665.

## Pascal's Triangle

Pascal's triangle is a triangular array of the binomial coefficients.

It is named after French mathematician Blaise Pascal.
It was studied centuries before him in:

- India (Pingala, C2BC)
- Persia (Omar Khayyam, C11AD)
- China (Yang Hui, C13AD).

Pascal's Traité du triangle arithmétique (Treatise on Arithmetical Triangle) was published in 1665.

Draw Pascal's triangle on the board.

## Pascal's Triangle

The rows of Pascal's triangle are numbered starting with row $\mathbf{n}=0$ at the top ( 0 -th row).

The entries in each row are numbered from the left beginning with $\mathrm{k}=0$.

The triangle is easily constructed:

- A single entry 1 in row 0.
- Add numbers above for each new row.

The entry in the nth row and k-th column of Pascal's triangle is denoted $\binom{n}{k}$.

The entry in the topmost row is $\binom{0}{0}=1$.

## Pascal's Identity

## The construction of the triangle may be written:

$$
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}
$$

This relationship is known as Pascal's Identity.


## Pascal's Triangle \& Fibonacci Numbers.

| 1 | 1 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 1 |  |  |  |  |  |
| 1 | 3 | 3 | 1 |  |  |  |  |
| 1 | 4 | 6 | 4 | 1 |  |  |  |
| 1 | 5 | 10 | 10 | 5 | 1 |  |  |
| 1 | 6 | 15 | 20 | 15 | 6 |  |  |
| 1 | 7 | 21 | 35 | 35 | 21 | 7 | 1 |

Figure : Pascal's Triangle and Fibonacci Numbers

Where are the Fibonacci Numbers hiding here?

## Sierpinski's Gasket



Sierpinski Gasket: usual construction by trisection.

Sierpinski's Gasket is constructed by starting with an equilateral triangle, and successively removing the central triangle at each scale.

## Sierpinski's Gasket at Stage 6



Figure : Result after 6 subdivisions

## Sierpinski's Gasket in Pascal's Triangle



Figure : Odd numbers are in black

## Remember Walking in Manhattan?



Figure : Number of routes for a rook in chess.

## Geometric Numbers in Pascal's Triangle

$1 \quad$ Natural numbers, $\quad n=\mathrm{C}(n, 1)$
$11 \nabla^{\text {Triangular numbers, }} \quad T_{n}=\mathrm{C}(n+1,2)$
$121 \nabla^{\text {Tetrahedral numbers, }} T e_{n}=\mathrm{C}(n+2,3)$
$1 \quad 3 \quad 3 \quad 1 \quad \downarrow^{\text {Pentatope numbers }}=C(n+3,4)$
$14 \begin{array}{lllll} & 4 & 4 & 1 & \nabla^{5} \text {-simplex }(\{3,3,3,3\}) \text { numbers }\end{array}$
$15 \begin{array}{llllll}5 & 10 & 10 & 5 & 1 & \nabla^{6-\text { simplex }}\end{array}$
( $\{3,3,3,3,3\}$ ) numbers
$16615 \quad 2015 \quad 6 \quad 1 \quad \downarrow 7$-simplex
$1 \begin{array}{lllllll} & 7 & 21 & 35 & 35 & 21 & 7\end{array} 1^{(\{3,3,3,3,3,3\})}$ numbers
$\begin{array}{lllllllll}1 & 8 & 28 & 56 & 70 & 56 & 28 & 8 & 1\end{array}$

## Outline

Introduction
Irrational Numbers
Distraction 6: Slicing a Pizza
The Real Number Line
Greek 5Pascal's Triangle
Numerical Weather Prediction

## Numerical Weather Prediction

## Outline of a talk on NWP given at UCC, March 2018.

~/Dropbox/TALKS/NWP-UCC/NWP-UCC. pdf https://maths.ucd.ie/~plynch/Talks/

## Thank you

