Sum-Enchanted Evenings

The Fun and Joy of Mathematics

LECTURE 6

Peter Lynch
School of Mathematics \& Statistics University College Dublin

Evening Course, UCD, Autumn 2018

Outline

Introduction
Axioms and Proof
Three Utilities Problem
Greek 4
Distraction 12: Conditional Probability
Astronomy I
Numbers
The Number Line

Outline

Introduction

Axioms and Proof

Three Utilities Problem
Greek 4
Distraction 12: Conditional Probability
Astronomy I
Numbers
The Number Line

Meaning and Content of Mathematics

The word Mathematics comes from
Greek $\mu \alpha \theta \eta \mu \alpha$ (máthéma), meaning "knowledge" or "study" or "learning".

It is the study of topics such as

- Quantity (numbers)
- Structure (patterns)
- Space (geometry)
- Change (analysis).

Outline

Introduction

Axioms and Proof

Three Utilities Problem
Greek 4

Distraction 12：Conditional Probability

Astronomy I
Numbers
The Number Line

What are Axioms?

How can we prove a theorem, if we have nothing to start from?

We cannot prove something using nothing. We need some starting point.

The basic building blocks are called Axioms.
Axioms are not proved, but are assumed true.

What are Axioms?

Axioms are important because the entire body of mathematics rests upon them.

If there are too few axioms, we can prove very little of interest from them.

If there are too many axioms, we can prove almost any result from them.

Consistency:
We must not have axioms that contradict each other.

What are Axioms?

Mathematicians assume that axioms are true without being able to prove them.

This is not problematic, because axioms are normally intuitively obvious.

There are usually only a few axioms. For example, we may assume that

$$
a \times b=b \times a
$$

for any two numbers a and b.
But Hamilton found that for quaternions,

$$
A \times B \neq B \times A .
$$

Different sets of axioms lead to different kinds of mathematics.

Every area of mathematics has its own set of basic axioms.

When mathematicians have proven a theorem, they publish it for other mathematicians to check.

In principle, it is possible to break a proof into steps starting from the basic axioms.

Sometimes a mistake in the proof is found. Sometimes an error is not found for many years (e.g., an early "proof" of the Four Colour Theorem.)

Euclid's Axioms of Geomery

Euclid based his "Elements of Geometry" on a set of five postulates or axioms:

"Let the following be postulated":

1. "To draw a straight line from any point to any point."
2. "To produce [extend] a finite straight line continuously in a straight line."
3. "To describe a circle with any centre and distance [radius]."
4. "That all right angles are equal to one another."
5. The parallel postulate: "That, if a straight line falling on two straight lines make the interior angles on the same side less than two right angles, the two straight lines, if produced indefinitely, meet on that side on which are the angles less than the two right angles."

The fifth postulate, the parallel postulate, has been a great source of controversy and confusion. This has led to completely new areas of mathematics.

Peano's Axioms of Arithmetic

Giuseppi Peano constructed five axioms to build up the set \mathbb{N} of natural numbers:

$$
\begin{gathered}
\exists 0: 0 \in \mathbb{N} \\
\forall n \in \mathbb{N}: \exists n^{\prime} \in \mathbb{N} \\
\neg\left(\exists n \in \mathbb{N}: n^{\prime}=0\right) \\
\forall m, n \in \mathbb{N}: m^{\prime}=n^{\prime} \Rightarrow m=n \\
\forall A \subseteq \mathbb{N}:\left(0 \in A \wedge\left(n \in A \Rightarrow n^{\prime} \in A\right)\right) \Rightarrow A=\mathbb{N}
\end{gathered}
$$

The natural numbers may then be extended to the integers, rational numbers and real numbers.

Axioms of Set Theory

Set theory is the basic language of mathematics.
Many mathematical problems can be formulated in the language of set theory.

To prove them we need the Set Theory Axioms.
The most widely accepted axioms are the set of nine Zermelo-Fraenkel (ZF) axioms.

A tenth axiom, may also be assumed, the Axiom of Choice.

Zermelo-Fraenkel axioms

Image from Mathigon.org

Zermelo-Fraenkel axioms

Image from Mathigon.org

Axiom of Choice

Image from Wikipedia

Axiom of Choice

The Axiom of Choice (AC) looks just as innocuous as the other nine axioms. However it has unexpected consequences.

We can use AC to prove that it is possible to cut a sphere into five pieces and reassemble them into two spheres, each identical to the initial sphere.

This result is called the Banach-Tarski Theorem.

Banach-Tarski Theorem

The five pieces have fractal boundaries: they can't actually be made in practice.

Also, they are not measurable:
they have no definite volume.

The Current Status

There is an active debate among logicians about whether to accept the Axiom of Choice or not.

Every collection of axioms forms a different "mathematical world". Different theorems may be true in different worlds.

The question is: are we happy to live in a world where we can make two spheres from one.

See Wikipedia article: Axiom of Choice

Outline

Introduction

Axioms and Proof
Three Utilities Problem
Greek 4
Distraction 12: Conditional Probability
Astronomy I
Numbers
The Number Line

Three Utilities Problem: Abstract

Is the complete 3×3 bipartite graph $K_{3,3}$ planar?

This is an abstract, jargon-filled question in topological graph theory.
We look at a simple, concrete version.

Three Utilities Problem: Concrete

We have to connect 3 utilities to 3 houses.

- Electricity
- Water
- Gas

The lines must not cross.

Three Utilities Problem: Have a Go

Three Utilities Problem: Solution!

http://www.archimedes-lab.org/How_to_Solve/Water_gas.html

Three Utilities Problem: No Solution!

http://www.archimedes-lab.org/How_to_Solve/Water_gas.html

Three Utilities Problem

Three Utilities Problem: Application

ثे
UCEIN
DUBLIN
yy

Three Utilities Problem for Mugs

Three Utilities Problem on a Torus

$K_{3,3}$ is a toroidal graph.

Vi Hart: https: //www . youtube.com/watch?v=CruQylWSfoU\&feature=youtu .be\&t=9

Three Utilities: Kuratowski’s Theorem

If a graph contains $K_{3,3}$ or K_{5} as a sub-graph, it is non-planar. If it does not contain either, it is planar.

Three Utilities: Equivalent Graphs

The two forms shown are equivalent.
There are crossings in both.

Outline

Introduction

Axioms and Proof

Three Utilities Problem

Greek 4

Distraction 12: Conditional Probability

Astronomy

Numbers
The Number Line
.
3
(
مaع NumLine

The Greek Alphabet, Part 4

Alpha

Figure : 24 beautiful letters

The Last Six Letters

We will consider the final group of six letters.

Let us focus first on the small letters and come back to the big ones later.

Tau: You have certainly heard of a Tau-cross: τ.
Upsilon (v) or u-psilon means 'bare u'. It is often transliterated as ' y '.

Phi (ϕ) is ' \mathbf{f} ', often used for latitude (as λ is often used for longitude).

Chi (χ) has a 'ch' or ' k ' sound.
Psi (ψ) is very common: psychology, etc.
Omega (ω) is the end: Alpha and Omega $\left(\frac{A}{\Omega}\right)$.
Now you know 24 letters. You should get a diploma.

A Few Greek Words (for practice)

$\kappa \omega \mu \alpha$
$\psi v \kappa \eta$
$\kappa \rho \iota \sigma \iota \varsigma$
$\alpha \nu \alpha \theta \epsilon \mu \alpha$
$\alpha \mu \beta \rho о \sigma \iota \alpha$
$\kappa \alpha \tau \alpha \sigma \tau \rho 0 \phi \eta$

Coma: $\kappa \omega \mu \alpha$
Psyche: $\psi v \kappa \eta$
Crisis: $\kappa \rho \iota \sigma \iota \varsigma$
Anathema: $\alpha \nu \alpha \theta \epsilon \mu \alpha$ Ambrosia: $\alpha \mu \beta \rho o \sigma \iota \alpha$
Catastrophe: $\kappa \alpha \tau \alpha \sigma \tau \rho \circ \phi \eta$

Intro Axioms \quad 3-Util \quad Greek 4 \quad DIST12 \quad Astro1 \quad Numbers \quad NumLine

End of Greek 104

Outline

Introduction

Axioms and Proof
Three Utilities Problem
Greek 4
Distraction 12: Conditional Probability
Astronomy I
Numbers
The Number Line

Distraction 12: Conditional Probability

Conditional Probability

Conditional Probability: Level 3 Challenges

A box contains two white marbles and two black marbles. I pick a marble at random and set it aside. Then, I pick a second marble and notice that it is black.

Is it more likely that the first marble was white or black?

Distraction 12: Conditional Probability

Possibile outcomes of the experiment:

$$
W_{1} W_{2} \quad W_{1} B_{2} \quad B_{1} W_{2} \quad B_{1} B_{2}
$$

Are all four possibilities equally likely?

$$
\begin{gathered}
P\left(B_{2}\right)=P\left(W_{1}\right) P\left(B_{2} \mid W_{1}\right)+P\left(B_{1}\right) P\left(B_{2} \mid B_{1}\right) \\
P\left(W_{1}\right)=\frac{1}{2} \quad P\left(B_{1}\right)=\frac{1}{2} \quad P\left(B_{2} \mid W_{1}\right)=\frac{2}{3} \quad P\left(B_{2} \mid B_{1}\right)=\frac{1}{3}
\end{gathered}
$$

Outline

Introduction

Axioms and Proof

Three Utilities Problem
Greek 4
Distraction 12: Conditional Probability
Astronomy I
Numbers
The Number Line

The Quadrivium

The Pythagorean model of mathematics

The Ancient Greeks

Mathematics and Astronomy are intimately linked.
Two of the strands of the Quadrivium were Geometry (static) and Cosmology (dynamic space).

Greek astronomer Claudius Ptolemy (c.90-168AD) placed the Earth at the centre of the universe.

The Sun and planets move around the Earth in orbits that are of the most perfect of all shapes: circles.

Aristarchus of Samos (c.310-230 BC)

Aristarchus of Samos ('A $\rho \iota \sigma \tau \alpha \rho \chi O \varsigma$), astronomer and mathematician, presented the first model that placed the Sun at the center of the universe.

The original writing of Aristarchus is lost, but Archimedes wrote in his Sand Reckoner:
"His hypotheses are that the fixed stars and the Sun remain unmoved, that the Earth revolves about the Sun on the circumference of a circle, ...

Eratosthenes (c.276-194 BC)

つの

Eratosthenes (c.276-194 BC)

つの

Eratosthenes (c.276-194 BC)

Hipparchus (c.190-120 BC)

Hipparchus of Nicaea (' $1 \pi \pi \alpha \rho \chi 0 \varsigma$) was a Greek astronomer, geographer, and mathematician.

Regarded as the greatest astronomer of antiquity.
Often considered to be the founder of trigonometry.
Famous for

- Precession of the equinoxes
- First comprehensive star catalog
- Invention of the astrolabe
- Invention (perhaps) of the armillary sphere.

Claudius Ptolemy (c.AD 100-170)

Claudius Ptolemy was a Greco-Roman astronomer, mathematician, geographer and astrologer.

He lived in the city of Alexandria.
Ptolemy wrote several scientific treatises:

- An astronomical treatise (the Almagest) originally called Mathematical Treatise (Mathematike Syntaxis).
- A book on geography.
- An astrological treatise.

Ptolemy's Almagest is the only surviving comprehensive ancient treatise on astronomy.

Ptolemy’s Model

Ptolemy's model was universally accepted until the appearance of simpler heliocentric models during the scientific revolution.

Epicycles Rule

According to Norwood Russell Hanson (science historian):

There is no bilaterally symmetrical, nor eccentrically periodic curve used in any branch of astrophysics or observational astronomy which could not be smoothly plotted as the resultant motion of a point turning within a constellation of epicycles, finite in number, revolving around a fixed deferent.
"The Mathematical Power of Epicyclical Astronomy", 1960
Any path - periodic or not, closed or open - can be represented by an infinite number of epicycles.

Ptolemaic Epicycles

Conic Sections

Circles are special cases of conic sections.

They are formed by a plane cutting a cone at angle.

Conics were studied by Apollonius of Perga (late 3rd - early 2nd centuries BC).
https://en.wikipedia.org/wiki/Conic_section

The Scientific Revolution

TRAILER

Next week, we will look at developments in the sixteenth and seventeenth centuries.

Nicolaus Copernicus 1473-1543

Tycho Brahe
1546-1601

Johannes Kepler
1571-1630

Galileo Galilei
1564-1642
$\stackrel{A}{A}$ 品
UCD

Figure from mathigon.org

Outline

Introduction

Axioms and Proof

Three Utilities Problem
Greek 4
Distraction 12: Conditional Probability
Astronomy I
Numbers
The Number Line

Babylonian Numerals

Ancient Egyptian Numerals

$1=$	1	$10=$	\bigcirc	$100=$	(3)	$1000=$	\pm^{0}
2-	11	$20=$	$\cap \cap$	$200=$	(G)	2000 -	+8
$3=$	If	$30=$	$\cap \cap$	$300=$	999	$3000=$	むむ
$4=$	111	$40=$	n	$400=$	$\begin{aligned} & \text { (9) } 9 \\ & 99 \end{aligned}$	$4000=$	
5-	III	$50=$		$500=$	$\begin{aligned} & 999 \\ & \text { G99 } \end{aligned}$	$5000=$	${ }^{0.0} 8^{0} 8$

Ancient Hebrew and Greek Numerals

70	60	50	40	30	20	10	9
F\%						ϕ	
Ayin	Samekh	Nun	Mem	Lamed	Kaf	Yod	Tet
γ	0	J	N	f	\bigcirc	?	6

1	α	alpha	10	ι	iota	100	ρ	rho
2	β	beta	20	κ	kappa	200	σ	sigma
3	γ	gamma	30	λ	lambda	300	τ	tau
4	δ	delta	40	μ	mu	400	v	upsilon
5	ϵ	epsilon	50	ν	nu	500	ϕ	phi
6	ζ	vaut *	60	ξ	xi	600	χ	chi
7	ζ	zeta	70	o	omicron	700	ψ	psi
8	η	eta	80	π	pi	800	ω	omega
9	θ	theta	90	9	koppa *	900	λ	sampi

*vau, koppa, and sampi are obsolete characters

Mayan Numerals

-	$\begin{gathered} \bullet \\ 1 \end{gathered}$			
	-	- -	- - -	\bullet - - -
5	6	7	8	9
	-	- -	- - -	- - - -
10	11	12	13	14
	\bullet	$\bullet-$	$\bullet \bullet-$	\bullet - ${ }^{\circ}$
15	16	17	18	19

Various Numeral Systems

Numeral systems 0123456789 －｜Гץع07Vへ৭ I II IIIIV V VI VII VIII IX X ০১২৩৪৫৬৭৮๖ －
 Оด๒๓๔๕อ๗డ๙ Oーニ三四五六七八九

Wikipedia：Hindu－Arabic Numeral System三

Roman Numerals

I	1
II	2
III	3
IV	4
V	5
VI	6
VII	7
VIII	8
IX	9
X	10
XI	11
XII	12
XIII	13
XIV	14
XV	15
XVI	16
XVII	17
XVIII	18
XIX	19
XX	20

XXI	$\mathbf{2 1}$
XXII	22
XXIII	23
XXIV	$\mathbf{2 4}$
XXV	25
XXVI	26
XXVII	27
XXVIII	$\mathbf{2 8}$
XXIX	29
XXX	$\mathbf{3 0}$
XXXI	$\mathbf{3 1}$
XXXII	$\mathbf{3 2}$
XXXIII	$\mathbf{3 3}$
XXXIV	$\mathbf{3 4}$
XXXV	$\mathbf{3 5}$
XXXVI	$\mathbf{3 6}$
XXXVII	$\mathbf{3 7}$
XXXVIII	$\mathbf{3 8}$
XXXIX	$\mathbf{3 9}$
XL	$\mathbf{4 0}$

XLI	41
XLII	42
XLIII	43
XLIV	44
XLV	45
XLVI	46
XLVII	47
XLVIII	48
XLIX	49
L	50
LI	51
LII	52
LIII	53
LIV	54
LV	55
LVI	56
LVII	57
LVIII	58
LIX	59
LX	60

In order: $M D C L X V I=1666$

How to Multiply Roman Numbers

Table: Multiplication Table for Roman Numbers.

	\mathbf{l}	\mathbf{V}	\mathbf{X}	\mathbf{L}	\mathbf{C}	\mathbf{D}	\mathbf{M}
\mathbf{I}	I	V	X	L	C	D	M
\mathbf{V}	V	$X X V$	L	$C C L$	D	$M M D$	\bar{V}
\mathbf{X}	X	L	C	D	M	\bar{V}	\bar{X}
\mathbf{L}	L	$C C L$	D	$M M D$	\bar{V}	$\overline{X X V}$	\bar{L}
\mathbf{C}	C	D	M	\bar{V}	\bar{X}	\bar{L}	\bar{C}
\mathbf{D}	D	$M M D$	\bar{V}	$\overline{X X V}$	\bar{L}	$\overline{C C L}$	\bar{D}
\mathbf{M}	M	\bar{V}	\bar{X}	\bar{L}	\bar{C}	\bar{D}	\bar{M}

A Roman Abacus

Replica of a Roman abacus from 1st century AD.

Abacus is a Latin word, which comes from the Greek $\alpha \beta \alpha \kappa \alpha \varsigma$ (board or table).

A Chinese Abacus: Suan Pan

A Japanese Abacus: Soroban

A Different Angle on Numerals

Delightful theory．Almost certainly wrong．

ののく

Arguments "for"

1. It is a very simple idea
2. It links symbols to numerical values

Arguments "against"

1. Number forms modified to fit model
2. Complete lack of historical evidence.

The great tragedy of science the slaying of a beautiful hypothesis by an ugly fact (T H Huxley)

Outline

Introduction

Axioms and Proof

Three Utilities Problem
Greek 4
Distraction 12: Conditional Probability
Astronomy I
Numbers
The Number Line

NumLine

A Hierarchy of Numbers

We will introduce a hierarchy of numbers.
Each set is contained in the next one.
They are like a set of nested Russian Dolls:

Matryoshka

The Natural Numbers \mathbb{N}

The counting numbers were the first to emerge:

$$
\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \ldots
\end{array}
$$

They are also called the Natural Numbers.

We can arange the natural numbers in a list.
This list is like a toy computer.

The Natural Numbers \mathbb{N}

The set of natural numbers is denoted \mathbb{N}.
If n is a natural number, we write $n \in \mathbb{N}$.
Natural numbers can be added: $4+2=6 \in \mathbb{N}$

$$
12 \begin{array}{lllllll}
1 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}
$$

But not always subtracted: $4-6=-2 \notin \mathbb{N}$.
To allow for subtraction we have to extend \mathbb{N}.

The Integers \mathbb{Z}

We extend the counting numbers by adding the negative whole numbers:

$$
\begin{array}{llllllllll}
\ldots & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & \ldots
\end{array}
$$

The whole numbers are also called the Integers.
The set of integers is denoted \mathbb{Z}.
If k is an integer, we write $k \in \mathbb{Z}$.
Clearly,

$$
\mathbb{N} \subset \mathbb{Z}
$$

Integers can be added and subtracted.
They can also multiplied:

$$
6 \times 4=24 \in \mathbb{Z} .
$$

However, they cannot usually be divided:

$$
\frac{6}{4}=1 \frac{1}{2} \notin \mathbb{Z} .
$$

To allow for division we have to extend \mathbb{Z}.

The Rational Numbers \mathbb{Q}

We extend the integers by adding fractions:

$$
r=\frac{p}{q} \quad \text { where } p \text { and } q \text { are integers. }
$$

These rational numbers are ratios of integers.
The set of rational numbers is denoted \mathbb{Q}.
If r is a rational number, we write $r \in \mathbb{Q}$.
Clearly,

$$
\mathbb{Z} \subset \mathbb{Q}
$$

With the Rational Numbers, we can:

Add, Subtract, Multiply and Divide

That is, for any $p \in \mathbb{Q}$ and $q \in \mathbb{Q}$
All of $p+q \quad p-q \quad p \times q$ and $p \div q$
are rational numbers.
We say that \mathbb{Q} is closed under addition, subtraction, multiplication and division.

But we are not yet finished. \mathbb{R} is yet to come.

The Hierarchy of Numbers

$$
\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}
$$

Greek 4
DIST12
Astro1
Numbers
NumLine

The Hierarchy of Numbers

Each set is contained in the next one.
They are like a set of nested Russian Dolls:

Matryoshka

Thank you

