Sum-Enchanted Evenings The Fun and Joy of Mathematics LECTURE 6

Peter Lynch School of Mathematics & Statistics University College Dublin

Evening Course, UCD, Autumn 2018

《曰》 《聞》 《臣》 《臣》 三臣 …

Outline

Introduction

- **Axioms and Proof**
- **Three Utilities Problem**
- Greek 4
- **Distraction 12: Conditional Probability**
- Astronomy I
- **Numbers**

Axioms

The Number Line

Astro1

(日)

Numbers

Numl ine

э

Outline

Introduction

- **Axioms and Proof**
- Greek 4
- **Distraction 12: Conditional Probability**
- Astronomy I
- The Number Line

Intro

Axioms

Greek 4

Astro1

・ロト ・ 四ト ・ ヨト Numbers

Numl ine

Meaning and Content of Mathematics

The word Mathematics comes from Greek $\mu\alpha\theta\eta\mu\alpha$ (máthéma), meaning "knowledge" or "study" or "learning".

- It is the study of topics such as
 - Quantity (numbers)
 - Structure (patterns)
 - Space (geometry)
 - Change (analysis).

Numl ine

э

Intro

Greek 4

DIST12

Astro1

Numbers

Outline

Introduction

Axioms and Proof

Three Utilities Problem

Greek 4

Distraction 12: Conditional Probability

Astronomy I

Numbers

The Number Line

Intro

Axioms

Greek 4

DIST12

Astro1

・ロト ・ 四ト ・ ヨト

Numbers

What are Axioms?

How can we prove a theorem, if we have nothing to start from?

We cannot prove something using nothing. We need some starting point.

The basic building blocks are called Axioms.

Axioms are not proved, but are assumed true.

Greek 4

Astro1

Numbers

Intro

Axioms

3-Util

What are Axioms?

Axioms are important because the entire body of mathematics rests upon them.

If there are *too few axioms,* we can prove very little of interest from them.

Greek 4

If there are *too many axioms,* we can prove almost any result from them.

Consistency: We must not have axioms that contradict each other.

Astro1

Numbers

Intro

Axioms

3-Util

What are Axioms?

Mathematicians assume that axioms are true without being able to prove them.

This is not problematic, because axioms *are normally intuitively obvious.*

There are usually only a few axioms. For example, we may assume that

 $a \times b = b \times a$

for any two numbers *a* and *b*.

But Hamilton found that for quaternions,

$$A imes B
eq B imes A$$
 .

Axioms

3-Util

Greek 4

DIST12

Astro1

Numbers

Different sets of axioms lead to different kinds of mathematics.

Every area of mathematics has its own set of basic axioms.

When mathematicians have proven a theorem, they publish it for other mathematicians to check.

In principle, it is possible to break a proof into steps starting from the basic axioms.

Sometimes a mistake in the proof is found. Sometimes an error is not found for many years (e.g., an early "proof" of the *Four Colour Theorem*.)

Intro

Greek 4

DIST12

Astro1

Numbers

Euclid's Axioms of Geomery

Euclid based his "Elements of Geometry" on a set of five postulates or axioms:

"Let the following be postulated":

- 1. "To draw a straight line from any point to any point."
- 2. "To produce [extend] a finite straight line continuously in a straight line."
- 3. "To describe a circle with any centre and distance [radius]."
- 4. "That all right angles are equal to one another."
- 5. The parallel postulate: "That, if a straight line falling on two straight lines make the interior angles on the same side less than two right angles, the two straight lines, if produced indefinitely, meet on that side on which are the angles less than the two right angles."

The fifth postulate, the parallel postulate, has been a great source of controversy and confusion. This has led to *completely new areas of mathematics*.

Intro

Axioms

Greek 4

DIST12

Astro1

Numbers

< ロ > < 同 > < 回 > < 回 >

Peano's Axioms of Arithmetic

Giuseppi Peano constructed five axioms to build up the set $\ensuremath{\mathbb{N}}$ of natural numbers:

 $\exists 0 : 0 \in \mathbb{N}$ $\forall n \in \mathbb{N} : \exists n' \in \mathbb{N}$ $\neg (\exists n \in \mathbb{N} : n' = 0)$ $\forall m, n \in \mathbb{N} : m' = n' \Rightarrow m = n$ $\forall A \subseteq \mathbb{N} : (0 \in A \land (n \in A \Rightarrow n' \in A)) \Rightarrow A = \mathbb{N}$

The natural numbers may then be extended to the integers, rational numbers and real numbers.

Greek 4

Intro

Axioms

3-Util

イロト イポト イヨト イヨト

Numbers

Astro1

Axioms of Set Theory

Set theory is the basic language of mathematics.

Many mathematical problems can be formulated in the language of set theory.

To prove them we need the Set Theory Axioms.

The most widely accepted axioms are the set of nine Zermelo-Fraenkel (ZF) axioms.

A tenth axiom, may also be assumed, the *Axiom of Choice*.

Intro

DIST12

Astro1

Numbers

(日)

NumLine

э.

Zermelo-Fraenkel axioms

AXIOM OF EXTENSION

If two sets have the same elements, then they are equal.

AXIOM OF SEPERATION We can form a subset of a set, which consists of some elements.

EMPTY SET AXIOM There is a set with no members, written as {} or Ø.

Intro

UNION AXIOM We can form the union of two or more sets.

POWER SET AXIOM

Given any set, we can form the set of all subsets (the power set).

Image from Mathigon.org < □ > < □ > < □ > < ≥ > < ≥ ><</th> Axioms 3-Util Greek 4 DIST12 Astro1 Numbers

Zermelo-Fraenkel axioms

There is a set with infinitely many elements.

AXIOM OF FOUNDATION

Sets are built up from simpler sets, meaning that every (nonempty) set has a minimal member.

AXIOM OF REPLACEMENT If we apply a function to every element in a set, the answer is still a set.

AXIOM OF CHOICE

Given infinitely many non-empty sets, you can choose one element from each of these sets.

Axiom of Choice

Image from Wikipedia

Intro

3-Util

Axioms

Greek 4

DIST12

Astro1

・ロト ・部ト ・ヨト ・ヨト Numbers

Axiom of Choice

The Axiom of Choice (AC) looks just as innocuous as the other nine axioms. *However it has unexpected consequences.*

We can use AC to prove that it is possible to cut a sphere into five pieces and reassemble them into two spheres, each identical to the initial sphere.

This result is called the Banach-Tarski Theorem.

Banach-Tarski Theorem

The five pieces have fractal boundaries: they can't actually be made in practice.

Also, they are not *measurable:* they have no definite volume.

Intro

Axioms

3-Util

Greek 4

DIST12

Astro1

Numbers

The Current Status

There is an active debate among logicians about whether to accept the Axiom of Choice or not.

Every collection of axioms forms a different "mathematical world". Different theorems may be true in different worlds.

The question is: are we happy to live in a world where we can make two spheres from one.

See Wikipedia article: Axiom of Choice

Axioms

3-Util

Astro1

A B b 4 B b Numbers

Numl ine

Outline

Introduction

- **Axioms and Proof**
- **Three Utilities Problem**
- **Greek 4**
- **Distraction 12: Conditional Probability**
- **Astronomy I**
- Numbers

Axioms

The Number Line

Intro

3-Util

Greek 4

DIST12

Astro1

o1

・ロト ・ 四ト ・ ヨト

Numbers

Three Utilities Problem: Abstract

Is the complete 3×3 bipartite graph $K_{3,3}$ planar?

This is an abstract, jargon-filled question in topological graph theory.

We look at a simple, concrete version.

Intro

Axioms

Greek 4

DIST12

Astro1

Numbers

Three Utilities Problem: Concrete

We have to connect 3 utilities to 3 houses.

- Electricity
- Water
- Gas

The lines must not cross.

Intro

3-Util

Axioms

Greek 4

DIST12

Astro1

Numbers

(日)

NumLine

э

Three Utilities Problem: Have a Go

Intro

3-Util

Axioms

Greek 4

DIST12

Astro1

Numbers

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶

NumLine

э.

Three Utilities Problem: Solution!

= 990

Intro

3-Util

Axioms

Greek 4

DIST12

Astro1

ヘロト 人間 トメヨトメヨト Numbers

Three Utilities Problem: No Solution!

http://www.archimedes-lab.org/How_to_Solve/Water_gas.html

510

Greek 4

DIST12

Astro1

Numbers

・ロト ・部ト ・ヨト ・ヨト

≣ ୬९९ NumLine

Intro

Axioms

3-Util

Three Utilities Problem

Intro

3-Util

Greek 4

DIST12

Astro1

크

Three Utilities Problem: Application

Intro

Greek 4

DIST12

Astro1

1

<ロ> <=> <=> <=> <=> <=>

Numbers

NumLine

э

Three Utilities Problem for Mugs

Intro

Axioms 3-Util

G

Greek 4

DIST12

Astro1

Numbers

(日)

N

э

Three Utilities Problem on a Torus

$K_{3,3}$ is a toroidal graph.

Intro

3-Util

Axioms

Greek 4

DIST12

Astro1

イロト イポト イヨト イヨト

Numbers

NumLine

э

Three Utilities: Kuratowski's Theorem

If a graph contains $K_{3,3}$ or K_5 as a sub-graph, it is non-planar. If it does not contain either, it is planar.

Intro

Axioms 3-Util Greek 4

Astro1

Numbers

Numl ine

Three Utilities: Equivalent Graphs

The two forms shown are equivalent.

There are crossings in both.

Axioms

Greek 4

Astro1

Numbers

通 ト イ ヨ ト イ ヨ ト

Numl ine

э

Outline

- **Axioms and Proof**

Greek 4

Distraction 12: Conditional Probability

Astronomy I

Axioms

The Number Line

= nar

Intro

3-Util

Greek 4

Astro1

・ロト ・ 四ト ・ ヨト Numbers

Numl ine

The Greek Alphabet, Part 4

Intro

≣ ∽へへ NumLine

The Last Six Letters

We will consider the final group of six letters.

Let us focus first on the *small letters* and come back to the big ones later.

Intro

Axioms 3-Util

Greek 4

DIST

Astro1

Numbers

N 4 E N 4 E N

э

au v ϕ χ ψ ω

Tau: You have certainly heard of a Tau-cross: τ .

Upsilon (v) or u-psilon means 'bare u'. It is often transliterated as 'y'.

Phi (ϕ) is 'f', often used for latitude (as λ is often used for longitude).

Chi (χ) has a 'ch' or 'k' sound.

Psi (ψ) is very common: psychology, etc.

Omega (ω) is the end: Alpha and Omega $\left(\frac{A}{\Omega}\right)$.

Now you know 24 letters. You should get a diploma.

Intro

Axioms

Greek 4

DIST

Astro1

Numbers

通 とう ヨ とう きょうしょう

A Few Greek Words (for practice)

 $\kappa\omega\mu\alpha$ $\psi v \kappa \eta$ κρισις

αναθεμα αμβρ**ο**σια καταστρ**ο**φη

Axioms

Coma: $\kappa \omega \mu \alpha$ **Psyche:** $\psi v \kappa \eta$ **Crisis:** $\kappa \rho \iota \sigma \iota \varsigma$

Anathema: $\alpha \nu \alpha \theta \epsilon \mu \alpha$ Ambrosia: αμβροσια Catastrophe: $\kappa \alpha \tau \alpha \sigma \tau \rho o \phi \eta$

Intro

3-Util

Greek 4

Astro1

< □ > < □ > < □ > < □ > < □ > Numbers

э. Numl ine

Intro

3-Util

Axioms

Greek 4

DIST12

12

Astro1

Numbers

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

NumLine

ъ

Intro

Axioms

3-Util

Greek 4

DIST12

A

Astro1

Numbers

▲□▶ ▲圖▶ ▲厘≯ ▲厘≯

Intro

3-Util

Axioms

Greek 4

DIST12

Astro1

Numbers

<ロト < 聞 > < 回 > < 回 > .

End of Greek 104

Intro

3-Util

Axioms

Greek 4

DIST12

Astro1

ro1

Numbers

▲□▶ ▲圖▶ ▲厘▶ ▲厘≯

Outline

Introduction

- **Axioms and Proof**
- **Three Utilities Problem**

Greek 4

Distraction 12: Conditional Probability

Astronomy I

Numbers

The Number Line

Axioms

As

Astro1

ro1

(日)

Numbers

NumLine

э.

Distraction 12: Conditional Probability

Conditional Probability

Conditional Probability: Level 3 Challenges

A box contains two white marbles and two black marbles. I pick a marble at random and set it aside. Then, I pick a second marble and notice that it is black.

Is it more likely that the first marble was white or black?

Intro

Axioms

Greek 4

DIST12

Astro1

(日)

Numl ine Numbers

Distraction 12: Conditional Probability

Possibile outcomes of the experiment:

 $W_1 W_2 = W_1 B_2 = B_1 W_2$ $B_1 B_2$

Are all four possibilities equally likely?

$$P(B_2) = P(W_1)P(B_2|W_1) + P(B_1)P(B_2|B_1)$$

$$P(W_1) = \frac{1}{2} \quad P(B_1) = \frac{1}{2} \quad P(B_2|W_1) = \frac{2}{3} \quad P(B_2|B_1) = \frac{1}{3}$$

Intro

Axioms

DIST12

Astro1

글 에 제 글 어 Numbers

Numl ine

Outline

- **Axioms and Proof**

Greek 4

Distraction 12: Conditional Probability

Astronomy I

Axioms

The Number Line

3-Util

Greek 4

Astro1

・ロト ・ 四ト ・ ヨト Numbers

= nar Numl ine

The Quadrivium

The Pythagorean model of mathematics

Intro

Axioms

3-Util

Greek 4

Astro1

(日) Numbers

э Numl ine

The Ancient Greeks

Mathematics and Astronomy are intimately linked.

Two of the strands of the Quadrivium were Geometry (static) and Cosmology (dynamic space).

Greek astronomer *Claudius Ptolemy* (c.90–168AD) placed the Earth at the centre of the universe.

The Sun and planets move around the Earth in orbits that are of the most perfect of all shapes: *circles.*

Axioms

Greek 4

DIST12

Astro1

Numbers

- A TE N A TE N

Aristarchus of Samos (c.310–230 BC)

Aristarchus of Samos (' $A\rho\iota\sigma\tau\alpha\rho\chi o\varsigma$), astronomer and mathematician, presented the first model that placed the Sun at the center of the universe.

The original writing of Aristarchus is lost, but Archimedes wrote in his *Sand Reckoner:*

"His hypotheses are that the fixed stars and the Sun remain unmoved, that the Earth revolves about the Sun on the circumference of a circle, ... "

Axioms

DIST12

Astro1

Numbers

- A TE N - A TE N

Eratosthenes (c.276–194 BC)

Eratosthenes (c.276–194 BC)

Eratosthenes (c.276–194 BC)

Intro

Hipparchus (c.190–120 BC)

Hipparchus of Nicaea (' $l\pi\pi\alpha\rho\chi o_{S}$) was a Greek astronomer, geographer, and mathematician.

Regarded as the greatest astronomer of antiquity.

Often considered to be the founder of trigonometry.

Famous for

- Precession of the equinoxes
- First comprehensive star catalog
- Invention of the astrolabe
- Invention (perhaps) of the armillary sphere.

Intro

Axioms

3-Util

Greek 4

DIST12

Astro1

Numbers

< □ > < □ > < □ > < □ > < □ > < □ > < □ >

Claudius Ptolemy (c.AD 100–170)

Claudius Ptolemy was a Greco-Roman astronomer, mathematician, geographer and astrologer.

He lived in the city of Alexandria.

Ptolemy wrote several scientific treatises:

- An astronomical treatise (the Almagest) originally called Mathematical Treatise (Mathematike Syntaxis).
- A book on geography.
- An astrological treatise.

Ptolemy's Almagest is the only surviving comprehensive ancient treatise on astronomy.

Numl ine

Axioms

Greek 4

DIST1:

Astro1

Numbers

< 日 > < 同 > < 回 > < 回 > .

Ptolemy's Model

Ptolemy's model was universally accepted until the appearance of simpler heliocentric models during the scientific revolution.

Intro

3-Util

Axioms

Greek 4

DIST12

Astro1

tro1

Numbers

Epicycles Rule

According to Norwood Russell Hanson (science historian):

There is no bilaterally symmetrical, nor eccentrically periodic curve used in any branch of astrophysics or observational astronomy which could not be smoothly plotted as the resultant motion of a point turning within a constellation of epicycles, finite in number, revolving around a fixed deferent.

"The Mathematical Power of Epicyclical Astronomy", 1960

Any path — periodic or not, closed or open — can be represented by an infinite number of epicycles.

Intro

Greek 4

Astro1

< □ > < □ > < □ > < □ > < □ > Numbers

Numl ine

Ptolemaic Epicycles

Intro

NumLine

æ

Conic Sections

Circles are special cases of conic sections.

They are formed by a plane cutting a cone at an angle.

Conics were studied by *Apollonius of Perga* (late 3rd – early 2nd centuries BC).

The Scientific Revolution

TRAILER

Next week, we will look at developments in the sixteenth and seventeenth centuries.

Nicolaus Copernicus 1473 - 1543

Axioms

Tycho Brahe 1546 – 1601

Greek 4

3-Util

Johannes Kepler 1571 – 1630

Galileo Galilei 1564 – 1642

Numbers

DIST12

Figure from mathigon.org

Astro1

NumLine

э

Intro

Outline

- **Axioms and Proof**

Greek 4

Distraction 12: Conditional Probability

Astronomy I

Numbers

The Number Line

= nar

Intro

Axioms

Greek 4

Astro1

(日) Numbers

Numl ine

Babylonian Numerals

7 1	₹7 11	₹{7 21	***7 31	47 41	1 7 51
17 2	477 12	477 22	*** 17 32	42 HP 42	1 17 52
₩ з	(177 13	€€777 23	***/17 33	43	1 1 1 1 1 1 1 1 1 1
9 4	14	* 10 24	**** 34	44	54
\$ 5	15	₩ ₩ 25	₩₩ 35	45	*** 55
6	16	₹ ₩ 26	₩₩ 36	46	**** 56
7	17	₩₩ 27	₩₩ 37	47	**** 57
8	18	₹₹ 28	₩₩ 38	48 48	58
# 9	∢∰ 19	∜∰ 29	₩₩ 39	♥₩ 49	** # 59
∢ 10	4 20	₩ 30	40	50	

Intro

Greek 4

DIST12

Astro1

イロト イポト イヨト イヨト

Numbers

NumLine

æ

Ancient Egyptian Numerals

1 =	1	10 -	\cap	100 =	୭	1000 =	£
2=	11	20 =	$\cap \cap$	200 =	୭୭	2000 =	££
3 =	111	30 =	000	300 =	୭୭୭	3000 =	222
4 =	1111	40 =	22	400 =	99 99	4000 =	SE XX
5 ++	Ψ.	50 =	200	500 -	999 99	5000 =	444 44

Intro

Axioms

3-Util

Greek 4

DIST12

Astro1

Numbers

イロト イポト イヨト イヨト

Ancient Hebrew and Greek Numerals

ŕì	7 11:	6 1	5	4	^د ٹ	2	×
Chet	Zayin	Vav	Hey	Dalet	Gimmel	Bet	Aleph
D	5	1	จ	3	3	2	IC
70	60	50	40	30	20	10	9
Ÿ	σ	ڈ	ב ڑ	5	⊃	•	פי
Ayin	Samekh	Nun	Mem	Lamed	Kaf	Yod	Tet
8	0	J	N	8	С	2	6

1	α	alpha	10	ι	iota	100	ρ	rho
2	β	beta	20	к	kappa	200	σ	sigma
3	γ	gamma	30	λ	lambda	300	τ	tau
4	δ	delta	40	μ	mu	400	v	upsilon
5	ε	epsilon	50	ν	nu	500	ϕ	phi
6	S	vau*	60	ξ	xi	600	x	chi
7	ζ	zeta	70	0	omicron	700	ψ	psi
8	η	eta	80	π	pi	800	ω	omega
9	θ	theta	90	9	koppa*	900	Y	sampi

*vau, koppa, and sampi are obsolete characters

Intro

3-Util

Axioms

Greek 4

DIST12

Astro1

• • • • • • •

Numbers

ヨト・モート

≣ •) ९ (NumLine

Mayan Numerals

	•	• •	• • •	••••
0	1	2	3	4
	<u> </u>	••		
5	6	7	8	9
	•	••	•••	••••
10	11	12	13	14
	-	<u>••</u>	•••	••••
15	16	17	18	19

Intro

3-Util

Axioms

Greek 4

DIST12

Astro1

Numbers

Various Numeral Systems

Wikipedia: Hindu-Arabic Numeral System

Intro

3-Util

Axioms

Greek 4

DIST12

Astro1

1

イロト イ理ト イヨト イヨト

Numbers

Roman Numerals

I	1	XXI	21	XLI	41
п	2	XXII	22	XLII	42
ш	3	XXIII	23	XLIII	43
IV	4	XXIV	24	XLIV	44
V	5	XXV	25	XLV	45
VI	6	XXVI	26	XLVI	46
VII	7	XXVII	27	XLVII	47
VIII	8	XXVIII	28	XLVIII	48
IX	9	XXIX	29	XLIX	49
Х	10	XXX	30	L	50
XI	11	XXXI	31	LI	51
XII	12	XXXII	32	LII	52
XIII	13	XXXIII	33	LIII	53
XIV	14	XXXIV	34	LIV	54
XV	15	XXXV	35	LV	55
XVI	16	XXXVI	36	LVI	56
XVII	17	XXXVII	37	LVII	57
XVIII	18	XXXVIII	38	LVIII	58
XIX	19	XXXIX	39	LIX	59
XX	20	XL	40	LX	60

In order: M D C L X V I = 1666

Intro

3-Util

Axioms

Greek 4

DIST12

Astro1

Numbers

・ロト ・ 四ト ・ ヨト

NumLine

æ

How to Multiply Roman Numbers

 Table : Multiplication Table for Roman Numbers.

	I	V	X	L	С	D	Μ
		V	X	L	С	D	Μ
V	V	XXV	L	CCL	D	MMD	\overline{V}
X	X	L	C	D	Μ	\overline{V}	\overline{X}
L	L	CCL	D	MMD	\overline{V}	XXV	Ī
С	C	D	Μ	\overline{V}	\overline{X}	T	C
D	D	MMD	\overline{V}	XXV	Ī	CCL	\overline{D}
Μ	Μ	\overline{V}	\overline{X}	T	\overline{C}	\overline{D}	\overline{M}

Intro

Axioms

Greek 4

DIST12

Astro1

1

イロト イポト イヨト イヨト

Numbers

NumLine

э.

A Roman Abacus

Replica of a Roman abacus from 1st century AD.

Abacus is a Latin word, which comes from the Greek $\alpha\beta\alpha\kappa\alpha\varsigma$ (board or table).

Intro

Axioms

3-Util

Greek 4

DIST12

Astro1

Numbers

A Chinese Abacus: Suan Pan

Intro

Axioms

3-Util

Greek 4

DIST12

Astro1

Numbers

A Japanese Abacus: Soroban

Intro

3-Util

Axioms

Greek 4

DIST12

Astro1

イロト イポト イヨト イヨト Numbers

A Different Angle on Numerals

Delightful theory. Almost certainly wrong.

Greek 4

DIST12

Astro1

Numbers

< ロ > < 同 > < 回 > < 回 >

Arguments "for"

Axioms

- 1. It is a very simple idea
- 2. It links symbols to numerical values

Arguments "against"

- 1. Number forms modified to fit model
- 2. Complete lack of historical evidence.

Greek 4

The great tragedy of science -

3-Util

the slaying of a beautiful hypothesis by an ugly fact (T H Huxley)

Astro1

Numl ine

4 1 1 4 1 4 1 4

Numbers

Outline

- **Axioms and Proof**

Greek 4

Distraction 12: Conditional Probability

Astronomy I

The Number Line

Intro

Axioms

Greek 4

Astro1

・ロト ・ 四ト ・ ヨト Numbers

Numl ine

э.

A Hierarchy of Numbers

We will introduce a hierarchy of numbers.

Each set is contained in the next one.

They are like a set of nested Russian Dolls:

Matryoshka

Intro

3-Util

Greek 4

Astro1

< □ > < □ > < □ > < □ > < □ > Numbers

Numl ine

The Natural Numbers ℕ

The *counting numbers* were the first to emerge:

1 2 3 4 5 6 7 8 ...

They are also called the Natural Numbers.

We can arange the natural numbers in a list.

This list is like a toy computer.

Intro

Greek 4

DIST12

Astro1

Numbers

NumLine

э

- A TE N - A TE N

The Natural Numbers ℕ

Axioms

3-Util

The set of natural numbers is denoted \mathbb{N} .

If *n* is a natural number, we write $n \in \mathbb{N}$.

Natural numbers can be added: $4 + 2 = 6 \in \mathbb{N}$

But not always subtracted: $4 - 6 = -2 \notin \mathbb{N}$.

Greek 4

To allow for subtraction we have to extend \mathbb{N} .

Numl ine

э

• □ ▶ • □ ▶ • □ ▶ • □ ▶ •

Numbers

Astro1

The Integers $\ensuremath{\mathbb{Z}}$

We extend the counting numbers by adding the negative whole numbers:

... -3 -2 -1 0 1 2 3 4 ...

The whole numbers are also called the Integers.

The set of integers is denoted \mathbb{Z} .

If k is an integer, we write $k \in \mathbb{Z}$.

Clearly,

Integers can be added and subtracted.

They can also multiplied:

$$6 imes 4=24\in\mathbb{Z}$$
 .

However, they cannot usually be divided:

$$\frac{6}{4} = \mathbf{1}\frac{1}{2} \notin \mathbb{Z} \,.$$

To allow for division we have to extend \mathbb{Z} .

Intro

Axioms 3-Util Greek 4

Astro1

B N A **B** N Numbers

Numl ine

The Rational Numbers Q

We extend the integers by adding fractions:

$$r = \frac{p}{q}$$
 where *p* and *q* are integers.

These rational numbers are ratios of integers.

The set of rational numbers is denoted \mathbb{Q} .

If *r* is a rational number, we write $r \in \mathbb{Q}$.

Clearly,

지 C Q (미 > (리 > (리 >) (I >) (With the Rational Numbers, we can:

Add, Subtract, Multiply and Divide

That is, for any $oldsymbol{
ho}\in\mathbb{Q}$ and $oldsymbol{q}\in\mathbb{Q}$

All of p+q p-q $p \times q$ and $p \div q$

are rational numbers.

We say that \mathbb{Q} is closed under addition, subtraction, multiplication and division.

But we are not yet finished. \mathbb{R} is yet to come.

Intro

3-Util

Greek 4

DIST12

Astro1

Numbers

イロット (語) イヨット イヨット

The Hierarchy of Numbers

Intro

Axioms

Greek 4

D

DIST12

Astro1

Numbers

NumLine

æ

The Hierarchy of Numbers

Each set is contained in the next one.

They are like a set of nested Russian Dolls:

Matryoshka

Intro

Axioms

3-Util

Greek 4

Astro1

周 ト イ ヨ ト イ ヨ ト Numbers

Numl ine

Thank you

Intro

Axioms

3-Util

Greek 4

DIST12

Astro1

o1

ヘロト 人間 とくほとくほど

Numbers

NumLine

æ