Sum-Enchanted Evenings The Fun and Joy of Mathematics LECTURE 5

Peter Lynch School of Mathematics & Statistics University College Dublin

Evening Course, UCD, Autumn 2018

Outline

Introduction

- The Pythagoreans
- Quadrivium
- Greek 3
- **Theorem of Pythagoras**

VbQ

Greek 3

Theorem

- **Lateral Thinking 2**
- The Unary System
- **Topology II**

Pythagoreans

Topology

Unary Nums

Outline

Introduction

- The Pythagoreans
- Quadrivium
- Greek 3
- **Theorem of Pythagoras**
- **Lateral Thinking 2**
- **The Unary System**
- Topology II

Intro

Theorem

L

Unary Nums

Topolo

Meaning and Content of Mathematics

The word Mathematics comes from Greek $\mu\alpha\theta\eta\mu\alpha$ (máthéma), meaning "knowledge" or "study" or "learning".

It is the study of topics such as

- Quantity (numbers)
- Structure (patterns)
- Space (geometry)
- Change (analysis).

Vb

Greek 3

Theorem

Topology

Unary Nums

Intro

Pvthagoreans

Outline

Introduction

- The Pythagoreans
- Quadrivium
- Greek 3
- **Theorem of Pythagoras**
- **Lateral Thinking 2**
- **The Unary System**
- Topology II

Intro

Theorem

L

2

Unary Nums Topology

Intro

o Pythagoreans

QdV

Greek 3

Theorem

T2

ums

The Thallasic Age

The period from 800 BC to AD 800.

$\Theta \alpha \lambda \alpha \sigma \sigma \alpha$ — the Sea.

Intro

Pythagoreans

QdV

Greek 3

Theorem

L

Unary Nums

The Thallasic Age

The period from 800 BC to AD 800.

$\Theta \alpha \lambda \alpha \sigma \sigma \alpha$ — the Sea.

- The first Olympic Games in 776 BC
- Homer and Hesiod lived around 700 BC
- Greek mathematics began to thrive

Greek 3

First two major figures: Thales and Pythagoras.

Theorem

Topology

Unary Nums

Intro

Pvthagoreans

Vb

Pythagoras was

- Born on the island of Samos (off Turkey).
- Philosopher, mystic, prophet and religious leader.

Theorem

Contemporary with Confucius and Lao-Tzu.

Topology

Unary Nums

Pythagoreans

Vb

Greek 3

Pythagoras was

- Born on the island of Samos (off Turkey).
- Philosopher, mystic, prophet and religious leader.
- Contemporary with Confucius and Lao-Tzu.

Words philosophy (love of learning) and mathematics (that which is learned) attributed to Pythagoras.

May have been first person to imagine that natural phenomena can be understood through mathematics.

Theorem

Topology

Unary Nums

Intro

Pvthagoreans

Vb

Greek 3

- No contemporary documents
- Myth, legend and tradition
- Second or third hand accounts often written centuries later
- Aristotle's biography no longer extant.

Hardly any statement about Pythagoras uncontested. Difficult to separate history from myth and legend.

Topology

Intro

Greek 3

Theorem

LT2

Unary Nums

- Travelled to Egypt, Babylon and perhaps India
- Mathematics, astronomy and religious lore
- Theorem on right-angled triangles

Greek 3

Result known to Babylonians 1000 years earlier

Theorem

No record of a proof by Pythagoras survives.

Topology

Unary Nums

Pvthagoreans

Vb

The Pythagoreans

Around 530 BC Pythagoras moved to Croton in Magna Graecia (now Southern Italy).

He established an organization or school (philosophical / religious / political).

Both men and women were members of "The Pythagoreans"

Adherents were very secretive: Bound by an oath of allegiance

Led lives of temperance; observed strict moral codes.

Intro

Greek 3

Theorem

LT

_____I

Unary Nums T

Pythagorean Women

"Women were given equal opportunity to study as Pythagoreans, and learned practical domestic skills in addition to philosophy.

"Women were held to be different from men, sometimes in positive ways.

Greek 3

"The priestess, philosopher and mathematician Themistoclea is regarded as Pythagoras' teacher; Theano, Damo and Melissa as female disciples."

From the Wikipedia article: The Pythagoreans.

Theorem

Topology

Unary Nums

Intro

Pvthagoreans

Vb

Pythagorean Quotes

- "I was Euphorbus at the siege of Troy."
- "In anger, refrain from both speech and action."
- "Educate the children and it won't be necessary to punish the men."
- "Abstain from beans!"

Topology

Greek 3

Theorem

LT.

Unary Nums

Pythagorean Quotes

- "I was Euphorbus at the siege of Troy."
- "In anger, refrain from both speech and action."
- "Educate the children and it won't be necessary to punish the men."

Greek 3

- "Abstain from beans!"
- "There is geometry in the humming of the strings, There is music in the spacing of the spheres."

Theorem

"Number rules the universe."

Vb

Topology

Unary Nums

Pvthagoreans

Harmony & Discord

By tradition, Pythagoras discovered the principles of musical harmony.

Stringed instruments produce harmonious sounds when string lengths are ratios of small numbers.

Topology

Intro

Greek 3

Theorem

Ľ

T2

Unary Nums

Harmony & Discord

By tradition, Pythagoras discovered the principles of musical harmony.

Stringed instruments produce harmonious sounds when string lengths are ratios of small numbers.

Extended this idea to the heavens: planets emit sounds according to their speed of movement

Concept of the "harmony of the spheres".

Johannes Kepler: Harmonices Mundi

Topology

Intro

Theorem

LT

Unary Nums

All is Number

The motto of the Pythagoreans: All is Number.

All natural phenomena in the universe can be expressed using whole numbers or ratios of them.

For the Pythagoreans, numbers were the essence and source of all things.

Vb

Greek 3

Theorem

Topology

Unary Nums

Intro

Pvthagoreans

All is Number

The motto of the Pythagoreans: All is Number.

All natural phenomena in the universe can be expressed using whole numbers or ratios of them.

For the Pythagoreans, numbers were the essence and source of all things.

Modern physics holds that, at its deepest level, the universe is mathematical in nature.

This view is a topic of current serious discussion (*The Mathematical Universe*, by Max Tegmark).

Intro

Greek 3

Theorem

LT2

Unary Nums

Outline

Introduction

The Pythagoreans

Quadrivium

Greek 3

Theorem of Pythagoras

Lateral Thinking 2

The Unary System

Topology II

Intro

Theorem

Ľ

Unary Nums

Intro

Pythagoreans

QdV

Greek 3

Theorem

|

LT2

Unary Nums

The Quadrivium originated with the Pythagoreans around 500 BC.

The Pythagoreans' quest was to find the eternal laws of the Universe, and they organized their studies into the scheme later known as the Quadrivium.

It comprised four disciplines:

0dV

Greek 3

Theorem

- Arithmetic
- Geometry
- Music

Pvthagoreans

Intro

Astronomy

Topology

Unary Nums

First comes Arithmetic, concerned with the infinite linear array of numbers.

Moving beyond the line to the plane and 3D space, we have Geometry.

The third discipline is Music, which is an application of the science of numbers.

Fourth comes Astronomy, the application of Geometry to the world of space.

Intro

Theorem

LT

Unary Nums

Static/Dynamic. Pure/Applied

- Arithmetic (static number)
- Music (moving number)
- Geometry (measurement of static Earth)
- Astronomy (measurement of moving Heavens)

Arithmetic represents numbers at rest, Geometry is magnitudes at rest,

Music is numbers in motion and Astronomy is geometry in motion.

The first two are **pure** in nature, while the last two are **applied**.

Intro

Greek 3

Theorem

LT2

Unary Nums

For the Greeks, Mathematics embraced all four areas.

Intro

Pythagoreans

QdV

Greek 3

Theorem

LT.

ι

Unary Nums

The Pythagoreans Pythagoras distinguished between quantity and magnitude.

Objects that can be counted yield quantities or numbers.

0dV

Greek 3

Theorem

Substances that are measured provide magnitudes.

Thus, cattle are counted whereas milk is measured.

Topology

Unarv Nums

Intro

Pythagoreans

The Pythagoreans Pythagoras distinguished between quantity and magnitude.

Objects that can be counted yield quantities or numbers.

0dV

Substances that are measured provide magnitudes.

Thus, cattle are counted whereas milk is measured.

Arithmetic studies quantities or numbers and Music involves the relationship between numbers and their evolution in time.

Theorem

Geometry deals with magnitudes, and Astronomy with their distribution in space.

Greek 3

Topology

Unarv Nums

Intro

Pvthagoreans

Archytas (428–350 BC): *APX* ↑ *TA*Σ

 $A \rho \chi \upsilon \tau \alpha \varsigma.$ Born in Tarentum, son of Hestiaeus. Mathematician and philosopher. Pythagorean, student of Philolaus. Provided a solution for the Delian problem of doubling the cube. Said to have tutored Plato in mathematics(?)

Topology

Intro

Pythagoreans

Greek 3

Theorem

LT

Unary Nums

Archytas (428–350 BC)

Archytas lived in Tarentum (now in Southern Italy).

One of the last scholars of the Pythagorean School and was a good friend of Plato.

The designation of the four disciplines of the Quadrivium was ascribed to Archytas.

His views were to dominate pedagogical thought for over two millennia.

Partly due to Archytas, mathematics has played a prominent role in education ever since.

Theorem

Greek 3

Topology

Unary Nums

Intro

Pythagoreans

0dV

Plato's Academy

Intro

Pvthagoreans

0dV

According to Plato, mathematical knowledge was essential for an understanding of the Universe. The curriculum was outlined in Plato's *Republic*.

Inscription over the entrance to Plato's Academy:

"Let None But Geometers Enter Here".

This indicated that the Quadrivium was a prerequisite for the study of philosophy in ancient Greece.

Theorem

Greek 3

Unarv Nums

Boethius (AD 480–524)

The Western Roman Empire was in many ways static for centuries.

No new mathematics between the conquest of Greece and the fall of the Roman Empire in AD 476.

Boethius, the 6th century Roman philosopher, was one of the last great scholars of antiquity.

The organization of the Quadrivium was formalized by Boethius.

It was the mainstay of the medieval monastic system of education.

Intro

QdV

Greek 3

Theorem

LT:

•

Unary Nums

Intro

ins

QdV

Greek

Theore

Г2

y Nums

Typus Arithmeticae

A woodcut from the book *Margarita Philosophica,* by Gregor Reisch, Freiburg, 1503.

The central figure is **Dame Arithmetic**, watching a competition between Boethius, using pen and Hindu-Arabic numerals, and Pythagoras, using a counting board or *tabula*.

She looks favourably toward Boethius.

Greek 3

Theorem

0dV

Topology

Unarv Nums

Intro

Pvthagoreans

Typus Arithmeticae

A woodcut from the book *Margarita Philosophica,* by Gregor Reisch, Freiburg, 1503.

The central figure is **Dame Arithmetic**, watching a competition between Boethius, using pen and Hindu-Arabic numerals, and Pythagoras, using a counting board or *tabula*.

She looks favourably toward Boethius.

Greek 3

0dV

But how did Boetius know about Hindu-Arabic numerals?

Theorem

Topology

Unarv Nums

Intro

Pvthagoreans
The Liberal Arts

The seven liberal arts comprised the Trivium and the Quadrivium.

The Trivium was centred on three arts of language:

- Grammar: proper structure of language.
- Logic: for arriving at the truth.

0dV

Rhetoric: the beautiful use of language.

Greek 3

Aim of the Trivium: Goodness, Truth and Beauty. Aristotle traced the origin of the Trivium back to Zeno.

Theorem

Topology

Unary Nums

Intro

Pvthagoreans

The Ultimate Goal

The goal of studying the Quadrivium was an insight into the nature of reality, an understanding of the Universe.

The Quadrivium offered the seeker of wisdom an understanding of the integral nature of the Universe and the role of humankind within it.

That is our aim in Sum-enchanted Evenings!

Intro

Pythagoreans

QdV

Greek 3

Theorem

|

LT2

Unary Nums Topology

Outline

Introduction

- The Pythagoreans
- Quadrivium
- Greek 3
- **Theorem of Pythagoras**

VbQ

Greek 3

Theorem

- **Lateral Thinking 2**
- **The Unary System**
- Topology II

Pythagoreans

Unary Nums

The Greek Alphabet, Part 3

O C Alpha	Beta	Y Gamma	B Delta	Epsilon	۲ _{Zeta}				
η	θ	L	x	λ	μ				
Eta V	Theta	I ota	Карра		Mu				
Nu	Xi	Omicron	Pi	Rho	Sigma				
Tau	Upsilon	Phi	Chi	Ψ_{Psi}	Omega				
Figure : 24 beautiful letters									
Pythagoreans	QdV	Greek 3	Theorem	LT2 Una	rv Nums				

Γοροίοαν

The Next Six Letters

We will consider the third group of six letters.

Theorem

Let us focus first on the small letters and come back to the big ones later.

Greek 3

Vb

Topology

Unarv Nums

Intro

Pvthagoreans

 ν ξ o π ρ σ Nu (ν) is in Planck's formula: $E = h\nu$. Then ν is the frequency of a photon of light. Xi (ξ) is the Greek X, as in $\kappa \lambda \iota \mu \alpha \xi$ or KAIMAX. Omicron: Think of Oh-Micron, small Oh (not OMG). Is there a large O, or Oh-Mega? Pi (π) is already very familiar to you all. Rho (ρ) is Greek R, used for density. Sigma (σ) is the Greek S. At the end of a word it is written s. Now we know eighteen letters. We're 75% done! Unarv Nums Topology **Pvthagoreans** VbQ Greek 3 Theorem

Intro

A Few Greek Words (for practice)

κλιμαξ δραμα νεκταρ κωλ**ο**ν κ**ο**σμ**ο**ς

Intro

Pythagoreans

QdV

Greek 3

Theorem

Ľ

2

Unary Nums To

A Few Greek Words (for practice)

κλιμαξ δραμα νεκταρ κωλ**ο**ν κ**ο**σμ**ο**ς Climax: κλιμαξDrama: δραμαNectar: νεκταρColon: κωλονCosmos: κοσμος

Intro

Pythagoreans

QdV

Greek 3

Theorem

Ľ

Unary Nums

Pythagoreans

QdV

Greek 3

Theorem

Unary Nums

End of Greek 103

Intro

Pythagor

QdV

Greek 3

Theorem

Unary Nu

Outline

Introduction

- The Pythagoreans
- Quadrivium
- Greek 3
- **Theorem of Pythagoras**

VbQ

Greek 3

Theorem

- **Lateral Thinking 2**
- **The Unary System**
- Topology II

Pythagoreans

Topology

Unary Nums

Theorem of Pythagoras

The Theorem of Pythagoras is of fundamental importance in Euclidean geometry

It encapsulates the structure of space.

In the BBC series, The Ascent of Man, Jacob Bronowski said

"The theorem of Pythagoras remains the most important single theorem in mathematics."

Intro

Theorem

Ľ

Unary Nums

Theorem of Pythagoras

YouTube video with Danny Kave

Google search for "Danny Kaye Hypotenuse"

https: //www.youtube.com/watch?v=oeRCsAGQVy8

Intro

Pvthagoreans

Vb

Greek 3

Theorem

Unarv Nums

YOU MAY BE RIGHT, PYTHAGORAS, BUT EVERYBODY'S GOING TO LAUGH IF YOU CALL IT A "HYPOTENUSE."

Topology

Intro

Pvthagoreans

VbQ

Greek 3

Theorem

Unarv Nums

Hypotenuse

The side of a right triangle opposite to the right angle.

1570s, from Late Latin hypotenusa, from Greek hypoteinousa "stretching under" (the right angle).

Fem. present participle of hypoteinein, from hypo- "under" + teinein "to stretch"

Greek 3

From Online Etymology Dictionary: http://www.etymonline.com/

Theorem

Topology

Unarv Nums

Intro

Pythagoreans

Vb

Mathigon.org

Mathigon.org video on Proofs without Formulas:

- What is the sum of the angles in a triangle?
- What is the sum of the angles in a polygon?
- What is the area of a triangle?

Vb

How does Pythagoras' Theorem work?

In the video below, these and other important concepts are explained in only two minutes using nothing but graphics.

Greek 3

https://youtu.be/IUCK8bk0xPo

Theorem

Topology

Unarv Nums

Intro

Pvthagoreans

Proof without Formulae

Intro

Pythagoreans QdV

Greek 3

Theorem

า

LT2

Nums

Proof without Formulae

Intro

Pythagoreans QdV

Greek 3

Theorem

LT2

y Nums

Proof without Formulae

 $a^{2} + b^{2} = c^{2}$

Intro

Pythagoreans

QdV

Greek 3

Theorem

LT2

Unary Nums

Why is this Important / Interesting?

Squares on the sides of triangles don't seem much.

But the theorem gives us distances.

Topology

Unarv Nums

Intro

Pvthagoreans

VbQ

Greek 3

Theorem

Why is this Important / Interesting?

Squares on the sides of triangles don't seem much.

But the theorem gives us distances.

If one point is at (0,0) and another at (x, y), the theorem gives the distance:

Greek 3

$$r^2 = x^2 + y^2$$
 or $r = \sqrt{x^2 + y^2}$

Theorem

Topology

Unarv Nums

Intro

Pythagoreans

Vb

Why is this Important / Interesting?

Squares on the sides of triangles don't seem much.

- But the theorem gives us distances.
- If one point is at (0,0) and another at (x, y), the theorem gives the distance:

$$r^2 = x^2 + y^2$$
 or $r = \sqrt{x^2 + y^2}$

Theorem

This tells us about the structure of space.

I should expand on this topic (e.g., SAR)

Greek 3

Vb

Intro

Pvthagoreans

Topology

Unarv Nums

Outline

Introduction

- The Pythagoreans
- Quadrivium
- Greek 3
- Theorem of Pythagoras
- **Lateral Thinking 2**
- **The Unary System**

Topology II

Theorem

LT2

Unary Nums

Set Theory Puzzle

In a small Canadian village, everyone speaks either English or French, or both. 80% of the people speak French 60% of the people speak English What percentage speak both English and French?

Intro

Pvthagoreans

Vb

Greek 3

Theorem

Set Theory Puzzle

In a small Canadian village, everyone speaks either English or French, or both. 80% of the people speak French 60% of the people speak English What percentage speak both English and French? Answer next week!

Intro

o Pythago

QdV

Greek 3

Theorem

LT2

ry Nums

$$(80 - x) + x + (60 - x) = 100$$

Therefore

140 - x = 100 or x = 40.

LT2

Greek 3

Intro

$$(80 - x) + x + (60 - x) = 100$$
.

Therefore

140 - x = 100 or x = 40.

Outline

Introduction

- The Pythagoreans
- Quadrivium
- Greek 3
- **Theorem of Pythagoras**
- **Lateral Thinking 2**
- The Unary System
- Topology II

Intro

Theorem

LT.

Unary Nums

The Unary System

The simplest numeral system is the unary system.

Each natural number is represented by a corresponding number of symbols.

If the symbol is " | ", the number seven would be represented by | | | | | | |.

Intro

Theorem

LT:

Unary Nums

The Unary System

The simplest numeral system is the unary system.

Each natural number is represented by a corresponding number of symbols.

If the symbol is " | ", the number seven would be represented by | | | | | | |.

Tally marks represent one such system, which is still in common use.

The unary system is only useful for small numbers.

The unary notation can be abbreviated, with new symbols for certain values.

Greek 3

Theorem

LT2

Unary Nums

Sign-Value Notation

The five-bar gate system groups 5 strokes together.

Normally, distinct symbols are used for powers of 10.

If " | " stands for one, " \land " for ten and " \uparrow " for 100, then the number 123 becomes $\uparrow \land \land$ | | |

Topology

Unary Nums

Intro

Pvthagoreans

Vb

Greek 3

Theorem

Sign-Value Notation

Pythagoreans

Intro

The five-bar gate system groups 5 strokes together.

Normally, distinct symbols are used for powers of 10.

If " | " stands for one, " \land " for ten and " \uparrow " for 100, then the number 123 becomes $\uparrow \land \land | | |$

- There is no need for a symbol for zero.
- This is called sign-value notation.

Vb

Ancient Egyptian numerals were of this type.

Greek 3

Roman numerals were a modification of this idea.

Theorem

Topology

Unary Nums

Egypyian Numerals

Value	1	10	100	1,000	10,000	100,000	1 million, or many
Hieroglyph	Ι	Ω	٩	s X	Î	or O	La La La
Description	Single stroke	Heel bone	Coil of rope	Water lily (also called Lotus)	Bent Finger	Tadpole or Frog	Man with both hands raised, perhaps Heh. ^[3]

Figure : From Wikipedia page https: //en.wikipedia.org/wiki/Egyptian_numerals

Intro

Greek 3

Theorem

_____L

_T2

Unary Nums

Egypyian Numerals

Theorem

Topology

Unary Nums

Intro

Pythagoreans

QdV

Greek 3

Egypyian Numerals

Intro

The arrangement of symbols is not important.

What number is this?

Intro

Pythagoreans

Greek 3

Theorem

L

LT2

Unary Nums

The arrangement of symbols is not important. What number is this? This pattern represents 4622.

Intro

Pythagoreans

Greek 3

Theorem

L

Unary Nums

Hebrew Numerals

Hebrew Number Values

The 22 letters of the Hebrew alphabet were used also as numerals.

Each letter corresponded to a numerical value.

Greek 3

Theorem

Unarv Nums

Greek Numerals

	Units	Tens	Hundreds ρ_{rho}	
1	O L alpha	l iota		
2	β	К	O	
	beta	kappa	sigma	
3	γ	λ	τ	
	_{gamma}	lambda	_{tau}	
4	δ delta	μ_{mu}	U upsilon	
5	E	V	ф	
	epsilon	nu	_{phi}	
6	f digamma	٤Çxi	X	
7	ζ	O	Ψ	
	zeta	omicron	_{psi}	
8	η _{eta}	$\pi_{_{\mathrm{pi}}}$	ω omega	
9	θ	9	گ	
	theta	koppa	sampi	

The 24 letters of the Greek alphabet had corresponding numerical values.

They were supplemented by three additional letters, which are now archaic.

 $\sigma\mu\gamma =?$

Intro

Pythagoreans

Greek 3

Theorem

l

LT2

Unary Nums

Greek Numerals

	Units	Tens	Hundreds	
1	O L	l	ρ	
	alpha	iota	_{rho}	
2	β	К	O	
	beta	kappa	sigma	
3	γ	λ	τ	
	_{gamma}	lambda	_{tau}	
4	δ delta	μ_{mu}	U upsilon	
5	E	V	ф	
	epsilon	nu	_{phi}	
6	f digamma	٤Çxi	X	
7	ζ	O	Ψ	
	zeta	omicron	_{psi}	
8	η _{eta}	$\pi_{_{\mathrm{pi}}}$	ω omega	
9	θ	9	م	
	theta	koppa	_{sampi}	

The 24 letters of the Greek alphabet had corresponding numerical values.

They were supplemented by three additional letters, which are now archaic.

 $\sigma\mu\gamma = ?$

 $243 = \sigma \mu \gamma$

Intro

Theorem

Unarv Nums

Greek Numerals

Arabic number	1	2	3	4	5	6	7	8	9	
Greek number	α	β	γ	δ	8	F	ζ	η	θ	
Greek name	alpha	beta	gamma	delta	epsilon	digamma	zeta	eta	theta	
Sound	a	b	g	d	short e		z	long e	th	
Arabic number	10	20	30	40	50	60	70	80	90	
Greek number	ι	ĸ	λ	μ	ν	ξ	0	π	G	
Greek name	iota	kappa	lambda	mu	nu	xi	omicron	pi	koppa	
Sound	i .	k/c	L	m	n	x	short o	p		
Arabic number	100	200	300	400	500	600	700	800	900	
Greek number	Q	σ	τ	υ	φ	χ	ψ	ω	TD)	
Greek name	rho	sigma	tau	upsilon	phi	chi	psi	omega	sampi	
Sound	r	s	t	u	f/ph	ch	ps	long o		

Intro

/thagoreans

Greek 3

Theorem

LT2

Unary Nums

Outline

Introduction

- The Pythagoreans
- Quadrivium
- Greek 3
- **Theorem of Pythagoras**
- **Lateral Thinking 2**
- **The Unary System**

Topology II

Theorem

LT.

Unary Nums Topology

Topology: a Major Branch of Mathematics

Topology is all about continuity and connectivity, but the meaning of that will appear later.

We will look at a few aspects of Topology.

- The Bridges of Königsberg
- Doughnuts and Coffee-cups
- Knots and Links
- Nodes and Edges: Graphs

Vb

The Möbius Band

Pvthagoreans

In this lecture, we study The Bridges of Königsberg.

Theorem

Greek 3

Topology

Unary Nums

Intro

One of the earliest topological puzzles was studied by the renowned Swiss mathematician Leonard Euler.

It is called 'The Seven Bridges of Königsberg'.

The goal is to find a route through that city, crossing each of seven bridges exactly once.

Greek 3

Theorem

_____Ľ

LT2

Unary Nums

Pythagoreans

QdV

Greek 3

Theorem

Unary Nums Topology

Euler reduced the problem to its essentials, removing all extraneous details.

He replaced the map above by the graph on the right.

A simple argument showed that no journey that crosses each bridge exactly once is possible.

Except at the termini of the route, each path arriving at a vertex must have a corresponding path leaving it.

Theorem

Only two vertices with an odd number of edges are possible for a solution to exist.

Greek 3

Topology

Unary Nums

Intro

Pythagoreans

Vb

Exercise: Draw the diagram with *A*, *B*, *C* and *D* arranged clockwise at the corners of a square.

Intro

Pythagoreans

QdV

Greek 3

Theorem

LT2

Unary Nums

QdV

Greek 3

Theorem

Unary Nums

Königsberg Today

Intro

Pythago

QdV

Greek 3

Theorem

LT:

Unar

The Bridges of St Petersburg

Intro

o Pythage

QdV

Greek 3

Theorem

L

Unary Nums

The Bridges of St Petersburg

Euler spend much of his life in St Petersburg. a city with many rivers, canals and bridges.

Did he think about another problem like the Königsberg Bridges problem while there?

The map of central St Petersburg has twelve bridges.

An Euler cycle is a route that crosses all bridges exactly once and returns to the starting point?

Is there an Euler cycle starting at the Hermitage (marked "H" on the map)?

Intro

Theorem

Unary Nums Topology

Cue romantic music

Intro

Pythagoreans

QdV

Greek 3

Theorem

LT2

Unary Nums

In central Paris, two small islands, Île de la Cité and Île Saint-Louis, are linked to the Left and Right Banks of the Seine and to each other.

The number of bridges for each land-mass are:

- Left Bank: 7 bridges
- Right Bank: 7 bridges
- Île de la Cité: 10 bridges
- Île Saint-Louis: 6 bridges

The total is 30. How many bridges are there?

Greek 3

Theorem

LT2

Unary Nums

Topology

**

Intro

Pvthagoreans

Vb

- 1. Starting from Saint-Michel on the Left Bank, walk continuously so as to cross each bridge once.
- 2. Start at Saint-Michel but find a closed route that ends back at the starting point.
- 3. Start at Notre-Dame Cathedral, on Île de la Cité, and cross each bridge exactly once.
- 4. Find a closed route that crosses each bridge once and arrives back at Notre-Dame.

Greek 3

Try these puzzles yourself. Use logic, not brute force!

Theorem

Topology

Unary Nums

Greek 3

Theorem

The Bridges of Amsterdam

Topology

Intro

Wikipedia Article

WIKIPEDIA The Free Encyclopedia

Seven Bridges of Königsberg

From Wikipedia, the free encyclopedia

Coordinates: @ 54*42'12"N 20*30'56"E

Main page Contents Featured content Current events Dandom article Donate to Wikipedia Wikipedia store

Interaction

Help About Wikipedia Community portal Recent changes Contact page

Tools

What links here Related changes Upload file Special pages Permanent link Page information Wikidata item Cite this page

This article is about an abstract problem. For the historical group of bridges in the city once known as Königsberg, and those of them that still exist, see § Present state of the bridges.

This article needs additional citations for verification. Please help improve this article by adding

citations to reliable sources. Unsourced material may be challenged and removed, (July 2015) (Learn how and when to remove this template message)

The Seven Bridges of Königsberg is a historically notable problem in mathematics. Its negative resolution by Leonhard Euler in 1736 laid the foundations of graph theory and prefigured the idea of topology.[1]

The city of Königsberg in Prussia (now Kaliningrad, Russia) was set on both sides of the Pregel River, and included two large islands which were connected to each other, or to the two mainland portions of the city, by seven bridges. The problem was to devise a walk through the city that would cross each of those bridges once and only once.

By way of specifying the logical task unambiguously, solutions involving either

- 1. reaching an island or mainland bank other than via one of the bridges, or
- 2. accessing any bridge without crossing to its other end

are explicitly unacceptable.

Euler proved that the problem has no solution. The difficulty he faced was the development of a suitable technique of analysis, and of subsequent tests that established this assertion with mathematical rigor.

Map of Königsberg in Euler's time showing the actual layout of the seven bridges, highlighting the river Pregel and the bridges

Unary Nums

Intro

Theorem

Thank you

Intro

o Pythago

QdV

Greek 3

Theorem

LI

LT2

is **To**