Sum-Enchanted Evenings

The Fun and Joy of Mathematics

LECTURE 2

Peter Lynch
School of Mathematics \& Statistics University College Dublin

Evening Course, UCD, Autumn 2018

Outline

Introduction

The Nippur Tablet
Distraction 2: Simpsons

Georg Cantor

Greek 1

Set Theory I

Outline

Introduction

The Nippur Tablet

Distraction 2: Simpsons

Georg Cantor

Greek 1

Set Theory I

Meaning and Content of Mathematics

The word Mathematics comes from
Greek $\mu \alpha \theta \eta \mu \alpha$ (máthéma), meaning "knowledge" or "study" or "learning".

It is the study of topics such as

- Quantity (numbers)
- Structure (patterns)
- Space (geometry)
- Change (analysis).

Outline

Introduction

The Nippur Tablet

Distraction 2: Simpsons

Georg Cantor

Greek 1

Set Theory I

The Nippur Tablet

What is the last line?

The Nippur Tablet

What is the last line?

 The last line states that$$
13 \times 13=2 \times 60+49=169
$$

The Nippur Tablet

What is the last line?
The last line states that

$$
13 \times 13=2 \times 60+49=169
$$

But it could be

$$
13 \times 13=2 \times 60^{2}+40 \times 60+9
$$

which comes to 9609. Babylonian numeration is ambiguous.

There is no zero!

The Nippur Tablet

What purpose could the Nippur Tablet have had?

What use could there be for a list of squares?

The Nippur Tablet

What purpose could the Nippur Tablet have had?
What use could there be for a list of squares?
Perhaps it was used for multiplication!
After a brief refresher on school maths, we show how this can be done.

Refresher: Some School Maths

How do we do multiplication of binomials

$$
(a+b) \times\left(c+d^{\prime}\right) ?
$$

Refresher: Some School Maths

How do we do multiplication of binomials

$$
(a+b) \times(c+d) ?
$$

First, let's take actual numbers:

$$
(3+7) \times(5+9)=10 \times 14=140
$$

Refresher: Some School Maths

How do we do multiplication of binomials

$$
(a+b) \times\left(c+d^{\prime}\right) ?
$$

First, let's take actual numbers:

$$
(3+7) \times(5+9)=10 \times 14=140
$$

This can also be done by expanding:

$$
\begin{aligned}
3 \times(5+9) & +7 \times(5+9) \\
& =(3 \times 5)+(3 \times 9)+(7 \times 5)+(7 \times 9) \\
& =15+27+35+63 \\
& =140
\end{aligned}
$$

Refresher: Some School Maths

Now let us take the algebraic form:

$$
(a+b) \times(c+d)
$$

Refresher: Some School Maths

Now let us take the algebraic form:

$$
(a+b) \times(c+d)
$$

This can also be evaluated by expanding twice:

$$
a \cdot(c+d)+b \cdot(c+d)=a \cdot c+a \cdot d+b \cdot c+b \cdot d
$$

Refresher: Some School Maths

Now let us take the algebraic form:

$$
(a+b) \times(c+d)
$$

This can also be evaluated by expanding twice:

$$
a \cdot(c+d)+b \cdot(c+d)=a \cdot c+a \cdot d+b \cdot c+b \cdot d
$$

A special case where the two factors are equal:

$$
\begin{aligned}
(a+b) \cdot(a+b) & =a \cdot a+a \cdot b+b \cdot a+b \cdot b \\
& =a^{2}+2 a b+b^{2}
\end{aligned}
$$

Multiplication by Squaring

Let a and b be any two numbers.

$$
\begin{aligned}
& (a+b)^{2}=a^{2}+2 a b+b^{2} \\
& (a-b)^{2}=a^{2}-2 a b+b^{2}
\end{aligned}
$$

Subtracting, we get

$$
(a+b)^{2}-(a-b)^{2}=4 a b
$$

Multiplication by Squaring

Let a and b be any two numbers.

$$
\begin{aligned}
& (a+b)^{2}=a^{2}+2 a b+b^{2} \\
& (a-b)^{2}=a^{2}-2 a b+b^{2}
\end{aligned}
$$

Subtracting, we get

$$
(a+b)^{2}-(a-b)^{2}=4 a b
$$

Thus, we can find the product using squares:

$$
\frac{1}{4}\left[(a+b)^{2}-(a-b)^{2}\right]=a b
$$

Multiplication by Squaring

$$
\frac{1}{4}\left[(a+b)^{2}-(a-b)^{2}\right]=a b
$$

Let us take a particular example: $37 \times 13=$?

$$
a=37 \quad b=13 \quad a+b=50 \quad a-b=24 .
$$

Multiplication by Squaring

$$
\frac{1}{4}\left[(a+b)^{2}-(a-b)^{2}\right]=a b
$$

Let us take a particular example: $37 \times 13=$?

$$
\begin{aligned}
a=37 \quad b=13 \quad a & +b=50 \quad a-b=24 . \\
\frac{1}{4}\left[50^{2}-24^{2}\right] & =\frac{1}{4}[2500-576] \\
& =\frac{1}{4}[1924] \\
& =481 \\
& =37 \times 13 .
\end{aligned}
$$

Perhaps this was the function of the Nippur tablet.

Outline

Introduction

The Nippur Tablet

Distraction 2: Simpsons

Georg Cantor

Greek 1

Set Theory I

Distraction: The Simpsons

Several writers of the Simpsons scripts have advanced mathematical training.

They "sneak" jokes into the programmes.

Books on a Shelf

Ten books are arranged on a shelf. They include an Almanac (A) and a Bible (B).
Suppose A must be to the left of B (not necssarily beside it).
How many possible arrangements are there?

Books on a Shelf

Ten books are arranged on a shelf. They include an Almanac (A) and a Bible (B).

BIG IDEA: SYMMETRY.
Every SOLUTION correponds to a NON-SOLUTION: Just switch the positions of A and B!

Books on a Shelf

Ten books are arranged on a shelf. They include an Almanac (A) and a Bible (B).

BIG IDEA: SYMMETRY.
Every SOLUTION correponds to a NON-SOLUTION: Just switch the positions of A and B!

The total number of arrangements is 10!. For half of these, A is to the left of B .

So, answer is $\frac{1}{2}(10 \times 9 \times \cdots \times 1)=\frac{1}{2} \times 10$!

Stirling's Formula

$$
n!=1 \times 2 \times 3 \times \cdots \times n
$$

An illustration of the ubiquity of π and e. Stirling's approximation for factorials is

$$
n!\approx \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}
$$

where the numbers π and e are

$$
\pi=3.14159 \ldots \quad \text { and } \quad e=2.71828 \ldots
$$

Outline

Introduction
 The Nippur Tablet
 Distraction 2: Simpsons

Georg Cantor

Greek 1

Set Theory I

\square

2

Georg Cantor

Inventor of Set Theory

Born in St. Petersburg, Russia in 1845.

Moved to Germany in 1856 at the age of 11.

His main career was at the University of Halle.

Georg Cantor (1845-1918)

- Invented Set Theory.
- One-to-one Correspondence.
- Infinite and Well-ordered Sets.
- Cardinal and Ordinal Numbers.
- Proved: $\#(\mathbb{Q})=\#(\mathbb{N})$.
- Proved: $\#(\mathbb{R})>\#(\mathbb{N})$.
- Infinite Hierarchy of Infinities.

Georg Cantor (1845-1918)

- Invented Set Theory.
- One-to-one Correspondence.
- Infinite and Well-ordered Sets.
- Cardinal and Ordinal Numbers.
- Proved: $\#(\mathbb{Q})=\#(\mathbb{N})$.
- Proved: $\#(\mathbb{R})>\#(\mathbb{N})$.
- Infinite Hierarchy of Infinities.

Outline Galileo's arguments on infinity.

Set Theory: Controversy

Cantor was strongly criticized by

- Leopold Kronecker.
- Henri Poincaré.
- Ludwig Wittgenstein.

Set Theory: Controversy

Cantor was strongly criticized by

- Leopold Kronecker.
> Henri Poincaré.
> Ludwig Wittgenstein.
Cantor is a "corrupter of youth" (LK). Set Theory is a "grave disease" (HP). Set Theory is "nonsense; laughable; wrong!" (LW).

Set Theory: Controversy

Cantor was strongly criticized by

- Leopold Kronecker.
> Henri Poincaré.
> Ludwig Wittgenstein.
Cantor is a "corrupter of youth" (LK). Set Theory is a "grave disease" (HP). Set Theory is "nonsense; laughable; wrong!" (LW).

Adverse criticism like this may well have contributed to Cantor's mental breakdown.

Set Theory: A Difficult Birth

Set Theory brought into prominence several paradoxical results.

Many mathematicians had great difficulty accepting some of the stranger results.

Some of these are still the subject of discussion and disagreement today.

Set Theory: A Difficult Birth

Set Theory brought into prominence several paradoxical results.

Many mathematicians had great difficulty accepting some of the stranger results.

Some of these are still the subject of discussion and disagreement today.

To illustrate the difficulty of accepting new ideas, let's consider the problem of a river flowing uphill.

Describe the blog post "Paddling Uphill".

Set Theory: A Difficult Birth

Cantor's Set Theory was of profound philosophical interest.

It was so innovative that many mathematicians could not appreciate its fundamental value and importance.

Set Theory: A Difficult Birth

Cantor's Set Theory was of profound philosophical interest.

It was so innovative that many mathematicians could not appreciate its fundamental value and importance.

Gösta Mittag-Leffler was reluctant to publish it in his Acta Mathematica. He said the work was "100 years ahead of its time".

David Hilbert said:
"We shall not be expelled from the paradise that Cantor has created for us."

A Passionate Mathematician

In 1874, Cantor married Vally Guttmann.
They had six children. The last one, a son named Rudolph, was born in 1886.

A Passionate Mathematician

In 1874, Cantor married Vally Guttmann.

They had six children. The last one, a son named Rudolph, was born in 1886.

According to Wikipedia:
"During his honeymoon in the Harz mountains, Cantor spent much time in mathematical discussions with Richard Dedekind."
[Cantor had met the renowned mathematician Dedekind two years earlier while he was on holiday in Switzerland.]

Outline

Introduction

The Nippur Tablet

Distraction 2: Simpsons

Georg Cantor

Greek 1

Set Theory I

The Greek Alphabet, Part 1

Е $\lambda \lambda \eta \nu \imath \kappa o ́ \alpha \lambda \varphi \alpha ́ \beta \eta \tau о$

The Greek Alphabet, Part 1

Е $\lambda \lambda \eta \nu \imath \kappa o ́ \alpha \lambda \varphi \alpha ́ \beta \eta \tau о$

Some Motivation

- Greek letters are used extensively in maths.
- Greek alphabet is the basis of the Roman one.
- Also the basis of the Cyrillic and others.

The Greek Alphabet, Part 1

E $\lambda \lambda \eta \nu \imath \kappa o ́ \alpha \lambda \varphi \alpha ́ \beta \eta \tau о$

Some Motivation

- Greek letters are used extensively in maths.
- Greek alphabet is the basis of the Roman one.
- Also the basis of the Cyrillic and others.
- A great advantage for touring in Greece.
- You already know several of the letters.
- It is simple to learn in small sections.

Ursa Major

Figure: The Great Bear: Dubhe is α-Ursae Majoris.

Letter	Name	Sound		Letter	Name	Sound	
		Ancient ${ }^{[5]}$	Modern ${ }^{[6]}$			Ancient ${ }^{[5]}$	Modern ${ }^{[6]}$
A a	alpha，à＾¢¢a	［a］［a：］	［a］	Nv	$n \mathrm{nu}$ vu	［n］	［ n$]$
$B \beta$	beta，β ¢̆́ra	［b］	［v］	三 §	xi，¢	［ks］	［ks］
「Y	gamma，yáupa	［g］，［n］${ }^{[7]}$	$\begin{gathered} {[\gamma] \sim[i]} \\ \left.[n]]^{[8]} \sim[n]\right]^{[9]} \end{gathered}$	Oo	omicron，ólıkpov	［0］	［0］
$\Delta \delta$		［d］	［8］	Пт	pi，mi	［p］	［p］
				P ρ	rho， $\mathrm{\rho} \boldsymbol{\omega}$	［ $]$	［r］
E \＆	epsilon， ÉభiAov	［e］	［e］	$\Sigma \sigma / \varsigma^{[13]}$	sigma，oiyua	［s］	［s］
Zち	zeta， ¢ֹ́Ta	$[\mathrm{zd}]^{\text {A }}$	［z］				
$\mathrm{H} \eta$		［ E ］	［i］	T T	tau，tau	［ $]$	［ $]$
$\Theta \theta$	theta，өŋ́to	$\left[^{\text {n }}\right.$ ］	［日］	Yu	upsilon，úy	［y］［y：］	［i］
－			［1］［i］${ }^{[10]}[\text {［n］}]^{[11]}$	$\Phi \varphi$	phi，$\varphi 1$	［ p^{n} ］	［f］
11	iota，ıи́та	［i］［i］	［［］．［ij）${ }^{[10]}$［ n［ $]^{[11]}$	X X	chi，XI	［ $\mathrm{k}^{\text {n }}$	$[\mathrm{x}] \sim[¢]$
K к	kappa，ка́тта	［k］	［k］$\sim[\mathrm{c}]$	$\psi \psi$	psi，$\Psi \boldsymbol{\prime}$	［ps］	［ps］
$\wedge \lambda$	lambda，λ 入́jū̄a	［1］	［1］				
$\mathrm{M} \mu$	$\mathrm{mu}, \mu \mathrm{u}$	［m］	［m］	$\Omega \omega$	omega，$\omega \mu \hat{\varepsilon} \gamma \alpha$	［ว］	［0］

Figure：The Greek Alphabet（from Wikipedia）

m

Nu

Tau

Beta

Theta

Xi

Upsilon

Gamma

L ota

Omicron

Phi

Delta

Kappa

Pi

Chi

Epsilon

Lambda

Rho

Psi

Mu

Sigma

Omega

Figure: 24 beautiful letters

The First Six Letters

We will take the alphabet in groups of six letters.

$$
\begin{array}{cccccc}
\alpha & \beta & \gamma & \delta & \epsilon & \zeta \\
A & B & \Gamma & \Delta & E & Z
\end{array}
$$

Let us focus first on the small letters and come back to the big ones later.

You know α and β from the word Alphabet: $\alpha \beta$ You have heard of gamma-rays, or γ-rays

You know α and β from the word Alphabet: $\alpha \beta$ You have heard of gamma-rays, or γ-rays

Both δ and ϵ are widely used in maths. For example, the definition of continuity of function $f(x)$ at $x=a$ is

$$
\forall \epsilon>0 \exists \delta>0:|x-a|<\delta \Rightarrow|f(x)-f(a)|<\epsilon
$$

You know α and β from the word Alphabet: $\alpha \beta$ You have heard of gamma-rays, or γ-rays

Both δ and ϵ are widely used in maths. For example, the definition of continuity of function $f(x)$ at $x=a$ is

$$
\forall \epsilon>0 \exists \delta>0:|x-a|<\delta \Rightarrow|f(x)-f(a)|<\epsilon
$$

A famous unsolved maths problem, Riemann's Hypothesis, is concerned with zeros of the Riemann zeta-function:

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}
$$

You know α and β from the word Alphabet: $\alpha \beta$ You have heard of gamma-rays, or γ-rays

Both δ and ϵ are widely used in maths. For example, the definition of continuity of function $f(x)$ at $x=a$ is

$$
\forall \epsilon>0 \exists \delta>0:|x-a|<\delta \Rightarrow|f(x)-f(a)|<\epsilon
$$

A famous unsolved maths problem, Riemann's
Hypothesis, is concerned with zeros of the
Riemann zeta-function:

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}
$$

Now we already know the first six letters!

End of Greek 101

Outline

Introduction

The Nippur Tablet

Distraction 2：Simpsons

Georg Cantor

Greek 1

Set Theory I

Gantor

4 回
 \square

Set Theory I

The concept of set is very general.
Sets are the basic building-blocks of mathematics.

Set Theory I

The concept of set is very general.
Sets are the basic building-blocks of mathematics.
Definition: A set is a collection of objects.
The objects in a set are called the elements.

Set Theory I

The concept of set is very general.
Sets are the basic building-blocks of mathematics.
Definition: A set is a collection of objects.
The objects in a set are called the elements.
Examples:

- All the prime numbers, \mathbb{P}
- All even numbers: $\mathbb{E}=\{2,4,6,8 \ldots\}$
> All the people in Ireland: See Census returns.
> The colours of the rainbow: \{Red, ..., Violet\}.
- Light waves with wavelength $\lambda \in[390-700 \mathrm{~nm}]$

Do You Remember Venn?

John Venn was a logician and philosopher, born in Hull, Yorkshire in 1834.

He studied at Cambridge University, graduating in 1857 as sixth Wrangler.

Venn introduced his diagrams in Symbolic Logic, a book published in 1881.

Venn Diagrams

Venn diagrams are very valuable for showing elementary properties of sets.

They comprise a number of overlapping circles.
The interior of a circle represents a collection of numbers or objects or perhaps a more abstract set.

The Universe of Discourse

We often draw a rectangle to represent the universe, the set of all objects under current consideration.

For example, suppose we consider all species of animals as the universe.

A rectangle represents this universe.
Two circles indicate subsets of animals of two different types.

The Birds and the Bees

Two-legged Animals
Flying Animals

回 > 占

The Birds and the Bees

Two-legged Animals
Flying Animals
Where do we fit in this diagram?

The Union of Two Sets

The aggregate of two sets is called their union.
Let one set contain all two-legged animals and the other contain all flying animals.

The Union of Two Sets

The aggregate of two sets is called their union.
Let one set contain all two-legged animals and the other contain all flying animals.

Bears, birds and bees (and we) are in the union.

The Intersection of Two Sets

The elements in both sets make up the intersection.
Let one set contain all two-legged animals and the other contain all flying animals.

Birds are in the intersection. Bears and bees are not.

The Notation for Union and Intersection

Let A and B be two sets
The union of the sets is

$$
A \cup B
$$

The intersection is

$$
A \cap B
$$

UUCD

The Technical (Logical) Definitions

Let A and B be two sets.
The union of the sets $A \cup B$ is defined by

$$
[x \in A \cup B] \Longleftrightarrow[(x \in A) \vee(x \in B)]
$$

The intersection of the sets $A \cap B$ is defined by

$$
[x \in A \cap B] \Longleftrightarrow[(x \in A) \wedge(x \in B)]
$$

The Technical (Logical) Definitions

Let A and B be two sets.
The union of the sets $A \cup B$ is defined by

$$
[x \in A \cup B] \Longleftrightarrow[(x \in A) \vee(x \in B)]
$$

The intersection of the sets $A \cap B$ is defined by

$$
[x \in A \cap B] \Longleftrightarrow[(x \in A) \wedge(x \in B)]
$$

There is an intimate connection between Set Theory and Symbolic Logic.

Subset of a Set

For two sets A and B we write

$$
B \subset A \quad \text { or } \quad B \subseteq A
$$

to denote that B is a subset of A.

Subset of a Set

For two sets A and B we write

$$
B \subset A \quad \text { or } \quad B \subseteq A
$$

to denote that B is a subset of A.
For more on set theory, see website of Claire Wladis http://www.cwladis.com/math100/Lecture4Sets.htm

Intersections between 3 Sets

Example: Intersection of 3 Sets

In the diagram the elements of the universe are all the people from Connacht.

Three subsets are shown:
> Red-heads
> Singers

- Left-handers.

All are from Connacht.

These sets overlap and, indeed, there are some copper-topped, crooning cithogues in Connacht.

Three and Four Sets

8 Domains

14 Domains

How Many Possibilities?

With just one set A, there are 2 possibilities:

$$
x \in A \quad \text { or } \quad x \notin A
$$

How Many Possibilities?

With just one set A, there are 2 possibilities:

$$
x \in A \quad \text { or } \quad x \notin A
$$

With two sets, A and B, there are 4 possibilities:

$$
\begin{array}{lll}
(x \in A) \wedge(x \in B) & \text { or } & (x \in A) \wedge(x \notin B) \\
(x \notin A) \wedge(x \in B) & \text { or } & (x \notin A) \wedge(x \notin B)
\end{array}
$$

How Many Possibilities?

With just one set A, there are 2 possibilities:

$$
x \in A \quad \text { or } \quad x \notin A
$$

With two sets, A and B, there are 4 possibilities:

$$
\begin{array}{lll}
(x \in A) \wedge(x \in B) & \text { or } & (x \in A) \wedge(x \notin B) \\
(x \notin A) \wedge(x \in B) & \text { or } & (x \notin A) \wedge(x \notin B)
\end{array}
$$

With three sets there are 8 possible conditions.

How Many Possibilities?

With just one set A, there are 2 possibilities:

$$
x \in A \quad \text { or } \quad x \notin A
$$

With two sets, A and B, there are 4 possibilities:

$$
\begin{array}{lll}
(x \in A) \wedge(x \in B) & \text { or } & (x \in A) \wedge(x \notin B) \\
(x \notin A) \wedge(x \in B) & \text { or } & (x \notin A) \wedge(x \notin B)
\end{array}
$$

With three sets there are 8 possible conditions.
With four sets there are 16 possible conditions.

Three and Four Sets

8 Domains

14 Domains

Three and Four Sets

8 Domains

14 Domains

With three sets there are 8 possible conditions. With four sets there are 16 possible conditions.

The Intersection of 3 Sets

The three overlapping circles have attained an iconic status, seen in a huge range of contexts.

It is possible to devise Venn diagrams with four sets, but the simplicity of the diagram is lost.

Exercise: Four Set Venn Diagram

Can you modify the 4 -set diagram to cover all cases. (You will not be able to do it with circles only)

Hint: Venn Diagrams for 5 and 7 Sets

Image from Wolfram MathWorld: Venn Diagram

Solution: Next Week (if you are lucky)

We will find a surprising connection with a Cube

Thank you

