Sum-Enchanted Evenings The Fun and Joy of Mathematics TASTER LECTURE

#### Peter Lynch School of Mathematics & Statistics University College Dublin

#### Evening Course, UCD, Autumn 2018



### Outline

Introduction **Beautiful Spirals** The Golden Ratio Symmetry **Beautiful Symmetry** The Utility of Mathematics **Euler's Gem** Shackleton's Rescue Voyage **Recreational Mathematics** 



Intro

Phi

Beauty

Useful

TomCrean

### Outline

#### Introduction

- **Beautiful Spirals**
- The Golden Ratio
- Symmetry
- **Beautiful Symmetry**
- The Utility of Mathematics
- **Euler's Gem**
- Shackleton's Rescue Voyage
- **Recreational Mathematics**



Intro

Spirals

Phi Symmetry

Beauty

Useful

lı.

TomCrean

### WELCOME TO Sum-Enchanted Evenings The Fun and Joy of Mathematics





Intro

Symmetry

Beauty

y l

Useful

EG

TomCrean

The course Sum-enchanted Evenings will run over ten (10) lectures from 24 September to 3 December.

The aim of the course is to show you

- The tremendous beauty of mathematics;
- Its great utility in our daily lives;

Symmetry

The fun we can have studying maths.



**RecMath** 

Spirals

Beauty

Useful

TomCrean

#### **Taster Lecture**

Two years ago, I taught a course with the title AweSums: The Majesty of Maths

It was well received, but the pace was too fast for some of the participants.

Last year, I modified the content and renamed it

Sum-enchanted Evenings.

That worked well, so this year the course will be similar, but with much new material.

# In this Taster Lecture I will give a sample of some of the topics covered in the course.



Intro

Phi

Beauty

у

Useful

E

TomCrean

### Meaning and Content of Mathematics

The word Mathematics comes from Greek  $\mu\alpha\theta\eta\mu\alpha$  (máthéma), meaning "knowledge" or "study" or "learning".

It is the study of topics such as

- Quantity (numbers)
- Structure (patterns)
- Space (geometry)
- Change (analysis).



Intro

Spirals

Phi Symmetry

Beauty

Useful

TomCrean

## Outline

#### Introduction

#### **Beautiful Spirals**

- The Golden Ratio
- Symmetry
- **Beautiful Symmetry**
- The Utility of Mathematics
- **Euler's Gem**
- Shackleton's Rescue Voyage
- **Recreational Mathematics**



Intro

Spirals

Phi

Symmetry

Beauty

Useful

I

TomCrean

# A Splendid Spiral in Booterstown



This sandbank, a beautiful spiral form, has slowly built up on the beach near Booterstown Station.

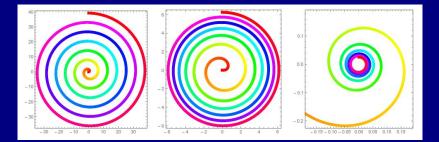
Spirals are found throughout the natural world.



Intro

Phi Symmetry

Beauty


uty

Useful

EG

TomCrean

## **Some Mathematical Spirals**



#### Archimedes Spiral. Fermat Spiral. Hyperbolic Spiral.



Intro

Spirals

Phi Symmetry

Beauty

uty

Useful

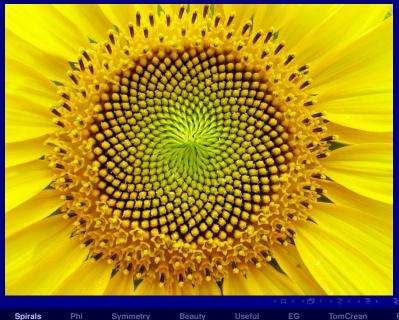
I

TomCrean

# The Nautilus Shell: a logarithmic Spiral.






Spirals

Beauty

Useful

TomCrean

### The Sunflower: Groups of Spirals





# **Spirals in the Physical World**



\* \* \*



Intro

Spirals Phi

Beauty

ıty

Useful

\_\_\_\_

TomCrean

### **Spirals in the Physical World**



\* \* \*

#### https://thatsmaths.com/



Intro

Spirals Phi

Syı

Be

Beauty

Useful

E

TomCrean

- Count the petals on a flower.
- Count leaves on a stem or bumps on an asparagus.
- Look at patterns on pineapples/pine-cones.
- Study the geometry of seeds on sunflowers.

Beauty

Useful



**RecMath** 

TomCrean

Intro

Spirals

Phi

Symmetry

- Count the petals on a flower.
- Count leaves on a stem or bumps on an asparagus.
- Look at patterns on pineapples/pine-cones.
- Study the geometry of seeds on sunflowers.

In all cases, we find numbers in the sequence:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

Beauty

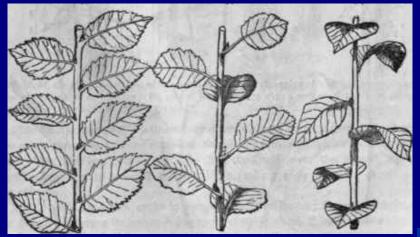
Useful

This is the famous Fibonacci sequence.

Symmetry



**BecMath** 


TomCrean

Intro

Spirals

Phi

# **Fibonacci and Phyllotaxis**





Intro

Spirals Phi

etry

Beauty

Useful

G

TomCrean

#### Vi Hart's Videos

There are several mathematical videos on YouTube presented by Vi Hart.

Some of the ones on Fibonacci Numbers are at:

https://www.youtube.com/
watch?v=ahXIMUkSXX0

It is *much easier* to go to Youtube and search for "Vi Hart Fibonacci"



Intro

Spirals

Phi Symmetry

Beauty

uty

Useful

EG

TomCrean

#### Vi Hart's Videos

There are several mathematical videos on YouTube presented by Vi Hart.

Some of the ones on Fibonacci Numbers are at:

https://www.youtube.com/
watch?v=ahXIMUkSXX0

It is much easier to go to Youtube and search for

"Vi Hart Fibonacci"

Let's take a peek!

Intro

Phi

Spirals

Symmetry

Beauty

Useful

μl

TomCrean

## Outline

#### Introduction

- **Beautiful Spirals**
- The Golden Ratio
- Symmetry
- **Beautiful Symmetry**
- The Utility of Mathematics
- **Euler's Gem**
- Shackleton's Rescue Voyage
- **Recreational Mathematics**



Intro

Beauty

Useful

ıl 👘

TomCrean

#### **Golden Ratio and Fibonacci Numbers**

#### The Golden Ratio is a number defined as

$$\phi = \frac{1 + \sqrt{5}}{2} \approx 1.618$$

It is intimately connected with the Fibonacci Numbers.

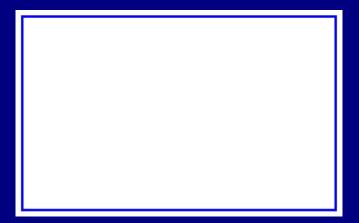


Intro

Spirals

Phi

Beauty


Symmetry

y

Useful

TomCrean

#### **Golden Rectangle**



### Ratio of breath to height is $\phi = \frac{1+\sqrt{5}}{2} \approx 1.6$ .



Intro

Syn

Beauty

Useful

TomCrean

### **Golden Rectangle in Your Pocket**



#### Aspect ratio is about $\phi = \frac{1+\sqrt{5}}{2} \approx 1.618$ .



Intro

Phi Symmetry

В

Beauty

Useful

E

ì

TomCrean

#### The Fibonacci sequence is the sequence

 $\{0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, \dots\}$ 

where each number is the sum of the previous two.



Intro

Symmetry

Beauty

Useful

G

TomCrean

Intro

Spirals

Phi

The Fibonacci sequence is the sequence  $\{0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, \dots\}$  where each number is the sum of the previous two. The Fibonacci numbers obey a recurrence relation

$$F_{n+1}=F_n+F_{n-1}$$

Beauty

Useful

with the starting values  $F_0 = 0$  and  $F_1 = 1$ .

Symmetry



**BecMath** 

TomCrean

Intro

The Fibonacci sequence is the sequence  $\{0,1,1,2,3,5,8,13,21,34,55,89,144,\dots\}$  where each number is the sum of the previous two. The Fibonacci numbers obey a recurrence relation

$$F_{n+1}=F_n+F_{n-1}$$

with the starting values  $F_0 = 0$  and  $F_1 = 1$ .

The explicit expression for the Fibonacci numbers is

$$F_{n} = \frac{1}{\sqrt{5}} \left[ \frac{1+\sqrt{5}}{2} \right]^{n} - \frac{1}{\sqrt{5}} \left[ \frac{1-\sqrt{5}}{2} \right]^{n}$$
Spirals
Phi Symmetry Beauty Useful EG TomCrean RecMath

# Let's consider the sequence of ratios of terms $\frac{1}{1}, \frac{2}{1}, \frac{3}{2}, \frac{5}{3}, \frac{8}{5}, \frac{13}{8}, \frac{21}{13}, \frac{34}{21}, \dots$



Intro

Spirals Phi

Symmetry

Beauty

Useful

E

TomCrean

#### Let's consider the sequence of ratios of terms

$$\frac{1}{1}, \ \frac{2}{1}, \ \frac{3}{2}, \ \frac{5}{3}, \ \frac{8}{5}, \ \frac{13}{8}, \ \frac{21}{13}, \ \frac{34}{21}, \ \dots$$

The ratios get closer and closer to the golden number:

$$rac{F_{n+1}}{F_n} o \phi$$
 as  $n o \infty$ 

Beauty

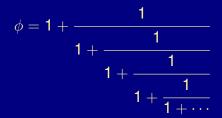
Useful



**RecMath** 

TomCrean

Intro


Spirals

Phi

Symmetry

# **Exotic Expressions for** $\phi$

We can write  $\phi$  as a continued fraction



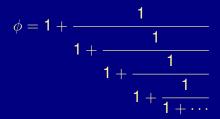


Intro

Phi

Spirals

Symmetry


Beauty

Useful

TomCrean

#### **Exotic Expressions for** $\phi$

We can write  $\phi$  as a continued fraction



#### We can also write it as a continued root

$$\phi = \sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + \cdots}}}}$$



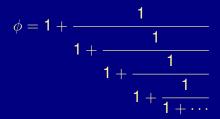
Intro

Spirals

Phi

Symmetry Beauty

ty 👘


Useful

G

TomCrean

### **Exotic Expressions for** $\phi$

We can write  $\phi$  as a continued fraction



We can also write it as a continued root

$$\phi = \sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + \cdots}}}}$$

These extraordinary expressions are actually quite easy to demonstrate!



Intro

Spirals Phi

Sym

Beauty

/

Useful

TomCrean

### Fibonacci Numbers in Nature

Look at post Sunflowers and Fibonacci: Models of Efficiency on the *ThatsMaths* blog:

thatsmaths.com



Intro

Spirals Phi

Symmetry

Beauty

Useful

I

G

TomCrean I

## Outline

Introduction

- **Beautiful Spirals**
- The Golden Ratio

Symmetry

**Beautiful Symmetry** 

The Utility of Mathematics

**Euler's Gem** 

Shackleton's Rescue Voyage

**Recreational Mathematics** 



Intro

Beauty

Useful

ll 🛛

G

TomCrean

# Ubiquity and Beauty of Symmetry

Symmetry is all around us.

Intro

Spirals

Phi

- Many buildings are symmetric.
- Our bodies have bilateral symmetry.
- Crystals have great symmetry.
- Viruses can display stunning symmetries.
- At the sub-atomic scale, symmetry reigns.

Beauty

Useful

Galaxies have many symmetries.

Symmetry



**RecMath** 

TomCrean

# The Taj Mahal





Intro

als F

Symmetry

Be

1

iul

E

TomCre

# A Face with Symmetry: Halle Berry





Spirals Phi Symmetry

Beauty

Useful

TomCrean

# An Asymmetric Face: You know Who!





Intro

Spirals Phi

Symmetry

Beauty

Useful

11

E(

TomCrean

# Symmetry and Group Theory

Symmetry is an essentially geometric concept.

The mathematical theory of symmetry is algebraic.

The key concept is that of a group.



Intro

Beauty

Useful

E

TomCrean

# Symmetry and Group Theory

Symmetry is an essentially geometric concept.

- The mathematical theory of symmetry is algebraic.
- The key concept is that of a group.

Symmetry

Intro

Spirals

Phi

A group is a set of elements such that any two elements can be combined to produce another.

Instead of giving the mathematical definition, I will give an example to make things clear.

Beauty

Useful



**RecMath** 

TomCrean

# The *Dihedral Group* D<sub>1</sub>

The group of symmetries of the human face and of all biological forms with bilateral symmetry. We could call  $D_1$  the *Janus Group*.

- I: The Identity transformation
- **R**: Reflection about central line

Symmetry

Intro

Spirals

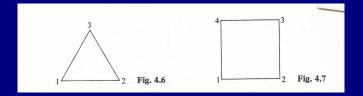
Phi

Table: First Dihedral Group D<sub>1</sub>.



#### This is how we combine, or multiply transformations.

Beauty


Useful



**BecMath** 

TomCrean

# From 2 to 3 Dimensional Symmetry



| Tetrahedron | Cube        | Octahedron  | Dodecahedron | Icosahedron  |                  |
|-------------|-------------|-------------|--------------|--------------|------------------|
| Four faces  | Six faces   | Eight faces | Twelve faces | Twenty faces |                  |
|             |             |             |              |              | 8<br>9<br>8<br>9 |
| (Animation) | (Animation) | (Animation) | (Animation)  | (Animation)  | £                |
|             |             |             |              |              |                  |



Spirals Phi Symmetry

Beauty

Useful

TomCrean

# Outline

Introduction

- **Beautiful Spirals**
- The Golden Ratio
- Symmetry
- **Beautiful Symmetry**
- The Utility of Mathematics
- **Euler's Gem**
- Shackleton's Rescue Voyage
- **Recreational Mathematics**



Intro

Symmetry

Beauty

Useful

ul

EG

TomCrean

# **Mathematics and Art**

The link between maths and art goes back thousands of years.

- Greek Architecture
- Renaissance Painting
- Gothic Cathedrals
- Oriental Carpets
- Islamic Mosaics



Intro

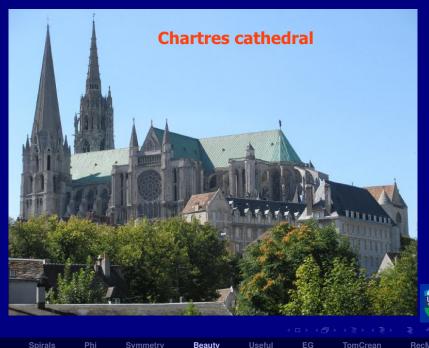
Spirals

Phi Symmetry

/ E

Beauty

Useful


EG

TomCrean



Phi

Beauty



RecMath

Beauty

### **Rose window, Chartres**





Intro

Spirals

Phi Sv

Be

Beauty

Useful

Ton

### **Raphael's School of Athens**





Intro

Sym

Beauty

ity

Useful

TomCrean

### **Mosaics in the Alhambra**



Intro

birals

Sv

Phi

Beauty

у

Useful

EG

TomCrean

# **Persian Carpet**



Phi

Beauty

Useful



### **Alloy Wheels**



Intro

# Outline

- Introduction
- **Beautiful Spirals**
- The Golden Ratio
- Symmetry
- **Beautiful Symmetry**
- The Utility of Mathematics
- **Euler's Gem**
- Shackleton's Rescue Voyage
- **Recreational Mathematics**



Intro

Spirals

Phi Symmetry

Beauty

Useful

ul 🛛

TomCrean

# I hope you agree that maths is Beautiful

# But is it any use?



Intro

Spirals

Phi Symmetry

Beauty

'

Useful

TomCrean

### Useful: Maths is crucial for technology







Intro

Svi

Phi

Beauty

ıty

Useful

TomCrean

### Useful

#### Maths is used in many aspects of our lives.

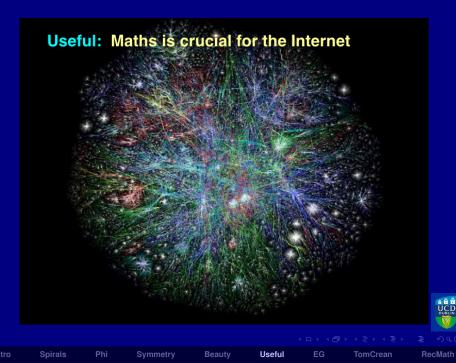
Searching for information: Google matrix [algebra]. Facebook & Twitter: Network analysis. Graph Theory. Download music or photos: Data compression [MP3,JPEG]. Commerce and Finance: Coding and Cryptography. Biology and medicine. CAT Scans. Epidemiology. Etc. etc. etc.

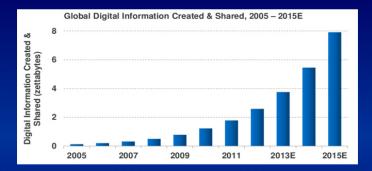
Beautv

Useful

Symmetry




**RecMath** 


TomCrean

Intro

Spirals

Phi





#### Digital Information is growing exponentially: > 3 Zbytes shared in 2013.

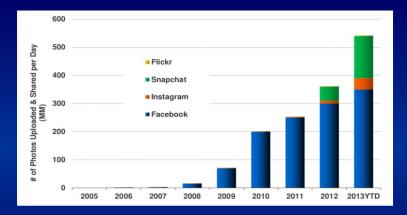
1 Zettabyte is 10<sup>21</sup> = 1,000,000,000,000,000,000 bytes



Intro

Spirals

Phi Symmetry


Beauty

V

Useful

E

TomCrean



#### 500 million photos uploaded EVERY DAY. That's half a billion !!!



Intro

Spirals

Phi Svm

Beauty

ty

Useful

E

TomCrean

#### Useful: Maths is crucial for Security



€€€





# Outline

- Introduction
- **Beautiful Spirals**
- The Golden Ratio
- Symmetry
- **Beautiful Symmetry**
- The Utility of Mathematics

### Euler's Gem

Shackleton's Rescue Voyage

**Recreational Mathematics** 



Intro

Spirals

Phi Symmetry

Beauty

Useful

FG

TomCrean

### Euler's polyhedron formula.

Carving up the globe.



Intro

Spirals

Phi Syn

Beauty

у

Useful

EG

TomCrean

#### **Regular Polygons**





Intro

Spirals Phi

Symn

Beauty

uty

Useful

EG

omCrean

### The Platonic Solids (polyhedra)

| Tetrahedron<br>(four faces) | Cube or<br>hexahedron<br>(six faces) | Octahedron<br>(eight faces) | Dodecahedron<br>(twelve faces) | lcosahedron<br>(twenty faces) |
|-----------------------------|--------------------------------------|-----------------------------|--------------------------------|-------------------------------|
|                             |                                      |                             |                                |                               |

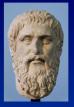
These five regular polyhedra were discovered in ancient Greece, perhaps by Pythagoras.

Plato used them as models of the universe.

They are analysed in Book XIII of Euclid's Elements.



Intro


Beauty

y

Useful

EG

TomCrean



#### There are only five Platonic solids.

But Archimedes found, using different types of polygons, that he could construct 13 new solids.



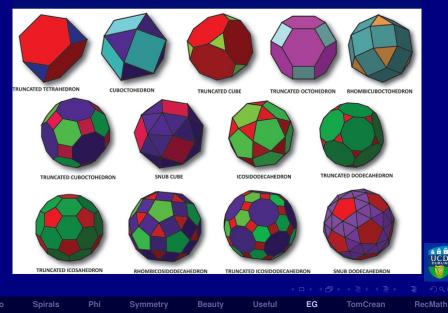


Intro

Spirals

Phi Symmetry

Beauty


uty

Useful

EG

TomCrean

#### The Thirteen Archimedean Solids



#### **Euler's Polyhedron Formula**

The great Swiss mathematician, Leonard Euler, noticed that, for all (convex) polyhedra,

V - E + F = 2

where

V = Number of vertices
 E = Number of edges
 F = Number of faces

Mnemonic: Very Easy Formula





Intro

Spirals

Phi Symmetry

B


Beauty

Useful

EG

TomCrean

#### For example, a Cube



Number of vertices: V = 8 Number of edges: E = 12 Number of faces: F = 6

(V - E + F) = (8 - 12 + 6) = 2

Mnemonic: Very Easy Formula

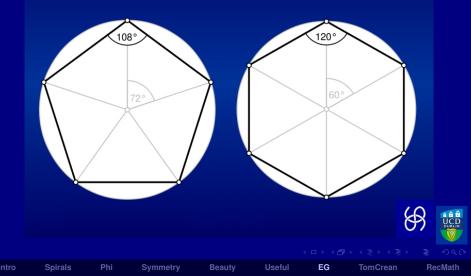


Intro

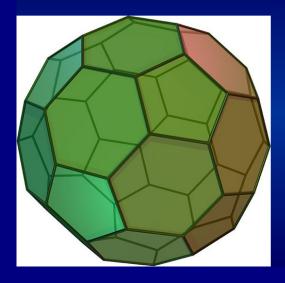
Spirals Pl

Phi S

Be


Beauty

Useful


EG

TomCrean

# **Pentagons and Hexagons**



# **The Truncated Icosahedron**



An Archimedean solid with pentagonal and hexagonal faces.



Intro

Spirals

Sv

Phi

Beauty

Useful

EG

TomCrean

# **The Truncated Icosahedron**



### Whare have you seen this before?



Intro

Spirals

Phi Symmetry

Beauty

ty

Useful

EG

TomCrean

# **The Truncated Icosahedron**





# The "Buckyball", introduced at the 1970 World Cup Finals in Mexico.

#### It has 32 panels: 20 hexagons and 12 pentagons.



Intro

Spirals Phi

i Svm

Beauty

ity

Useful

EG

TomCrean

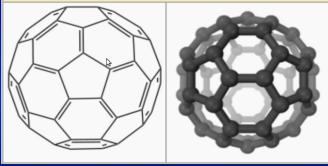


R

Intro

Spirals Phi

Syn


Beauty

Useful

EG

TomCrean

### Buckminsterfullerene



#### Buckminsterfullerene is a molecule with formula C<sub>60</sub>

#### It was first synthesized in 1985.

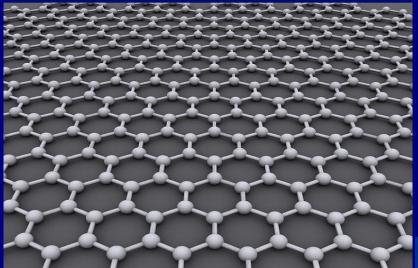


Intro

Spirals

Phi Syn

Beauty


uty

Useful

EG

TomCrean

#### Graphene A hexagonal pattern of carbon one atom thick





Intro

s Phi

Sym

Beauty

/

Useful

EG

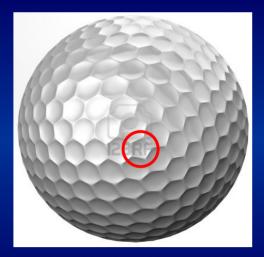
TomCrean





Intro

als Ph


etry

Beauty

Useful

EG

omCrean





Intro

rals P

Symme

Beau

1

eful

EG

nCrean

#### Euler's Polyhedron Formula

## $\mathbf{V} - \mathbf{E} + \mathbf{F} = \mathbf{2}$

still holds.



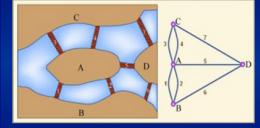


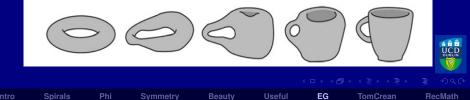
Intro

Spirals

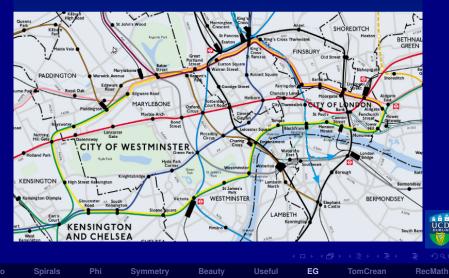
Phi S

Be


Beauty


Useful

EG


TomCrean

## Topology is often called Rubber Sheet Geometry





#### Topology and the London Underground Topographical Map



#### **Topology** and the London Underground **Topological Map**



Intro

Symmetry

Beauty

**RecMath** 

UCD

# Outline

- Introduction
- **Beautiful Spirals**
- The Golden Ratio
- Symmetry
- **Beautiful Symmetry**
- The Utility of Mathematics
- **Euler's Gem**
- Shackleton's Rescue Voyage

#### **Recreational Mathematics**



Intro

Spirals

Phi Symmetry

Beauty

Useful

TomCrean

## Who is this?





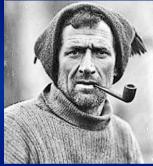
Intro

Spirals

Phi S

Bea

U


ful

TomCrean

## Who is this?



## Who is this?



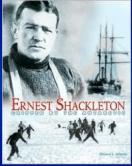


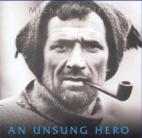
Intro

Spirals

Phi S

Be


eauty


Iseful

TomCrean

### Ernest Shackleton Tom Crean

Beauty



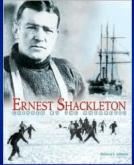


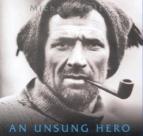
the remarkable story of TOM CREAN ANTARCTIC EXPLORER

Useful



RecMath


TomCrean


Intro

Spirals

Phi

### Ernest Shackleton Tom Crean





the remarkable story of TOM CREAN ANTARCTIC EXPLORER

#### Two great Antarctic explorers, both born in Ireland



Intro

Spirals

Phi S

Beauty

uty

Useful

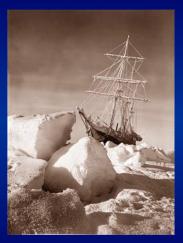
E

TomCrean














## Endurance is Icebound







Intro

Spirals

Phi

Beauty

ity

Useful

1

TomCrean











# Six men sailed 800 miles across the Southern Ocean to South Georgia.



Intro

Spirals Phi

Svn

Beauty

ty

Useful

EG

TomCrean

# Six men sailed 800 miles across the Southern Ocean to South Georgia.

## How did they find their way?



Intro

Spirals Phi

Symmetry\_\_\_\_

Beauty

Useful

TomCrean

# Six men sailed 800 miles across the Southern Ocean to South Georgia.

## How did they find their way?

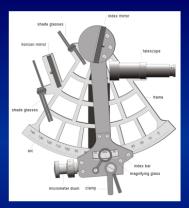
# **MATHEMATICS !!!**



Intro

Spirals

Phi Symmetry


Beauty

uty

Useful

|

TomCrean

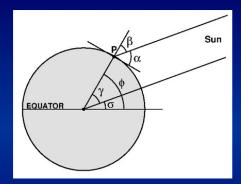


## A sextant, used to determine latitude.



Intro

Spirals


Phi Sv

Beauty

Useful

EG

TomCrean



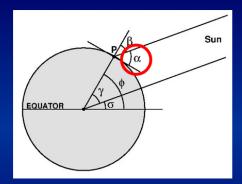
## Angles used to calculate the latitude.



Intro

Spirals

Phi Sy


Beauty

ity

Useful

E

TomCrean



## Angles used to calculate the latitude.



Intro

Spirals

Phi Syn

Beauty

ity

Useful

E

TomCrean



The boat journey to South Georgia was a spectacular feat of navigation.

It resulted in the saving of 28 lives.

This was possible thanks to elementary geometry.



Intro

Spirals

Phi Symmetry

Beauty

у

Useful

EG

TomCrean

The boat journey to South Georgia was a spectacular feat of navigation.

It resulted in the saving of 28 lives.

This was possible thanks to elementary geometry.

That's Maths!



Intro

Spirals

Phi Symmetry

Beauty

Useful

TomCrean

# Outline

- Introduction
- **Beautiful Spirals**
- The Golden Ratio
- Symmetry
- **Beautiful Symmetry**
- The Utility of Mathematics
- **Euler's Gem**
- Shackleton's Rescue Voyage

#### **Recreational Mathematics**

Phi



Beauty

/

Useful

TomCrean

## **Recreational Mathematics**

Recreational mathematics puts the focus on insight, imagination and beauty.

Recreational Maths includes the study of

- The culture of mathematics,
- Its relevance to art, music and literature,
- Its role in technology,
- Mathematical games and puzzles,

Symmetry

The lives of the great mathematicians.

Beauty

Useful



**RecMath** 

TomCrean

Intro

Spirals

Phi

# Many Resources Available

Great variety of books on popular mathematics.

Wealth of literature suitable for a general audience

Magazines available free online.

One of the best is the e-zine Plus:

Symmetry

https://plus.maths.org/.

Beauty

Useful

All past content is available and is a valuable resource for school students and teachers.



**RecMath** 

TomCrean

Intro

Spirals

Phi

# **Content of an Earlier Course**

| Lecture | Content                                          |
|---------|--------------------------------------------------|
| 1       | Outline of Course. Emergence of Numbers.         |
| 2       | Georg Cantor. Set Theory.                        |
| 3       | Pythagoras. Irrational Numbers.                  |
| 4       | Hilbert. Gauss. The Real Number Line             |
| 5       | Powers. Logarithms. Prime Numbers.               |
| 6       | Functions. Archimedes. Natural Logs.             |
| 7       | Exponential Growth. Euler. Sequences & Series.   |
| 8       | Trigonometry. Taylor Series.                     |
| 9       | Basel Problem. Complex Numbers. Euler's Formula. |
| 10      | Prime Number Theorem. Riemann Hypothesis.        |

#### This year's course will be different. If you want to know how, come along!



Intro

Spirals Phi

Svn

Beauty

uty

Useful

EG

TomCrean

#### Thank you



Intro

s Phi

y I

uty

eful

G

ın R