Sum-Enchanted Evenings

The Fun and Joy of Mathematics
LECTURE 8

Peter Lynch
School of Mathematics \& Statistics University College Dublin

Evening Course, UCD, Autumn 2017

Outline

Introduction
Euler's Gem
History of Astronomy I
Distraction 8: Sum by Inspection
The Real Number Line
Symmetries of Triangle and Square

Outline

Introduction

Euler's Gem

History of Astronomy I

Distraction 8: Sum by Inspection

The Real Number Line

Symmetries of Triangle and Square

Meaning and Content of Mathematics

The word Mathematics comes from
Greek $\mu \alpha \theta \eta \mu \alpha$ (máthéma), meaning "knowledge" or "study" or "learning".

It is the study of topics such as

- Quantity (numbers)
- Structure (patterns)
- Space (geometry)
- Change (analysis).

Outline

Introduction

Euler's Gem

History of Astronomy I

Distraction 8: Sum by Inspection

The Real Number Line

Symmetries of Triangle and Square

Euler's polyhedron formula.

Carving up the globe.

Regular Polygons

The Platonic Solids (polyhedra)

Tetrahedron (four faces)	Cube or hexahedron (six faces)	Octahedron (eight faces)	Dodecahedron (twelve faces)	Icosahedron (twenty faces)

These five regular polyhedra were discovered in ancient Greece, perhaps by Pythagoras.

Plato used them as models of the universe.
They are analysed in Book XIII of Euclid's Elements.

There are only five Platonic solids.

But Archimedes found, using different types of polygons, that he could construct 13 new solids.

The Thirteen Archimedean Solids

Euler's Polyhedron Formula

The great Swiss mathematician, Leonard Euler, noticed that, for all (convex) polyhedra,

$$
V-E+F=2
$$

where

- $\mathrm{V}=$ Number of vertices
- E = Number of edges
- $F=$ Number of faces

Mnemonic: Very Easy Formula

For example, a Cube

Number of vertices: $V=8$ Number of edges: $E=12$ Number of faces: F=6

$$
(V-E+F)=(8-12+6)=2
$$

Mnemonic: Very Easy Formula

Pentagons and Hexagons

The Truncated Icosahedron

EG

The Truncated Icosahedron

Whare have you seen this before?

The Truncated Icosahedron

The "Buckyball", introduced at the 1970 World Cup Finals in Mexico.

It has $\mathbf{3 2}$ panels: $\mathbf{2 0}$ hexagons and $\mathbf{1 2}$ pentagons.

Buckminsterfullerene

Buckminsterfullerene is a molecule with formula C_{60}
It was first synthesized in 1985.

Graphene

A hexagonal pattern of carbon one atom thick

－ث ث

UCD
Dublin
yy

UCD
Dublin
yy

Euler's Polyhedron Formula

$\mathbf{V}-\mathrm{E}+\mathrm{F}=\mathbf{2}$
still holds.

Topology is often called Rubber Sheet Geometry

Topology and the London Underground Topographical Map

Topology and the London Underground Topological Map

Outline

Introduction

Euler's Gem

History of Astronomy I

Distraction 8: Sum by Inspection

The Real Number Line

Symmetries of Triangle and Square

The Ancient Greeks

Mathematics and Astronomy are intimately linked.
Two of the strands of the Quadrivium were Geometry (static) and Cosmology (dynamic space).

Greek astronomers like Claudius Ptolemy (c.90-168AD) believed that the Earth is at the centre of the universe.

The Sun and planets move around the Earth in orbits that are of the most perfect of all shapes, circles.

Aristarchus of Samos (c.310-230 BC)

Aristarchus of Samos ('A $\rho \iota \sigma \tau \alpha \rho \chi 0 \varsigma$), astronomer and mathematician, presented the first model that placed the Sun at the center of the universe, with the Earth revolving around it.

The original writing of Aristarchus is lost, but Archimedes wrote in his Sand Reckoner:
"His hypotheses are that the fixed stars and the Sun remain unmoved, that the Earth revolves about the Sun on the circumference of a circle, the Sun lying in the middle of the orbit, ..."

Eratosthenes (c.276-194 BC)

Eratosthenes (c.276-194 BC)

Hipparchus (c.190-120 BC)

Hipparchus of Nicaea ('/ $\pi \pi \alpha \rho \chi 0 \varsigma$) was a Greek astronomer, geographer, and mathematician.

Regarded as the greatest astronomer of antiquity.
Often considered to be the founder of trigonometry.
He is famous for his discovery of the precession of the equinoxes, compilation of the first comprehensive star catalog of the western world, and invention of the astrolabe and (perhaps) the armillary sphere.

Claudius Ptolemy (c.AD 100-170)

Claudius Ptolemy was a Greco-Roman astronomer, mathematician, geographer and astrologer.

He lived in the city of Alexandria in the Roman province of Egypt and held Roman citizenship. Ptolemy wrote several scientific treatises:

- An astronomical treatise (the Almagest) originally called Mathematical Treatise (Mathematike Syntaxis).
- A book on geography.
- An astrological treatise.

Ptolemy's Almagest is the only surviving comprehensive ancient treatise on astronomy.

Ptolemy's Model

Ptolemy's model was geocentric and was universally accepted until the appearance of simpler heliocentric models during the scientific revolution.

Epicycles Rule

According to Norwood Russell Hanson (science historian):

There is no bilaterally symmetrical, nor eccentrically periodic curve used in any branch of astrophysics or observational astronomy which could not be smoothly plotted as the resultant motion of a point turning within a constellation of epicycles, finite in number, revolving around a fixed deferent.
"The Mathematical Power of Epicyclical Astronomy", 1960
Any path - periodic or not, closed or open - can be represented by an infinite number of epicycles.

Ptolemaic Epicycles

Conic Sections

Circles are special cases of curves called conic sections.

They are formed by a plane cutting a cone at various angles.

Conics were studied by Apollonius of Perga (late 3rd - early 2nd centuries BC).
https://en.wikipedia.org/wiki/Conic_section

The Scientific Revolution

TRAILER

Next week，we will look at developments in the sixteenth and seventeenth centuries．

Figure from mathigon．org

Outline

Introduction

Euler's Gem

History of Astronomy I
Distraction 8: Sum by Inspection

The Real Number Line

Symmetries of Triangle and Square

Distraction 8: Sum by Inspection

Can you guess the sum of this series:

$$
\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{4}\right)^{2}+\left(\frac{1}{8}\right)^{2}+\left(\frac{1}{16}\right)^{2}+\cdots
$$

Distraction 8: Sum by Inspection

We will find the shaded area without calculation

Proof by Inspection

Look at the figure in two different ways
At each scale, we have three squares the same size, and we keep one of them (black) and omit the others.

So, the area of the shaded squares is $\frac{1}{3}$.

Proof by Inspection

Look at the figure in two different ways
At each scale, we have three squares the same size, and we keep one of them (black) and omit the others.

So, the area of the shaded squares is $\frac{1}{3}$.
However, it is also given by the series

$$
\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{4}\right)^{2}+\left(\frac{1}{8}\right)^{2}+\left(\frac{1}{16}\right)^{2}+\cdots
$$

Therefore we can sum the series:

$$
\frac{1}{4}+\frac{1}{16}+\frac{1}{64}+\frac{1}{256}+\cdots=\frac{1}{3}
$$

Outline

Introduction

Euler's Gem

History of Astronomy I

Distraction 8: Sum by Inspection

The Real Number Line

Symmetries of Triangle and Square

The Real Numbers

The Real Numbers

We need to be able to assign a number to a line of any length.

The Pythagoreans found that no number known to them gave the diagonal of a unit square.

It is as if there are gaps in the number system.

The Real Numbers

We need to be able to assign a number to a line of any length.

The Pythagoreans found that no number known to them gave the diagonal of a unit square.

It is as if there are gaps in the number system.
We look at the rational numbers and show how to complete them: how to fill in the gaps.

The set \mathbb{N} is infinite, but each element is isolated.

The set \mathbb{N} is infinite, but each element is isolated.

The set \mathbb{Q} is infinite and also dense: between any two rationals there is another rational.

The set \mathbb{N} is infinite, but each element is isolated.

The set \mathbb{Q} is infinite and also dense: between any two rationals there is another rational.

PROOF: Let $r_{1}=p_{1} / q_{1}$ and $r_{2}=p_{2} / q_{2}$ be rationals.

$$
\bar{r}=\frac{1}{2}\left(r_{1}+r_{2}\right)=\frac{1}{2}\left(\frac{p_{1}}{q_{1}}+\frac{p_{2}}{q_{2}}\right)=\frac{p_{1} q_{2}+q_{1} p_{2}}{2 q_{1} q_{2}}
$$

is another rational between them: $r_{1}<\bar{r}<r_{2}$.

The set \mathbb{N} is infinite, but each element is isolated.

The set \mathbb{Q} is infinite and also dense: between any two rationals there is another rational.

PROOF: Let $r_{1}=p_{1} / q_{1}$ and $r_{2}=p_{2} / q_{2}$ be rationals.

$$
\bar{r}=\frac{1}{2}\left(r_{1}+r_{2}\right)=\frac{1}{2}\left(\frac{p_{1}}{q_{1}}+\frac{p_{2}}{q_{2}}\right)=\frac{p_{1} q_{2}+q_{1} p_{2}}{2 q_{1} q_{2}}
$$

is another rational between them: $r_{1}<\bar{r}<r_{2}$.

Although \mathbb{Q} is dense, there are gaps. The line of rationals is discontinuous.

We complete it-filling in the gaps-by defining the limit of any sequence of rationals as a real number.

Although \mathbb{Q} is dense, there are gaps. The line of rationals is discontinuous.

We complete it-filling in the gaps-by defining the limit of any sequence of rationals as a real number.

WARNING:
We are glossing over a number of fundamental ideas of mathematical analysis:

- What is an infinite sequence?
- What is the limit of a sequence?

We will return later to these ideas.

To give a particular example, we know that

$$
\sqrt{2}=1.41421356 \ldots
$$

To give a particular example, we know that

$$
\sqrt{2}=1.41421356 \ldots
$$

We construct a sequence of rational numbers

$$
\{1,1.4,1.41,1.414,1.4142,1.41421,1.414213, \ldots\}
$$

To give a particular example, we know that

$$
\sqrt{2}=1.41421356 \ldots
$$

We construct a sequence of rational numbers

$$
\{1,1.4,1.41,1.414,1.4142,1.41421,1.414213, \ldots\}
$$

In terms of fractions, this is the sequence

$$
\left\{1, \frac{14}{10}, \frac{141}{100}, \frac{1414}{1000}, \frac{14142}{10000}, \frac{141421}{100000}, \frac{1414213}{1000000}, \ldots\right\}
$$

To give a particular example, we know that

$$
\sqrt{2}=1.41421356 \ldots
$$

We construct a sequence of rational numbers

$$
\{1,1.4,1.41,1.414,1.4142,1.41421,1.414213, \ldots\}
$$

In terms of fractions, this is the sequence

$$
\left\{1, \frac{14}{10}, \frac{141}{100}, \frac{1414}{1000}, \frac{14142}{10000}, \frac{141421}{100000}, \frac{1414213}{1000000}, \ldots\right\}
$$

These rational numbers get closer and closer to $\sqrt{2}$.

To give a particular example, we know that

$$
\sqrt{2}=1.41421356 \ldots
$$

We construct a sequence of rational numbers

$$
\{1,1.4,1.41,1.414,1.4142,1.41421,1.414213, \ldots\}
$$

In terms of fractions, this is the sequence

$$
\left\{1, \frac{14}{10}, \frac{141}{100}, \frac{1414}{1000}, \frac{14142}{10000}, \frac{141421}{100000}, \frac{1414213}{1000000}, \ldots\right\}
$$

These rational numbers get closer and closer to $\sqrt{2}$.
EXERCISE:
Construct a sequence in \mathbb{Q} that tends to π.

The Real Number Line

The set of Real Numbers, \mathbb{R}, contains all the rational numbers in \mathbb{Q} and also all the limits of sequences of rationals [technically, all 'Cauchy sequences'].

The Real Number Line

The set of Real Numbers, \mathbb{R}, contains all the rational numbers in \mathbb{Q} and also all the limits of sequences of rationals [technically, all 'Cauchy sequences'].

We may assume that

- Every point on the number line corresponds to a real number.
- Every real number corresponds to a point on the number line.

The Real Number Line

The set of Real Numbers, \mathbb{R}, contains all the rational numbers in \mathbb{Q} and also all the limits of sequences of rationals [technically, all 'Cauchy sequences'].

We may assume that

- Every point on the number line corresponds to a real number.
- Every real number corresponds to a point on the number line.

PHYSICS: There are unknown aspects
of the microscopic structure of spacetime!
These go beyond our 'Universe of Discourse'.

Now we have the chain of sets:

$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$

Now we have the chain of sets:

$$
\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}
$$

The irrational numbers fall into two categories:

- Algebraic numbers like $\sqrt{2}$.
- Transcendental numbers like π.

We denote the algebraic numbers by \mathbb{A}.

Now we have the chain of sets:

$$
\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}
$$

The irrational numbers fall into two categories:

- Algebraic numbers like $\sqrt{2}$.
- Transcendental numbers like π.

We denote the algebraic numbers by \mathbb{A}. Now we have the chain of sets:

$$
\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{A} \subset \mathbb{R}
$$

Now we have the chain of sets:

$$
\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}
$$

The irrational numbers fall into two categories:

- Algebraic numbers like $\sqrt{2}$.
- Transcendental numbers like π.

We denote the algebraic numbers by \mathbb{A}.
Now we have the chain of sets:

$$
\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{A} \subset \mathbb{R}
$$

We will soon talk about prime numbers \mathbb{P}.
They are subset of the natural numbers, so

$$
\mathbb{P} \subset \mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{A} \subset \mathbb{R}
$$

Outline

Introduction

Euler's Gem

History of Astronomy I

Distraction 8: Sum by Inspection

The Real Number Line

Symmetries of Triangle and Square

Symmetries of the Triangle and Square: The Dihedral Groups D_{3} and D_{4}

Let's look at symmetries of the triangle and square.

They correspond to the dihedral groups D_{3} and D_{4}.
a

UCD
d

UCEIN

OPERATION	RESULT
1. NO CHANGE:	
2. SWITCH A AND C:	
3. REPLACE A BY B, B BY C, C BY A:	
4. SWITCH C AND B:	
5. REPLACE A BY C, B BY A, C BY B:	
6. SWITCH A AND B:	

e
OPERATION 1

OPERATION 6

Symbols for Transformations of Triangle

Fig. 4.7

$$
\begin{array}{ll}
\rho_{0}=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right), & \mu_{1}=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right), \\
\rho_{1}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right), & \mu_{2}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right), \\
\rho_{2}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right), & \mu_{3}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right) .
\end{array}
$$

The Third Dihedral Group D_{3}

	ρ_{0}	ρ_{1}	ρ_{2}	μ_{1}	μ_{2}	μ_{3}
ρ_{0}	ρ_{0}	ρ_{1}	ρ_{2}	μ_{1}	μ_{2}	μ_{3}
ρ_{1}	ρ_{1}	ρ_{2}	ρ_{0}	μ_{2}	μ_{3}	μ_{1}
ρ_{2}	ρ_{2}	ρ_{0}	ρ_{1}	μ_{3}	μ_{1}	μ_{2}
μ_{1}	μ_{1}	μ_{3}	μ_{2}	ρ_{0}	ρ_{2}	ρ_{1}
μ_{2}	μ_{2}	μ_{1}	μ_{3}	ρ_{1}	ρ_{0}	ρ_{2}
μ_{3}	μ_{3}	μ_{2}	μ_{1}	ρ_{2}	ρ_{1}	ρ_{0}

Fig. 4.5

Subgroup Z_{3} of Third Dihedral Group D_{3}

	ρ_{0}	ρ_{1}	ρ_{2}
ρ_{0}	ρ_{0}	ρ_{1}	ρ_{2}
ρ_{1}	ρ_{1}	ρ_{2}	ρ_{0}
ρ_{2}	ρ_{2}	ρ_{0}	ρ_{1}

Fig. 4.5

The Third Dihedral Group D_{3}

	ρ_{0}	ρ_{1}	ρ_{2}	μ_{1}	μ_{2}	μ_{3}
ρ_{0}	ρ_{0}	ρ_{1}	ρ_{2}	μ_{1}	μ_{2}	μ_{3}
ρ_{1}	ρ_{1}	ρ_{2}	ρ_{0}	μ_{2}	μ_{3}	μ_{1}
ρ_{2}	ρ_{2}	ρ_{0}	ρ_{1}	μ_{3}	μ_{1}	μ_{2}
μ_{1}	μ_{1}	μ_{3}	μ_{2}	ρ_{0}	ρ_{2}	ρ_{1}
μ_{2}	μ_{2}	μ_{1}	μ_{3}	ρ_{1}	ρ_{0}	ρ_{2}
μ_{3}	μ_{3}	μ_{2}	μ_{1}	ρ_{2}	ρ_{1}	ρ_{0}

Fig. 4.5

Subgroup Z_{2} of Third Dihedral Group D_{3}

	ρ_{0}
ρ_{0}	ρ_{0}

μ_{1}
μ_{1}

Fig. 4.5

Symbols for Transformations of Square

Fig. 4.7

$$
\begin{array}{ll}
\rho_{0}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4
\end{array}\right), & \mu_{1}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3
\end{array}\right), \\
\rho_{1}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 1
\end{array}\right), & \mu_{2}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 3 & 2 & 1
\end{array}\right), \\
\rho_{2}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 4 & 1 & 2
\end{array}\right), & \delta_{1}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 2 & 1 & 4
\end{array}\right), \\
\rho_{3}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 1 & 2 & 3
\end{array}\right), & \delta_{2}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 4 & 3 & 2
\end{array}\right) .
\end{array}
$$

The Fourth Dihedral Group D_{4}

	ρ_{0}	ρ_{1}	ρ_{2}	ρ_{3}	μ_{1}	μ_{2}	δ_{1}	δ_{2}
ρ_{0}	ρ_{0}	ρ_{1}	ρ_{2}	ρ_{3}	μ_{1}	μ_{2}	δ_{1}	δ_{2}
ρ_{1}	ρ_{1}	ρ_{2}	ρ_{3}	ρ_{0}	δ_{2}	δ_{1}	μ_{1}	μ_{2}
ρ_{2}	ρ_{2}	ρ_{3}	ρ_{0}	ρ_{1}	μ_{2}	μ_{1}	δ_{2}	$\frac{\delta_{1}}{}$$\rho_{3}$ ρ_{3}
ρ_{3}	ρ_{0}	ρ_{1}	ρ_{2}	δ_{1}	δ_{2}	μ_{2}	μ_{1}	
μ_{2}	μ_{1}	δ_{1}	μ_{2}	δ_{2}	ρ_{0}	ρ_{2}	ρ_{1}	ρ_{3}
δ_{1}	δ_{2}	μ_{1}	δ_{1}	ρ_{2}	ρ_{0}	ρ_{3}	ρ_{1}	
δ_{2}	μ_{2}	δ_{2}	μ_{1}	μ_{3}	ρ_{1}	ρ_{0}	ρ_{2}	

Fig. 4.8

Thank you

