Sum-Enchanted Evenings The Fun and Joy of Mathematics LECTURE 8

Peter Lynch School of Mathematics & Statistics University College Dublin

Evening Course, UCD, Autumn 2017

Outline

Introduction

Euler's Gem

History of Astronomy I

Distraction 8: Sum by Inspection

The Real Number Line

Symmetries of Triangle and Square

Intro

Astro1

DIST08

NumberLine

Outline

Introduction

- **Euler's Gem**
- History of Astronomy I
- **Distraction 8: Sum by Inspection**
- **The Real Number Line**
- Symmetries of Triangle and Square

Intro

Astro1

DIST08

Nur

NumberLine

Meaning and Content of Mathematics

The word Mathematics comes from Greek $\mu\alpha\theta\eta\mu\alpha$ (máthéma), meaning "knowledge" or "study" or "learning".

It is the study of topics such as

- Quantity (numbers)
- Structure (patterns)
- Space (geometry)
- Change (analysis).

SvmmTriSau

T08

NumberLine

Outline

Euler's Gem

FG

DIST08

NumberLine

Euler's polyhedron formula.

Carving up the globe.

NumberLine

Intro

EG

Astro1

Regular Polygons

Intro

DIS

Numberl

е

The Platonic Solids (polyhedra)

Tetrahedron (four faces)	Cube or hexahedron (six faces)	Octahedron (eight faces)	Dodecahedron (twelve faces)	lcosahedron (twenty faces)

These five regular polyhedra were discovered in ancient Greece, perhaps by Pythagoras.

Plato used them as models of the universe.

They are analysed in Book XIII of Euclid's Elements.

DIST08

NumberLine

There are only five Platonic solids.

But Archimedes found, using different types of polygons, that he could construct 13 new solids.

Intro

EG

Astro1

DIST08

NumberLine

SymmTriSc

The Thirteen Archimedean Solids

Euler's Polyhedron Formula

The great Swiss mathematician, Leonard Euler, noticed that, for all (convex) polyhedra,

V - E + F = 2

where

FG

V = Number of vertices
E = Number of edges
F = Number of faces

Mnemonic: Very Easy Formula

Astro1

Numberl ine

Intro

For example, a Cube

EG

Astro1

Number of vertices: V = 8 Number of edges: E = 12 Number of faces: F = 6

(V - E + F) = (8 - 12 + 6) = 2

Mnemonic: Very Easy Formula

NumberLine

SymmTriSqu

Intro

Pentagons and Hexagons

The Truncated Icosahedron

An Archimedean solid with pentagonal and hexagonal faces.

Intro

EG

Astro1

DIST08

NumberLine

The Truncated Icosahedron

DIST08

Astro1

Whare have you seen this before?

NumberLine

SymmTriSqu

Intro

FG

The Truncated Icosahedron

The "Buckyball", introduced at the 1970 World Cup Finals in Mexico.

It has 32 panels: 20 hexagons and 12 pentagons.

Astro1

NumberLine

EG

Astro1

DI

NumberLin

Buckminsterfullerene

Buckminsterfullerene is a molecule with formula C₆₀

It was first synthesized in 1985.

Intro

Astro1

DIST08

NumberLine

Graphene A hexagonal pattern of carbon one atom thick

Intro

EG

DIST08

NumberLin

Intro

Astro

DIST08

NumberLi

SymmTr

Intro

EG

Ast

DIST08

NumberL

Symm

Euler's Polyhedron Formula

$\mathbf{V} - \mathbf{E} + \mathbf{F} = \mathbf{2}$

still holds.

Intro

EG

Astro1

DIST0

NumberL

Topology is often called Rubber Sheet Geometry

Intro

EG

Astro1

DIST08

NumberLine

Topology and the London Underground Topographical Map

ntro

FG

Astro1

DIST08

NumberLine

Topology and the London Underground Topological Map

Intro

Astro1

FG

DIST08

NumberLine

Outline

History of Astronomy I

Astro1

DIST08

NumberLine

The Ancient Greeks

Mathematics and Astronomy are intimately linked.

Two of the strands of the Quadrivium were Geometry (static) and Cosmology (dynamic space).

Greek astronomers like Claudius Ptolemy (c.90–168AD) believed that the Earth is at the centre of the universe.

The Sun and planets move around the Earth in orbits that are of the most perfect of all shapes, circles.

DIST08

NumberLine

Aristarchus of Samos (c.310–230 BC)

Aristarchus of Samos (' $A\rho\iota\sigma\tau\alpha\rho\chi o\varsigma$), astronomer and mathematician, presented the first model that placed the Sun at the center of the universe, with the Earth revolving around it.

The original writing of Aristarchus is lost, but Archimedes wrote in his Sand Reckoner:

"His hypotheses are that the fixed stars and the Sun remain unmoved, that the Earth revolves about the Sun on the circumference of a circle, the Sun lying in the middle of the orbit, ... "

Intro

DIST08

NumberLine

Eratosthenes (c.276–194 BC)

Eratosthenes (c.276–194 BC)

Hipparchus (c.190–120 BC)

Hipparchus of Nicaea (' $l\pi\pi\alpha\rho\chi o_{S}$) was a Greek astronomer, geographer, and mathematician.

Regarded as the greatest astronomer of antiquity.

Often considered to be the founder of trigonometry.

He is famous for his discovery of the precession of the equinoxes, compilation of the first comprehensive star catalog of the western world, and invention of the astrolabe and (perhaps) the armillary sphere.

DIST0

NumberLine

Claudius Ptolemy (c.AD 100–170)

Claudius Ptolemy was a Greco-Roman astronomer, mathematician, geographer and astrologer.

He lived in the city of Alexandria in the Roman province of Egypt and held Roman citizenship. Ptolemy wrote several scientific treatises:

- An astronomical treatise (the Almagest) originally called Mathematical Treatise (Mathematike Syntaxis).
- A book on geography.
- An astrological treatise.

Ptolemy's Almagest is the only surviving comprehensive ancient treatise on astronomy.

Intro

DIST08

NumberLine

Ptolemy's Model Ptolemy's model was geocentric and was universally accepted until the appearance of simpler heliocentric models during the scientific revolution.

Intro

Epicycles Rule

According to Norwood Russell Hanson (science historian):

There is no bilaterally symmetrical, nor eccentrically periodic curve used in any branch of astrophysics or observational astronomy which could not be smoothly plotted as the resultant motion of a point turning within a constellation of epicycles, finite in number, revolving around a fixed deferent.

"The Mathematical Power of Epicyclical Astronomy", 1960

Any path — periodic or not, closed or open — can be represented by an infinite number of epicycles.

Intro

DIST08

NumberLine

Ptolemaic Epicycles

Conic Sections

Circles are special cases of curves called conic sections.

They are formed by a plane cutting a cone at various angles.

Conics were studied by Apollonius of Perga (late 3rd – early 2nd centuries BC).

https://en.wikipedia.org/wiki/Conic_section

Intro

Astro1

DIST

NumberLine

The Scientific Revolution

Next week, we will look at developments in the sixteenth and seventeenth centuries.

Nicolaus Copernicus 1473 – 1543

Tycho Brahe 1546 – 1601

Johannes Kepler 1571 – 1630

Galileo Galilei 1564 – 1642

Outline

Distraction 8: Sum by Inspection

Astro1

DIST08

NumberLine

Distraction 8: Sum by Inspection

Can you guess the sum of this series:

$$\left(\frac{1}{2}\right)^2 + \left(\frac{1}{4}\right)^2 + \left(\frac{1}{8}\right)^2 + \left(\frac{1}{16}\right)^2 + \cdots$$

Astro1

DIST08

NumberLine

Distraction 8: Sum by Inspection

We will find the shaded area without calculation

Intro

DIST08

NumberLine

Proof by Inspection

Look at the figure in two different ways

At each scale, we have three squares the same size, and we keep one of them (black) and omit the others.

So, the area of the shaded squares is $\frac{1}{2}$.

DIST08

NumberLine

SvmmTriSau

Proof by Inspection

Look at the figure in two different ways

At each scale, we have three squares the same size, and we keep one of them (black) and omit the others.

So, the area of the shaded squares is $\frac{1}{3}$.

However, it is also given by the series

$$\left(\frac{1}{2}\right)^2 + \left(\frac{1}{4}\right)^2 + \left(\frac{1}{8}\right)^2 + \left(\frac{1}{16}\right)^2 + \cdots$$

Therefore we can sum the series:

$$\frac{1}{4} + \frac{1}{16} + \frac{1}{64} + \frac{1}{256} + \dots = \frac{1}{3}$$

DIST08

NumberLine

Outline

The Real Number Line

SymmTriSqu

Astro1

DIST08

NumberLine

The Real Numbers

Astro1

NumberLine

The Real Numbers

We need to be able to assign a number to a line of any length.

The Pythagoreans found that no number known to them gave the diagonal of a unit square.

It is as if there are gaps in the number system.

Intro

Astro1

DISTO

NumberLine

The Real Numbers

We need to be able to assign a number to a line of any length.

The Pythagoreans found that no number known to them gave the diagonal of a unit square.

It is as if there are gaps in the number system.

We look at the rational numbers and show how to complete them: how to fill in the gaps.

Intro

Astro1

DIST08

NumberLine

NumberLine

The set \mathbb{Q} is infinite and also dense: between any two rationals there is another rational.

Intro

DIS

NumberLine

The set \mathbb{Q} is infinite and also dense: between any two rationals there is another rational.

PROOF: Let $r_1 = p_1/q_1$ and $r_2 = p_2/q_2$ be rationals.

$$\bar{r} = \frac{1}{2}(r_1 + r_2) = \frac{1}{2}\left(\frac{p_1}{q_1} + \frac{p_2}{q_2}\right) = \frac{p_1q_2 + q_1p_2}{2q_1q_2}$$

is another rational between them: $r_1 < \overline{r} < r_2$.

Astro1

SvmmTriSau

Numberl ine

Intro

The set \mathbb{Q} is infinite and also dense: between any two rationals there is another rational.

PROOF: Let $r_1 = p_1/q_1$ and $r_2 = p_2/q_2$ be rationals.

$$\bar{r} = \frac{1}{2}(r_1 + r_2) = \frac{1}{2}\left(\frac{p_1}{q_1} + \frac{p_2}{q_2}\right) = \frac{p_1q_2 + q_1p_2}{2q_1q_2}$$

is another rational between them: $r_1 < \overline{r} < r_2$.

Although \mathbb{Q} is dense, there are gaps. The line of rationals is discontinuous.

We complete it—filling in the gaps—by defining the limit of any sequence of rationals as a real number.

Intro

Astro1

DIST08

NumberLine

line

Although \mathbb{Q} is dense, there are gaps. The line of rationals is discontinuous.

We complete it—filling in the gaps—by defining the limit of any sequence of rationals as a real number.

WARNING: We are glossing over a number of fundamental ideas of mathematical analysis:

- What is an infinite sequence?
- What is the limit of a sequence?

We will return later to these ideas.

DISTOR

NumberLine

 $\sqrt{2} = 1.41421356...$

Astro1

NumberLine

 $\sqrt{2} = 1.41421356\dots$

We construct a sequence of rational numbers

 $\{1, 1.4, 1.41, 1.414, 1.4142, 1.41421, 1.414213, \dots\}$

Intro

DIST08

NumberLine

 $\sqrt{2} = 1.41421356\dots$

We construct a sequence of rational numbers

 $\{1, 1.4, 1.41, 1.414, 1.4142, 1.41421, 1.414213, \dots\}$

In terms of fractions, this is the sequence

 $\left\{1, \frac{14}{10}, \frac{141}{100}, \frac{1414}{1000}, \frac{14142}{10000}, \frac{141421}{100000}, \frac{1414213}{1000000}, \dots\right\}$

Intro

DIST0

NumberLine

 $\sqrt{2} = 1.41421356$

We construct a sequence of rational numbers

 $\{1, 1.4, 1.41, 1.414, 1.4142, 1.41421, 1.414213, \ldots\}$

In terms of fractions, this is the sequence

 $\left\{1, \frac{14}{10}, \frac{141}{100}, \frac{1414}{1000}, \frac{14142}{10000}, \frac{141421}{100000}, \frac{1414213}{1000000}, \dots\right\}$

These rational numbers get closer and closer to $\sqrt{2}$.

SymmTriSau

NumberLine

Astro1

 $\sqrt{2} = 1.41421356\dots$

We construct a sequence of rational numbers

 $\{1, 1.4, 1.41, 1.414, 1.4142, 1.41421, 1.414213, \dots\}$

In terms of fractions, this is the sequence

 $\left\{1, \frac{14}{10}, \frac{141}{100}, \frac{1414}{1000}, \frac{14142}{10000}, \frac{141421}{100000}, \frac{1414213}{1000000}, \dots\right\}$

These rational numbers get closer and closer to $\sqrt{2}$.

EXERCISE: Construct a sequence in \mathbb{Q} that tends to π .

Intro

DIST

NumberLine

The Real Number Line

The set of Real Numbers, R, contains all the rational numbers in Q and also all the limits of sequences of rationals [technically, all 'Cauchy sequences'].

Intro

Numberl ine

SvmmTriSau

The Real Number Line

The set of Real Numbers, \mathbb{R} , contains all the rational numbers in \mathbb{Q} and also all the limits of sequences of rationals [technically, all 'Cauchy sequences'].

We may assume that

- Every point on the number line corresponds to a real number.
- Every real number corresponds to a point on the number line.

DIST08

NumberLine

The Real Number Line

The set of Real Numbers, \mathbb{R} , contains all the rational numbers in \mathbb{Q} and also all the limits of sequences of rationals [technically, all 'Cauchy sequences'].

We may assume that

- Every point on the number line corresponds to a real number.
- Every real number corresponds to a point on the number line.

PHYSICS: There are unknown aspects of the microscopic structure of spacetime! These go beyond our 'Universe of Discourse'.

Intro

Astro1

DIST08

NumberLine

 $\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}$

Astro1

NumberLine

 $\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}$

The irrational numbers fall into two categories:

- Algebraic numbers like $\sqrt{2}$.
- Transcendental numbers like π.
- We denote the algebraic numbers by \mathbb{A} .

DIST08

NumberLine

ne

 $\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}$

The irrational numbers fall into two categories:

- Algebraic numbers like $\sqrt{2}$.
- Transcendental numbers like π .

We denote the algebraic numbers by \mathbb{A} . Now we have the chain of sets:

 $\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{A}\subset\mathbb{R}$

Intro

DIST08

NumberLine

 $\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}$

The irrational numbers fall into two categories:

- Algebraic numbers like $\sqrt{2}$.
- Transcendental numbers like π .

We denote the algebraic numbers by \mathbb{A} . Now we have the chain of sets:

 $\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{A}\subset\mathbb{R}$

We will soon talk about prime numbers P. They are subset of the natural numbers, so

 $\mathbb{P}\subset\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{A}\subset\mathbb{R}$

Intro

DIST08

NumberLine

Outline

Introduction

Euler's Gem

History of Astronomy I

Distraction 8: Sum by Inspection

The Real Number Line

Symmetries of Triangle and Square

SymmTriSqu

Intro

Astro1

DIST08

NumberLine

₋ine

Symmetries of the Triangle and Square: The Dihedral Groups D₃ and D₄

Let's look at symmetries of the triangle and square.

They correspond to the dihedral groups D_3 and D_4 .

Intro

Astro1

DIST08

NumberLine

DIST08

NumberLir

DIST08

NumberLir

OPERATION	RESULT
1. NO CHANGE:	
2. SWITCH A AND C:	
3. REPLACE A BY B, B BY C, C BY A:	
4. SWITCH C AND B:	
5. REPLACE A BY C, B BY A, C BY B:	
6. SWITCH A AND B:	

EG

DISTO

NumberLin

SymmTriSqu

Intro

SymmTriSqu

Intro

DIST08

Number

Sv

DIS

NumberLi

Symbols for Transformations of Triangle

NumberLine

The Third Dihedral Group D₃

623	ρ	ρ ₁	ρ2	μ_1	μ2	μ
ρο	ρο	ρ1	ρ2	μ1	μ2	μ
ρ1	ρ_1	ρ2	ρο	μ2	μ3	μ
ρ2	ρ2	ρ	ρ1	μ3	μ1	μ
u 1	μ1	μ3	μ2	ρ	ρ2	ρ
μ2	μ2	μ1	μ3	ρ1	ρ	ρ
μ_3	μ3	μ_2	μ1	ρ2	ρ1	p

Intro

Astro1

DIST08

NumberLin

Subgroup Z₃ of Third Dihedral Group D₃

SymmTriSqu

A A

The Third Dihedral Group D₃

623	ρ	ρ ₁	ρ2	μ_1	μ2	μ
ρο	ρο	ρ1	ρ2	μ1	μ2	μ
ρ1	ρ_1	ρ2	ρο	μ2	μ3	μ
ρ2	ρ2	ρ	ρ1	μ3	μ1	μ
u 1	μ1	μ3	μ2	ρ	ρ2	ρ
μ2	μ2	μ1	μ3	ρ1	ρ	ρ
μ_3	μ3	μ_2	μ1	ρ2	ρ1	p

Intro

Astro1

DIST08

NumberLin

Subgroup Z₂ of Third Dihedral Group D₃

SymmTriSqu

Intro

Symbols for Transformations of Square

Intro

DISTO

NumberLine

The Fourth Dihedral Group D₄

	ρ_0	ρ_1	ρ_2	ρ_3	μ1	μ2	δ1	δ2
0	ρ_0	ρ1	ρ_2	ρ3	μ1	μ_2	δ1	δ2
1	ρ1	ρ2	ρ3	ρ	δ2	δ1	μ_1	μ2
2	ρ2	ρ3	ρ	ρ1	μ2	μ1	δ2	δ1
03	ρ3	ρο	ρ1	ρ2	δ1	δ_2	μ2	μ1
ı1	μ1	δ1	μ2	δ2	ρ	ρ2	ρ1	ρ3
12	μ_2	δ2	μ1	δ1	ρ2	ρ	ρ3	ρ1
81	δ1	μ_2	δ2	μ_1	ρ3	ρ1	ρ	ρ2
δ_2	δ2	μ1	δ1	μ2	ρ1	ρ3	ρ2	ρ
			I	Fig. 4	.8			

Intro

DIST08

NumberLine

Thank you

Intro

01

DISTOR

NumberL

iberLine