Sum-Enchanted Evenings The Fun and Joy of Mathematics LECTURE 7

Peter Lynch School of Mathematics & Statistics University College Dublin

Evening Course, UCD, Autumn 2017

Outline

Introduction

- **Irrational Numbers**
- **Distraction 6: Slicing a Pizza**
- Pascal's Triangle
- **Distraction 7: Plus Magazine**
- **Music: Harmonics**
- Symmetry I

Intro

Irrationals [

Pascal's Triangle

DIST07

Music: Harmonics

nics S

Outline

Introduction

- **Irrational Numbers**
- **Distraction 6: Slicing a Pizza**
- **Pascal's Triangle**
- **Distraction 7: Plus Magazine**
- **Music: Harmonics**
- Symmetry I

Intro

Irrationals

Pascal's Triangle

DIST07

Music: Harmonics

nics Sy

Meaning and Content of Mathematics

The word Mathematics comes from Greek $\mu\alpha\theta\eta\mu\alpha$ (máthéma), meaning "knowledge" or "study" or "learning".

It is the study of topics such as

- Quantity (numbers)
- Structure (patterns)
- Space (geometry)
- Change (analysis).

Intro

Pascal's Triangle

DIST07

Music: Harmonics

cs Symmetry

Outline of Lecture 2

Reminder: QI Video on Factorial 52

Intro

Irrationals DIS

Pascal's Triangle

DIST07

Music: Harmonics

ics Sy

Outline

Introduction

Irrational Numbers

Distraction 6: Slicing a Pizza

Pascal's Triangle

Distraction 7: Plus Magazine

Music: Harmonics

Symmetry I

Intro

Irrationals

Pascal's Triangle

DIST07

Music: Harmonics

nics Sy

The Hierarchy of Numbers

$\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}\subset\mathbb{C}$

Irrationals

Pascal's Triangle

Music: Harmonics

Incommensurability

Suppose we have two line segments

Can we find a unit of measurement such that both lines are a whole number of units?

Can they be co-measured? Are they commensurable?

Intro

Pascal's Triangle

DIST07

Music: Harmonics

nics

Are ℓ_1 and ℓ_2 commensurable? If so, let the unit of measurement be λ . Then

$$\begin{array}{rcl} \ell_1 &=& m\lambda \,, & m\in\mathbb{N} \\ \ell_2 &=& n\lambda \,, & n\in\mathbb{N} \end{array}$$

Intro

Irrationals DIS

Pascal's Triangle

DIST07

Music: Harmonics

cs Syı

Are ℓ_1 and ℓ_2 commensurable? If so, let the unit of measurement be λ .

Then

$$\ell_1 = m\lambda, \quad m \in \mathbb{N}$$
$$\ell_2 = n\lambda, \quad n \in \mathbb{N}$$

Therefore

 $\frac{\ell_1}{\ell_2} = \frac{m\lambda}{n\lambda} = \frac{m}{n}$

Intro

Irrationals DIST

Pascal's Triangle

DIST07

Music: Harmonics

nics Sy

Are ℓ_1 and ℓ_2 commensurable? If so, let the unit of measurement be λ .

Then

$$\begin{array}{rcl} \ell_1 &=& m\lambda\,, & m\in\mathbb{N} \\ \ell_2 &=& n\lambda\,, & n\in\mathbb{N} \end{array}$$

Therefore

$$\frac{\ell_1}{\ell_2} = \frac{m\lambda}{n\lambda} = \frac{m}{n}$$

If not, then ℓ_1 and ℓ_2 are incommensurable.

Symmetry

Intro

Irrationals

Pascal's Triangle

Music: Harmonics

Irrational Numbers

If the side of a square is of length 1, then the diagonal has length $\sqrt{2}$ (by the Theorem of Pythagoras).

Intro

Irrationals

Pascal's Triangle

DIST07

Musi

Music: Harmonics

Irrational Numbers

If the side of a square is of length 1, then the diagonal has length $\sqrt{2}$ (by the Theorem of Pythagoras).

Intro

Irrationals DIS

Pascal's Triangle

DIST07

Music: Harmonics

onics S

Irrational Numbers

If the side of a square is of length 1, then the diagonal has length $\sqrt{2}$ (by the Theorem of Pythagoras).

The ratio between the diagonal and the side is:

Intro

Irrationals

Pascal's Triangle

DIST07

Music: Harmonics

onics S

Irrationality of $\sqrt{2}$

For the Pythagoreans, numbers were of two types:

- 1. Whole numbers
- 2. Ratios of whole numbers

There were no other numbers.

Intro

cs Symmetry

Irrationality of $\sqrt{2}$

For the Pythagoreans, numbers were of two types:

- 1. Whole numbers
- 2. Ratios of whole numbers

There were no other numbers.

Let's suppose that $\sqrt{2}$ is a ratio of whole numbers:

$$\sqrt{2} = \frac{\mu}{q}$$

We can suppose that p and q have no common factors. Otherwise, we just cancel them out.

Pascal's Triangle

Symmetry

Music: Harmonics

Intro

Irrationals

Irrationality of $\sqrt{2}$

For the Pythagoreans, numbers were of two types:

- 1. Whole numbers
- 2. Ratios of whole numbers

There were no other numbers.

Let's suppose that $\sqrt{2}$ is a ratio of whole numbers:

$$\sqrt{2} = rac{p}{q}$$

We can suppose that p and q have no common factors. Otherwise, we just cancel them out.

For example, suppose p = 42 and q = 30. Then

р	_ 42	_	7	\times	6	_	7
\overline{q}	- 30		5	\times	6		5

Remark on Reductio ad Absurdum.

Intro

Irrationals D

Pascal's Triangle

DIST07

Musi

Music: Harmonics

Remark on Reductio ad Absurdum.

"How often have I said to you that when you have eliminated the impossible, whatever remains, however improbable, must be the truth?" The Sign of the Four (1890)

Intro

Irrationals DI

Pascal's Triangle

DIST07

Music: Harmonics

cs Syr

In particular, p and q cannot both be even numbers.

Intro

Irrationals D

Pascal's Triangle

DIST07

Musi

Music: Harmonics

In particular, *p* and *q* cannot both be even numbers.

Now square both sides of the equation $\sqrt{2} = p/q$:

$$2=rac{p}{q} imesrac{p}{q}=rac{p^2}{q^2}$$
 or $p^2=2q^2$

This means that p^2 is even. Therefore p is even.

Intro

Irrationals D

Pascal's Triangle

DIST07

Music: Harmonics

s Symmetry

In particular, *p* and *q* cannot both be even numbers.

Now square both sides of the equation $\sqrt{2} = p/q$:

$$2=rac{p}{q} imesrac{p}{q}=rac{p^2}{q^2}$$
 or $p^2=2q^2$

This means that p^2 is even. Therefore p is even.

Let p = 2r where *r* is another whole number. Then

$$p^2 = (2r)^2 = 4r^2 = 2q^2$$
 or $2r^2 = q^2$

In particular, p and q cannot both be even numbers.

Now square both sides of the equation $\sqrt{2} = p/q$:

$$2=rac{p}{q} imesrac{p}{q}=rac{p^2}{q^2}$$
 or $p^2=2q^2$

This means that p^2 is even. Therefore *p* is even.

Let p = 2r where *r* is another whole number. Then

$$p^2 = (2r)^2 = 4r^2 = 2q^2$$
 or $2r^2 = q^2$

But this means that q^2 is even. So, q is even.

DIST0

Intro

Irrationals DI

Pascal's Triangle

DIST07

Musi

Music: Harmonics

The supposition was that $\sqrt{2}$ is a ratio of two integers that have no common factors.

This assumption has led to a contradiction.

Intro

Irrationals DI

Pascal's Triangle

DIST07

Music: Harmonics

cs Sy

The supposition was that $\sqrt{2}$ is a ratio of two integers that have no common factors.

This assumption has led to a contradiction.

By reductio ad absurdum, $\sqrt{2}$ is irrational.

It is not a ratio of whole numbers.

Intro

DIST07

Music: Harmonics

cs Symmetry

- The supposition was that $\sqrt{2}$ is a ratio of two integers that have no common factors.
- This assumption has led to a contradiction.
- By reductio ad absurdum, $\sqrt{2}$ is irrational.
- It is not a ratio of whole numbers.
- To the Pythagoreans, $\sqrt{2}$ was not a number.

Intro

The supposition was that $\sqrt{2}$ is a ratio of two integers that have no common factors.

This assumption has led to a contradiction.

By reductio ad absurdum, $\sqrt{2}$ is irrational.

It is not a ratio of whole numbers.

To the Pythagoreans, $\sqrt{2}$ was not a number. $\kappa\rho\iota\sigma\eta \qquad \kappa\alpha\tau\alpha\sigma\tau\rho\mathbf{0}\phi\eta!$

DIST07

$\sqrt{2}$ and the Development of Mathematics

The discovery of irrational quantities had a dramatic effect on the development of mathematics.

Legend has it that the discoveror of this fact was thrown from a ship and drowned.

The result was that focus now fell on geometry, and arithmetic or number theory was neglected.

The problems were not resolved for many centuries.

Intro

Irrationals DIST

Pascal's Triangle

DIST07

Music: Harmonics

s Symmetry

Outline

Introduction

Irrational Numbers

Distraction 6: Slicing a Pizza

Pascal's Triangle

Distraction 7: Plus Magazine

Music: Harmonics

Symmetry I

Intro

Pascal's Triangle

DIST07

Music: Harmonics

nics S

Distraction 6: Slicing a Pizza

Cut the pizza using three straight cuts.

There should be exactly one piece of pepperoni on each slice of pizza.

Intro

Irrationals DIST06

Pascal's Triangle

DIST07

Music: Harmonics

cs Syr

Outline

Introduction

Irrational Numbers

Distraction 6: Slicing a Pizza

Pascal's Triangle

Distraction 7: Plus Magazine

Music: Harmonics

Symmetry I

Intro

Irrationals DI

Pascal's Triangle

DIST07

Music: Harmonics

s Symmetry

Intro

Irrationals DIS

Pascal's Triangle

DIST07

Music: Harmonics

nics Sy

$$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 2 \\ 0 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} 3 \\ 0 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} \begin{pmatrix} 3 \\ 3 \end{pmatrix}$$

$$\begin{pmatrix} 4 \\ 0 \end{pmatrix} \begin{pmatrix} 4 \\ 1 \end{pmatrix} \begin{pmatrix} 4 \\ 2 \end{pmatrix} \begin{pmatrix} 4 \\ 3 \end{pmatrix} \begin{pmatrix} 4 \\ 4 \end{pmatrix}$$

$$\begin{pmatrix} 5 \\ 0 \end{pmatrix} \begin{pmatrix} 5 \\ 1 \end{pmatrix} \begin{pmatrix} 5 \\ 2 \end{pmatrix} \begin{pmatrix} 5 \\ 2 \end{pmatrix} \begin{pmatrix} 5 \\ 3 \end{pmatrix} \begin{pmatrix} 5 \\ 3 \end{pmatrix} \begin{pmatrix} 5 \\ 4 \end{pmatrix} \begin{pmatrix} 5 \\ 5 \end{pmatrix}$$

Intro

Irrationals DIS1

Pascal's Triangle

DIST07

Mus

Music: Harmonics

Pascal's triangle is a triangular array of the binomial coefficients.

It is named after French mathematician Blaise Pascal.

It was studied centuries before him in:

- India (Pingala, C2BC)
- Persia (Omar Khayyam, C11AD)
- China (Yang Hui, C13AD).

Pascal's *Traité du triangle arithmétique* (Treatise on Arithmetical Triangle) was published in 1665.

Intro

DIST07

Music: Harmonics

ics S

Pascal's triangle is a triangular array of the binomial coefficients.

It is named after French mathematician Blaise Pascal.

It was studied centuries before him in:

- India (Pingala, C2BC)
- Persia (Omar Khayyam, C11AD)
- China (Yang Hui, C13AD).

Pascal's *Traité du triangle arithmétique* (Treatise on Arithmetical Triangle) was published in 1665.

Draw Pascal's triangle on the board.

Intro

DIST

Irrationals

Pascal's Triangle

DIST07

Music: Harmonics
Pascal's Triangle

The rows of Pascal's triangle are numbered starting with row n = 0 at the top (0-th row).

The entries in each row are numbered from the left beginning with k = 0.

The triangle is easily constructed:

- A single entry 1 in row 0.
- Add numbers above for each new row.

The entry in the nth row and k-th column of Pascal's triangle is denoted $\binom{n}{k}$.

The entry in the topmost row is $\binom{0}{0} = 1$.

Pascal's Identity

The construction of the triangle may be written:

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

This relationship is known as Pascal's Identity.

Intro

Irrationals DIS

Pascal's Triangle

DIST07

Music: Harmonics

Pascal's Triangle

Music: Harmonics

1							
1	1						
1	2	1					
1	3	3	1				
1	4	6	4	1			
1	5	10	10	5	1		
1	6	15	20	15	6	1	
1	7	21	35	35	21	7	1

Intro

als DI

Pascal's Triangle

DIST07

Mus

cs Sym

Sierpinski's Gasket

Sierpinski's Gasket is constructed by starting with an equilateral triangle, and successively removing the central triangle at each scale.

Intro

Irrationals DIS

Pascal's Triangle

DIST07

Music: Harmonics

s Symmetry

Sierpinski's Gasket

Intro

DISTO

Pascal's Triangle

DIST07

Music: Harmonics

Symme

Sierpinski's Gasket in Pascal's Triangle

Figure : Odd numbers are in black

Intro

Pascal's Triangle

DIST07

Music: Harmonics

cs Syn

Remember Walking in Manhattan?

Figure : Number of routes for a rook in chess.

Intro

Pascal's Triangle

DIST07

Musi

Music: Harmonics

Geometric Numbers in Pascal's Triangle

Intro

Outline

Introduction

Irrational Numbers

Distraction 6: Slicing a Pizza

Pascal's Triangle

Distraction 7: Plus Magazine

Music: Harmonics

Symmetry I

Intro

Irrationals D

Pascal's Triangle

DIST07

Mu

Music: Harmonics

Distraction 7: Plus Magazine

PLUS: The Mathematics e-zine https://plus.maths.org/

Pascal's Triangle

DIST07

Music: Harmonics

Outline

Introduction

- **Irrational Numbers**
- **Distraction 6: Slicing a Pizza**
- **Pascal's Triangle**
- **Distraction 7: Plus Magazine**
- **Music: Harmonics**

Symmetry I

Intro

Irrationals DIS

Pascal's Triangle

DIST07

Music: Harmonics

onics S

Definition of Circular Functions

We define the functions

 $y = \sin \theta$

 $x = \cos \theta$

using this diagram.

Reference

https://en.wikipedia. org/wiki/Sine

Irrationals

Pascal's Triangle

Music: Harmonics

Sine Waves and Harmonics

A pure tone is represented by a sine wave

 $v = \sin \omega t$

Its *n*-th harmonic is represented by

 $y = \sin n\omega t$

To hear these, go to

https://meettechniek.info/ additional/additive-synthesis.html

Intro

Irrationals

Pascal's Triangle

Music: Harmonics

Various Wave Forms

Pascal's Triangle

Music: Harmonics

**

Online Waveform Generator

Additive synthese waveform generator

Last Modification: January 23, 2013

Every randomly shaped waveform can be composed by adding one ore more sine waves signals with each a different frequency, phase and amplitude. This is also called additive synthesis. The frequency range consists of the fundamental and his harmonics.

The wave shape in the tool beneath can be modified by adjusting the sliders H1 t/m H11. These will set the amplitudes of each harmonic. The phases of each harmonic can be set with the buttons below each slider.

Intro

DIST07

Pure Sine Wave

Irrationals

Pascal's Triangle

Music: Harmonics

Sine Wave and First Harmonic

Intro

Irrationals DI

Pascal's Triangle

DIST07

Music: Harmonics

nonics

symmetry

Sine Wave and Eighth Harmonic

Intro

Irrationals DI

Pascal's Triangle

DIST07

Music: Harmonics

monics

Outline

Introduction

- **Irrational Numbers**
- **Distraction 6: Slicing a Pizza**
- **Pascal's Triangle**
- **Distraction 7: Plus Magazine**
- **Music: Harmonics**

Symmetry I

Intro

Irrationals D

Pascal's Triangle

DIST07

Music: Harmonics

Ubiquity and Beauty of Symmetry

Symmetry is all around us.

- Many buildings are symmetric.
- Our bodies have bilateral symmetry.
- Crystals have great symmetry.
- Viruses can display stunning symmetries.
- At the sub-atomic scale, symmetry reigns.
- Galaxies have many symmetries.

The Taj Mahal

Intro

ıls DI

Pascal's Triangle

DIST07

Musi

Music: Harmonics S

A Face with Symmetry: Halle Berry

Berry Halle

Intro

Pascal's Triangle

DIST07

Music: Harmonics

An Asymmetric Face: You know Who!

Intro

Irrationals

Pascal's Triangle

DIST07

Music: Harmonics

ics Sy

Symmetry and Group Theory

Symmetry is an essentially geometric concept.

The mathematical theory of symmetry is algebraic. The key concept is that of a group.

A group is a set of elements such that any two elements can be combined to produce another.

Instead of giving the mathematical definition, I give an example to make things clear.

Intro

Irrationals DIS^{*}

Pascal's Triangle

DIST07

Music: Harmonics

Non-Commutative Operations

Symmetry

a 🕯 🖄

The Klein 4-Group

Take a book, place it on the table and draw a rectangle around it. In how many ways can the book fit into the rectangle?

Intro

Irrationals DIS

Pascal's Triangle

DIST07

Music: Harmonics

nics Syn

The Klein 4-Group

Take a book, place it on the table and draw a rectangle around it. In how many ways can the book fit into the rectangle?

Once a single corner of the book is put at the top left corner, there is no further lee-way.

Intro

Irrationals DIS

Pascal's Triangle

DIST07

Music: Harmonics

The Klein 4-Group

Take a book, place it on the table and draw a rectangle around it. In how many ways can the book fit into the rectangle?

Once a single corner of the book is put at the top left corner, there is no further lee-way.

There are four ways to fit the book in the rectangle.

Intro

Irrationals DIS

Pascal's Triangle

DIST07

Mus

Music: Harmonics

The four orientations of the book can be described in terms of four simple rotations:

- I: Place book upright with front cover upright
- X: Rotate 180° about horizontal through centre
- Y: Rotate 180° about vertical through centre
- Z: Rotate 180° about perp. through centre

Multiplication Table

There are several sub-groups:

 $\{I, X, Y, Z\} \ \{I, X\} \ \{I, Y\} \ \{I, Z\} \ \{I\}$

Intro

Irrationals DI

Pascal's Triangle

DIST07

Music: Harmonics

onics

Twelve-tone Music

Table : Klein 4-Group.

The Klein 4-group is the basic group of transformations in twelve tone music.

The operations are retrogression (R), inversion (I) and the composion (RI), which is also a rotation operation.

Intro

Irrationals D

Pascal's Triangle

DIST07

Music: Harmonics

s Symmetry

Numbers of Low-Order Groups

Order n	# Groups ^[6]	Abelian	Non-Abelian
0	0	0	0
1	1	1	0
2	1	1	0
3	1	1	0
4	2	2	0
5	1	1	0
6	2	1	1
7	1	1	0
8	5	3	2
9	2	2	0
10	2	1	1
11	1	1	0
12	5	2	3
13	1	1	0
14	2	1	1
15	1	1	0
16	14	5	9

Table of number of groups of orders up to sixteen.

Commutative groups are called Abelian groups.

Groups that do not commute are Non-Abelian.

The smallest non-Abelian group is of order 6.

Intro

Music: Harmonics

From 2 to 3 Dimensional Symmetry

Tetrahedron	Cube	Octahedron	Dodecahedron	Icosahedron
Four faces	Six faces	Eight faces	Twelve faces	Twenty faces
(Animation)	(Animation)	(Animation)	(Animation)	(Animation)

Intro

Pascal's Triangle

DIST07

Mus

Music: Harmonics

The Five Platonic Solids

Polyhedro	on ÷	Vertices +	Edges ÷	Faces +
tetrahedron		4	6	4
cube		8	12	6
octahedron		6	12	8
dodecahedron		20	30	12
icosahedron		12	30	20

Intro

Pascal's Triangle

DIST07

Music: Harmonics

onics S

Platonic Solids: Euler's Gem

Name	Image	Vertices <i>V</i>	Edges <i>E</i>	Faces <i>F</i>	Euler characteristic: V – E + F
Tetrahedron		4	6	4	2
Hexahedron or cube		8	12	6	2
Octahedron		6	12	8	2
Dodecahedron		20	30	12	2
lcosahedron	\bigcirc	12	30	20	2

Intro

Pascal's Triangle

DIST07

Music: Harmonics

ics Sy
Platonic Solids: Euler's Gem

Name	Image	Vertices <i>V</i>	Edges <i>E</i>	Faces <i>F</i>	Euler characteristic: V – E + F
Tetrahedron		4	6	4	2
Hexahedron or cube		8	12	6	2
Octahedron		6	12	8	2
Dodecahedron		20	30	12	2
lcosahedron	\bigcirc	12	30	20	2

Mnemonic: Very Easy Formula 2 remember!

Intro

Pascal's Triangle

DIST07

Mus

Music: Harmonics

Dual Polyhedra

Every polyhedron is associated with a dual.

The vertices of the polyhedron correspond to the faces of its dual. The faces of the polyhedron correspond to the vertices of its dual.

Intro

Irrationals DIS

Pascal's Triangle

DIST07

Music: Harmonics

Dual Polyhedra

Every polyhedron is associated with a dual.

The vertices of the polyhedron correspond to the faces of its dual. The faces of the polyhedron correspond to the vertices of its dual.

The dual of the dual is the original!

Duality preserves the symmetry of the polyhedron.

Intro

Pascal's Triangle

DIST07

Music: Harmonics

Cube and Octahedron are Dual

Cube and Octahedron are Dual

Figure : Tetrahedron and dual.

Intro

Irrationals D

Pascal's Triangle

DIST07

Music: Harmonics

s Sym

Dodecahedron and Icosahedron are Dual

Figure : Tetrahedron and dual.

Intro

Irrationals DIS⁻

Pascal's Triangle

DIST07

Music: Harmonics

nics Sy

Tetrhedron is its own Dual

Figure : Tetrahedron and dual.

Intro

Irrationals DIS

Pascal's Triangle

DIST07

Music: Harmonics

nics Symmetry

Threefold Symmetry: Z₃

Threefold Symmetry: Z₃

Intro

Irrationals DIS

Pascal's Triangle

DIST07

Music: Harmonics

nics Symmetry

Threefold Symmetry: Z₃

Intro

nals DIS

Pascal's Triangle

DIST07

Music: Harmonics

s Symmetry

Z₄ Symmetry

Intro

ils DIST

Pascal's Triangle

DIST07

Mus

Music: Harmonics Symmetry

Star of David (*D*₆ Symmetry)

Intro

Irrationals DIST

Pascal's Triangle

DIST07

Music: Harmonics

nics Sy

Flag of India (D₁)

Intro

Irrationals DIS

Pascal's Triangle

DIST07

Music: Harmonics

ics Sym

Ashoka Chakra (D₂₄)

Intro

DIST

Pascal's Triangle

DIST07

Music: Harmonics

nics Sy

Thank you

Intro

nals D

Pascal's Triangl

DIST07

Music: Harmonics

nics Syr