Sum-Enchanted Evenings

The Fun and Joy of Mathematics
LECTURE 5

Peter Lynch
School of Mathematics \& Statistics University College Dublin

Evening Course, UCD, Autumn 2017

Outline

Introduction
Axioms and Proof
Music and Mathematics I
Greek 4
Distraction 9
Numbers
The Number Line

Outline

Introduction

Axioms and Proof

Music and Mathematics I

Greek 4

Distraction 9

Numbers

The Number Line

Meaning and Content of Mathematics

The word Mathematics comes from
Greek $\mu \alpha \theta \eta \mu \alpha$ (máthéma), meaning "knowledge" or "study" or "learning".

It is the study of topics such as

- Quantity (numbers)
- Structure (patterns)
- Space (geometry)
- Change (analysis).

Outline

Introduction

Axioms and Proof

Music and Mathematics I

Greek 4

Distraction 9

Numbers

The Number Line

What are Axioms?

How can we prove a theorem, if we have nothing to start from?

We cannot prove something using nothing.
We need some starting point.
The basic building blocks are called Axioms.
Axioms are not proved, but are assumed true.

What are Axioms?

Axioms are important because the entire body of mathematics rests upon them.

If there are too few axioms, we can prove very little of interest from them.

If there are too many axioms, we can prove almost any result from them.

Consistency:
We must not have axioms that contradict each other.

What are Axioms?

Mathematicians assume axioms are true without being able to prove them.

This is not problematic, because axioms are normally intuitively obvious.

There are usually only a few axioms.
For example, we may assume that

$$
a \times b=b \times a
$$

for any two numbers a and b.
But Hamilton found that for two quaternions,

$$
A \times B \neq B \times A .
$$

Different sets of axioms lead to different kinds of mathematics.

Every area of mathematics has its own set of basic axioms.

When mathematicians have proven a theorem, they publish it for other mathematicians to check.

Sometimes a mistake in the proof is found.
Sometimes an error is not found for many years (e.g., an early "proof" of the Four Colour Theorem.)

In principle, it is possible to break a proof into steps starting from the basic axioms.

Euclid＇s Axioms of Geomery

Euclid based his＂Elements of Geometry＂ on a set of five postulates or axioms：

＂Let the following be postulated＂：
1．＂To draw a straight line from any point to any point．＂
2．＂To produce［extend］a finite straight line continuously in a straight line．＂
3．＂To describe a circle with any centre and distance［radius］．＂
4．＂That all right angles are equal to one another．＂
5．The parallel postulate：＂That，if a straight line falling on two straight lines make the interior angles on the same side less than two right angles，the two straight lines，if produced indefinitely，meet on that side on which are the angles less than the two right angles．＂

The fifth postulate，the parallel postulate，has been a great source of controversy and confusion． This has led to completely new areas of mathematics．

のタく

Peano's Axioms of Arithmetic

Giuseppi Peano constructed five axioms to build up the set \mathbb{N} of natural numbers:

$$
\begin{gathered}
\exists 0: 0 \in \mathbb{N} \\
\forall n \in \mathbb{N}: \exists n^{\prime} \in \mathbb{N} \\
\neg\left(\exists n \in \mathbb{N}: n^{\prime}=0\right) \\
\forall m, n \in \mathbb{N}: m^{\prime}=n^{\prime} \Rightarrow m=n \\
\forall A \subseteq \mathbb{N}:\left(0 \in A \wedge\left(n \in A \Rightarrow n^{\prime} \in A\right)\right) \Rightarrow A=\mathbb{N}
\end{gathered}
$$

The natural numbers may then be extended to the integers, rational numbers and real numbers.

Axioms of Set Theory

Set theory is the basic language of mathematics.
Many mathematical problems can be formulated in the language of set theory.

To prove them we need the Set Theory Axioms.
The most widely accepted axioms are the set of nine Zermelo-Fraenkel (ZF) axioms.

A tenth axiom, may also be assumed, the Axiom of Choice.

Zermelo-Fraenkel axioms

Zermelo-Fraenkel axioms

AXIOM OF REPLACEMENT If we apply a function to every element in a set, the answer is still a set.

AXIOM OF CHOICE
Given infinitely many non-empty sets, you can choose one element from each of these sets.

ث
UCD
Duain

Axiom of Choice

The Axiom of Choice (AC) looks just as innocuous as the other nine axioms. However it has unexpected consequences.

We can use AC to prove that it is possible to cut a sphere into five pieces and reassemble them into two spheres, each identical to the initial sphere.

This result is called the Banach-Tarski Theorem.
The five pieces have fractal boundaries: they can't actually be made in practice.

Also, they are not measurable: they have no definite volume.

The Current Status

There is an active debate among logicians about whether to accept the Axiom of Choice or not.

Every collection of axioms forms a different "mathematical world".

Different theorems may be true in different worlds.
The question is: are we happy to live in a world where we can make two spheres from one.

See Wikipedia article: Axiom of Choice

Outline

Introduction

Axioms and Proof

Music and Mathematics I

Greek 4

Distraction 9

Numbers

The Number Line

The Connection

The Pythagoreans' quest was to find the eternal laws of the Universe, and they organized their studies into the scheme later known as the Quadrivium.

It comprised four disciplines:

- Arithmetic
- Geometry
- Music
- Astronomy

Pythagorean Quotation:

- "There is geometry in the humming of the strings, There is music in the spacing of the spheres."

The Quadrivium

Static/Dynamic. Pure/Applied

- Arithmetic: Static number
- Music: Dynamic number

Arithmetic represents numbers at rest.
Music is numbers in motion.

Arithmetic is pure or abstract in nature.
Music is applied or concrete in nature.

Music is Written using a Special Notation

MOONLIGHT SONATA

Op. 27, No. 2
(First Movement)
LUDWIG VAN BEETHOVEN

The opening bars of Beethoven's Moonlight Sonata

Music

A Mathematical Graph: Continuous

A Graph: Discrete and Continuous

A Mathematical Graph: Discrete

A Musical Score: One Voice

A musical score is just a graph of pitch versus time.

Outline

Introduction

Axioms and Proof

Music and Mathematics I

Greek 4

Distraction 9

Numbers

The Number Line

The Greek Alphabet, Part 4

Alpha

Figure : 24 beautiful letters

The Last Six Letters

We will consider the final group of six letters.

Let us focus first on the small letters and come back to the big ones later.

Tau: You have certainly heard of a Tau-cross: τ.
Upsilon (v) or u-psilon means 'bare u'. It is often transliterated as ' y '.

Phi (ϕ) is ' \mathbf{f} ', often used for latitude (as λ is often used for longitude).

Chi (χ) has a 'ch' or ' k ' sound.
Psi (ψ) is very common: psychology, etc.
Omega (ω) is the end: Alpha and Omega $\left(\frac{A}{\Omega}\right)$.
Now you know 24 letters. You should get a diploma.

A Few Greek Words (for practice)

$\kappa \omega \mu \alpha$
$\psi v \kappa \eta$
$\kappa \rho \iota \sigma \iota \varsigma$
$\alpha \nu \alpha \theta \epsilon \mu \alpha$
$\alpha \mu \beta \rho о \sigma \iota \alpha$
$\kappa \alpha \tau \alpha \sigma \tau \rho 0 \phi \eta$

Coma: $\kappa \omega \mu \alpha$
Psyche: $\psi v \kappa \eta$
Crisis: $\kappa \rho \iota \sigma \iota \varsigma$
Anathema: $\alpha \nu \alpha \theta \epsilon \mu \alpha$ Ambrosia: $\alpha \mu \beta \rho o \sigma \iota \alpha$
Catastrophe: $\kappa \alpha \tau \alpha \sigma \tau \rho \circ \phi \eta$

ث 4 合
UCD yublin

End of Greek 104

Outline

Introduction

Axioms and Proof

Music and Mathematics I

Greek 4

Distraction 9

Numbers
The Number Line

つのく

Distraction 9: The Yin Yang Symbol

Distraction 9: A Simple Puzzle

Divide this area into two identical parts (congruent parts) by drawing a single curve.

Distraction 9: A Simple Puzzle

Outline

Introduction

Axioms and Proof

Music and Mathematics I

Greek 4

Distraction 9

Numbers

The Number Line

Babylonian Numerals

Ancient Egyptian Numerals

$1=$	1	$10=$	T	$100=$	（3）	$1000=$	\pm^{0}
$2=$	11	$20=$	$\bigcirc \bigcirc$	$200=$	（9）	2000 －	＋8
$3=$	111	$30=$	$\cap \cap \cap$	$300=$	999	$3000=$	むむむ
$4=$	IIII	$40=$		$400=$	$\begin{aligned} & 9.9 \\ & 99 \end{aligned}$	$4000=$	
5 －	J1	$50=$		$500=$	$\begin{gathered} 999 \\ 999 \end{gathered}$	$5000=$	$\frac{0.0}{0} 8^{0} 8$ $8 \mathrm{~s}^{\circ}$

Ancient Hebrew and Greek Numerals

1	α	alpha	10	ι	iota	100	ρ	rho
2	β	beta	20	κ	kappa	200	σ	sigma
3	γ	gamma	30	λ	lambda	300	τ	tau
4	δ	delta	40	μ	mu	400	v	upsilon
5	ϵ	epsilon	50	ν	nu	500	ϕ	phi
6	ζ	vau *	60	ξ	xi	600	χ	chi
7	ζ	zeta	70	o	omicron	700	ψ	psi
8	η	eta	80	π	pi	800	ω	omega
9	θ	theta	90	9	koppa *	900	λ	sampi

*vau, koppa, and sampi are obsolete characters

Mayan Numerals

Various Numeral Systems

Numeral systems 0123456789 I II IIIIV V VI VII VIII IX X ০১২৩৪৫৬৭৮๖ －
 Оด๒๓๔๕อ๗డ๙ Oーニ三四五六七八九

Wikipedia：Hindu－Arabic Numeral System 플

Roman Numerals

I	1
II	2
III	3
IV	4
V	5
VI	6
VII	7
VIII	8
IX	9
X	10
XI	11
XII	12
XIII	13
XIV	14
XV	15
XVI	16
XVII	17
XVIII	18
XIX	19
XX	20

XXI	21	XLI	41
XXII	22	XLII	42
XXIII	23	XLIII	43
XXIV	24	XLIV	44
XXV	25	XLV	45
XXVI	26	XLVI	46
XXVII	27	XLVII	47
XXVIII	28	XLVIII	48
XXIX	29	XLIX	49
XXX	30	L	50
XXXI	31	LI	51
XXXII	32	LII	52
XXXIII	33	LIII	53
XXXIV	34	LIV	54
XXXV	35	LV	55
XXXVI	36	LVI	56
XXXVII	37	LVII	57
XXXVIII	38	LVIII	58
XXXIX	39	LIX	59
XL	40	LX	60

In order: $M D C L X V I=1666$

How to Multiply Roman Numbers

Table: Multiplication Table for Roman Numbers.

	\mathbf{I}	\mathbf{V}	\mathbf{X}	\mathbf{L}	\mathbf{C}	\mathbf{D}	\mathbf{M}
\mathbf{I}	I	V	X	L	C	D	M
\mathbf{V}	V	$X X V$	L	$C C L$	D	$M M D$	\bar{V}
\mathbf{X}	X	L	C	D	M	\bar{V}	\bar{X}
\mathbf{L}	L	$C C L$	D	$M M D$	\bar{V}	$\overline{X X V}$	\bar{L}
\mathbf{C}	C	D	M	\bar{V}	\bar{X}	\bar{L}	\bar{C}
\mathbf{D}	D	$M M D$	\bar{V}	$\overline{X X V}$	\bar{L}	$\overline{C C L}$	\bar{D}
\mathbf{M}	M	\bar{V}	\bar{X}	\bar{L}	\bar{C}	\bar{D}	\bar{M}

A Roman Abacus

Replica of a Roman abacus from 1st century AD.

Abacus is a Latin word, which comes from the Greek $\alpha \beta \alpha \kappa \alpha \varsigma$ (board or table).

A Chinese Abacus: Suan Pan

A Japanese Abacus: Soroban

A Different Angle on Numerals

Delightful theory. Almost certainly wrong.

Arguments "for"

1. It is a very simple idea
2. It links symbols to numerical values

Arguments "against"

1. Number forms modified to fit model
2. Complete lack of historical evidence.

The great tragedy of science -
the slaying of a beautiful hypothesis by an ugly fact (T H Huxley)

Outline

Introduction

Axioms and Proof

Music and Mathematics I

Greek 4

Distraction 9

Numbers

The Number Line

A Hierarchy of Numbers

We will introduce a hierarchy of numbers.
Each set is contained in the next one.
They are like a set of nested Russian Dolls:

Matryoshka

The Natural Numbers \mathbb{N}

The counting numbers were the first to emerge:

$$
\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \ldots
\end{array}
$$

They are also called the Natural Numbers.

We can arange the natural numbers in a list.
This list is like a toy computer.

The Natural Numbers \mathbb{N}

The set of natural numbers is denoted \mathbb{N}.
If n is a natural number, we write $n \in \mathbb{N}$.
Natural numbers can be added: $4+2=6 \in \mathbb{N}$

$$
122 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8
$$

But not always subtracted: $4-6=-2 \notin \mathbb{N}$.
To allow for subtraction we have to extend \mathbb{N}.

The Integers \mathbb{Z}

We extend the counting numbers by adding the negative whole numbers:

$$
\begin{array}{llllllllll}
\ldots & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & \ldots
\end{array}
$$

The whole numbers are also called the Integers.
The set of integers is denoted \mathbb{Z}.
If k is an integer, we write $k \in \mathbb{Z}$.
Clearly,

$$
\mathbb{N} \subset \mathbb{Z}
$$

Integers can be added and subtracted.
They can also multiplied:

$$
6 \times 4=24 \in \mathbb{Z} .
$$

However, they cannot usually be divided:

$$
\frac{6}{4}=1 \frac{1}{2} \notin \mathbb{Z} .
$$

To allow for division we have to extend \mathbb{Z}.

The Rational Numbers \mathbb{Q}

We extend the integers by adding fractions:

$$
r=\frac{p}{q} \quad \text { where } p \text { and } q \text { are integers. }
$$

These rational numbers are ratios of integers.
The set of rational numbers is denoted \mathbb{Q}.
If r is a rational number, we write $r \in \mathbb{Q}$.
Clearly,

$$
\mathbb{Z} \subset \mathbb{Q}
$$

With the Rational Numbers, we can:

Add, Subtract, Multiply and Divide

That is, for any $p \in \mathbb{Q}$ and $q \in \mathbb{Q}$
All of $p+q \quad p-q \quad p \times q$ and $p \div q$
are rational numbers.
We say that \mathbb{Q} is closed under addition, subtraction, multiplication and division.

But we are not yet finished. \mathbb{R} is yet to come.

The Hierarchy of Numbers

$$
\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}
$$

ゆa®

The Hierarchy of Numbers

Each set is contained in the next one.
They are like a set of nested Russian Dolls:

Matryoshka

Thank you

