# Sum-Enchanted Evenings 

The Fun and Joy of Mathematics

## LECTURE 2

Peter Lynch
School of Mathematics \& Statistics University College Dublin

## Evening Course, UCD, Autumn 2017



## Outline

Introduction

The Nippur Tablet
Georg Cantor
Set Theory I
Greek 1
Topology
The Unary System

## Outline

## Introduction

The Nippur Tablet
Georg Cantor

## Set Theory I

## Greek 1

## Topoiogy

The Unary System

## Meaning and Content of Mathematics

The word Mathematics comes from
Greek $\mu \alpha \theta \eta \mu \alpha$ (máthéma), meaning "knowledge" or "study" or "learning".

It is the study of topics such as

- Quantity (numbers)
- Structure (patterns)
- Space (geometry)
- Change (analysis).


## Outline

## Introduction

The Nippur Tablet
Georg Cantor
Set Theory
Greek 1

Topology
The Unary System

## The Nippur Tablet



## The Nippur Tablet

What purpose could the Nippur Tablet have had?
What use could there be for a list of squares?

## The Nippur Tablet

What purpose could the Nippur Tablet have had?
What use could there be for a list of squares?

## Perhaps it was used for multiplication!

We show how this is done in the next slide.

## Multiplication by Squaring

Let $a$ and $b$ be any two numbers.

$$
\begin{aligned}
& (a+b)^{2}=a^{2}+2 a b+b^{2} \\
& (a-b)^{2}=a^{2}-2 a b+b^{2}
\end{aligned}
$$

Subtracting, we get

$$
(a+b)^{2}-(a-b)^{2}=4 a b
$$

## Multiplication by Squaring

Let $a$ and $b$ be any two numbers.

$$
\begin{aligned}
& (a+b)^{2}=a^{2}+2 a b+b^{2} \\
& (a-b)^{2}=a^{2}-2 a b+b^{2}
\end{aligned}
$$

Subtracting, we get

$$
(a+b)^{2}-(a-b)^{2}=4 a b
$$

Thus, we can find the product using squares:

$$
a b=\frac{1}{4}\left[(a+b)^{2}-(a-b)^{2}\right]
$$

## Multiplication by Squaring

## Again,

$$
a b=\frac{1}{4}\left[(a+b)^{2}-(a-b)^{2}\right]
$$

Let us take a particular example: $37 \times 13$.

$$
a=37 \quad b=13 \quad a+b=50 \quad a-b=24 .
$$

## Multiplication by Squaring

Again,

$$
a b=\frac{1}{4}\left[(a+b)^{2}-(a-b)^{2}\right]
$$

Let us take a particular example: $37 \times 13$.

$$
a=37 \quad b=13 \quad a+b=50 \quad a-b=24 .
$$

$$
\begin{aligned}
\frac{1}{4}\left[(a+b)^{2}-(a-b)^{2}\right] & =\frac{1}{4}\left[50^{2}-24^{2}\right] \\
& =\frac{1}{4}[2500-576] \\
& =\frac{1}{4}[1924] \\
& =481 \\
& =37 \times 13 .
\end{aligned}
$$

Perhaps this was the function of the Nippur tablet.

## Outline

## Introduction

The Nippur Tablet

## Georg Cantor

## Set Theory I

Greek 1

## Topoiogy

The Unary System

## Georg Cantor



# Inventor of Set Theory 

Born in St. Petersburg, Russia in 1845.

Moved to Germany in 1856 at the age of 11.

His main career was at the University of Halle.

## Georg Cantor (1845-1918)

- Invented Set Theory.
- One-to-one Correspondence.
- Infinite and Well-ordered Sets.
- Cardinal and Ordinal Numbers.
- Proved: $\#(\mathbb{Q})=\#(\mathbb{N})$.
- Proved: $\#(\mathbb{R})>\#(\mathbb{N})$.
- Infinite Hierarchy of Infinities.


## Georg Cantor (1845-1918)

- Invented Set Theory.
- One-to-one Correspondence.
- Infinite and Well-ordered Sets.
- Cardinal and Ordinal Numbers.
- Proved: $\#(\mathbb{Q})=\#(\mathbb{N})$.
- Proved: $\#(\mathbb{R})>\#(\mathbb{N})$.
- Infinite Hierarchy of Infinities.

Outline Galileo's arguments on infinity.

## Set Theory: Controversy

Cantor was strongly criticized by

- Leopold Kronecker.
> Henri Poincaré.
- Ludwig Wittgenstein.


## Set Theory: Controversy

Cantor was strongly criticized by

- Leopold Kronecker.
> Henri Poincaré.
- Ludwig Wittgenstein.

Cantor is a "corrupter of youth" (LK). Set Theory is a "grave disease" (HP). Set Theory is "nonsense; laughable; wrong!" (LW).

## Set Theory: Controversy

Cantor was strongly criticized by

- Leopold Kronecker.
> Henri Poincaré.
> Ludwig Wittgenstein.
Cantor is a "corrupter of youth" (LK). Set Theory is a "grave disease" (HP). Set Theory is "nonsense; laughable; wrong!" (LW).

Adverse criticism like this may well have contributed to Cantor's mental breakdown.

## Set Theory: A Difficult Birth

Set Theory brought into prominence several paradoxical results.

Many mathematicians had great difficulty accepting some of the stranger results.

Some of these are still the subject of discussion and disagreement today.

## Set Theory: A Difficult Birth

Set Theory brought into prominence several paradoxical results.

Many mathematicians had great difficulty accepting some of the stranger results.

Some of these are still the subject of discussion and disagreement today.

To illustrate the difficulty of accepting new ideas, let's consider the problem of a river flowing uphill.

Describe the blog post "Paddling Uphill".

## Set Theory: A Difficult Birth

Cantor's Set Theory was of profound philosophical interest.

It was so innovative that many mathematicians could not appreciate its fundamental value and importance.

## Set Theory: A Difficult Birth

Cantor's Set Theory was of profound philosophical interest.

It was so innovative that many mathematicians could not appreciate its fundamental value and importance.

Gösta Mittag-Leffler was reluctant to publish it in his Acta Mathematica. He said the work was "100 years ahead of its time".

David Hilbert said:
"We shall not be expelled from the paradise that Cantor has created for us."

## A Passionate Mathematician

In 1874, Cantor married Vally Guttmann.
They had six children. The last one, a son named Rudolph, was born in 1886.

## A Passionate Mathematician

## In 1874，Cantor married Vally Guttmann．

They had six children．The last one，a son named Rudolph，was born in 1886.

According to Wikipedia：
＂During his honeymoon in the Harz mountains， Cantor spent much time in mathematical discussions with Richard Dedekind．＂
［Cantor had met the renowned mathematician Dedekind two years earlier while he was on holiday in Switzerland．］

## Distraction: The Simpsons



Several writers of the Simpsons scripts have advanced mathematical training.

They "sneak" jokes into the programmes.

## Books on a Shelf



Ten books are arranged on a shelf. They include an Almanac (A) and a Bible (B).
Suppose A must be to the left of B (not necssarily beside it).
How many possible arrangements are there?

## Books on a Shelf



Ten books are arranged on a shelf. They include an Almanac (A) and a Bible (B). BIG IDEA: SYMMETRY.

Every SOLUTION correponds to a NONSOLUTION. Just switch positions of A and B!

## Books on a Shelf



Ten books are arranged on a shelf. They include an Almanac (A) and a Bible (B).

## BIG IDEA: SYMMETRY.

Every SOLUTION correponds to a NONSOLUTION.
Just switch positions of A and B!
The total number of arrangements is 10!. For half of these, $A$ is to the left of $B$.

So, answer is $\frac{1}{2}(10 \times 9 \times \cdots \times 1)=\frac{1}{2} \times 10$ !
Q.E.D.

## Outline

## Introduction

The Nippur Tablet

Georg Cantor

## Set Theory I

## Greek 1

## Topology

The Unary System

## Set Theory I

## The concept of set is very general.

Sets are the basic building-blocks of mathematics.

## Set Theory I

The concept of set is very general.
Sets are the basic building-blocks of mathematics.
Definition: A set is a collection of objects.
The objects in a set are called the elements.

## Set Theory I

The concept of set is very general.
Sets are the basic building-blocks of mathematics.
Definition: A set is a collection of objects.
The objects in a set are called the elements.
Examples:

- All the prime numbers, $\mathbb{P}$
- All even numbers: $\mathbb{E}=\{2,4,6,8 \ldots\}$
- All the people in Ireland: See Census returns.
> The colours of the rainbow: \{Red, ..., Violet\}.
- Light waves with wavelength $\lambda \in[390-700 \mathrm{~nm}]$


## Do You Remember Venn?

John Venn was a logician and philosopher, born in Hull, Yorkshire in 1834.

He studied at Cambridge University, graduating in 1857 as sixth Wrangler.

Venn introduced his diagrams in Symbolic Logic, a book published in 1881.



## Venn Diagrams



Venn diagrams are very valuable for showing elementary properties of sets.

They comprise a number of overlapping circles.
The interior of a circle represents a collection of numbers or objects or perhaps a more abstract set.

## The Universe of Discourse

We often draw a rectangle to represent the universe, the set of all objects under current consideration.

For example, suppose we consider all species of animals as the universe.

A rectangle represents this universe.
Two circles indicate subsets of animals of two different types.

## The Birds and the Bees



Two-legged Animals
Flying Animals

## The Birds and the Bees



Two-legged Animals
Flying Animals Where do we fit in this diagram?

## The Union of Two Sets

The aggregate of two sets is called their union.
Let one set contain all two-legged animals and the other contain all flying animals.


## The Union of Two Sets

The aggregate of two sets is called their union.
Let one set contain all two-legged animals and the other contain all flying animals.


Bears, birds and bees (and we) are in the union.

## The Intersection of Two Sets

The elements in both sets make up the intersection.
Let one set contain all two-legged animals and the other contain all flying animals.


Birds are in the intersection. Bears and bees are not.

## The Notation for Union and Intersection

## Let $A$ and $B$ be two sets

The union of the sets is

$$
A \cup B
$$

The intersection is

$$
A \cap B
$$



UCD
DUBLIN

## The Technical (Logical) Definitions

Let $A$ and $B$ be two sets.
The union of the sets $A \cup B$ is defined by

$$
[x \in A \cup B] \Longleftrightarrow[(x \in A) \vee(x \in B)]
$$

The intersection of the sets $A \cap B$ is defined by

$$
[x \in A \cap B] \Longleftrightarrow[(x \in A) \wedge(x \in B)]
$$

## The Technical (Logical) Definitions

Let $A$ and $B$ be two sets.
The union of the sets $A \cup B$ is defined by

$$
[x \in A \cup B] \Longleftrightarrow[(x \in A) \vee(x \in B)]
$$

The intersection of the sets $A \cap B$ is defined by

$$
[x \in A \cap B] \Longleftrightarrow[(x \in A) \wedge(x \in B)]
$$

There is an intimate connection between Set Theory and Symbolic Logic.

## Subset of a Set



For two sets $A$ and $B$ we write

$$
B \subset A \quad \text { or } \quad B \subseteq A
$$

to denote that $B$ is a subset of $A$.

## Subset of a Set



For two sets $A$ and $B$ we write

$$
B \subset A \quad \text { or } \quad B \subseteq A
$$

to denote that $B$ is a subset of $A$.
For more on set theory, see website of Claire Wladis http://www. cwladis.com/math100/Lecture4Sets.htm

## Intersections between 3 Sets



## Example: Intersection of 3 Sets

In the diagram the elements of the universe are all the people from Connacht.

Three subsets are shown:
> Red-heads
> Singers

- Left-handers.

All are from Connacht.


These sets overlap and, indeed, there are some copper-topped, crooning cithogues in Connacht.

## Three and Four Sets



8 Domains


14 Domains

## How Many Possibilities?

With just one set $A$, there are 2 possibilities:

$$
x \in A \quad \text { or } \quad x \notin A
$$

## How Many Possibilities?

With just one set $A$, there are 2 possibilities:

$$
x \in A \quad \text { or } \quad x \notin A
$$

With two sets, $A$ and $B$, there are 4 possibilities:

$$
\begin{array}{lll}
(x \in A) \wedge(x \in B) & \text { or } & (x \in A) \wedge(x \notin B) \\
(x \notin A) \wedge(x \in B) & \text { or } & (x \notin A) \wedge(x \notin B)
\end{array}
$$

## How Many Possibilities?

With just one set $A$, there are 2 possibilities:

$$
x \in A \quad \text { or } \quad x \notin A
$$

With two sets, $A$ and $B$, there are 4 possibilities:

$$
\begin{array}{lll}
(x \in A) \wedge(x \in B) & \text { or } & (x \in A) \wedge(x \notin B) \\
(x \notin A) \wedge(x \in B) & \text { or } & (x \notin A) \wedge(x \notin B)
\end{array}
$$

With three sets there are 8 possible conditions.

## How Many Possibilities?

With just one set $A$, there are 2 possibilities:

$$
x \in A \quad \text { or } \quad x \notin A
$$

With two sets, $A$ and $B$, there are 4 possibilities:

$$
\begin{array}{lll}
(x \in A) \wedge(x \in B) & \text { or } & (x \in A) \wedge(x \notin B) \\
(x \notin A) \wedge(x \in B) & \text { or } & (x \notin A) \wedge(x \notin B)
\end{array}
$$

With three sets there are 8 possible conditions.
With four sets there are 16 possible conditions.

## Three and Four Sets



8 Domains


14 Domains

## Three and Four Sets



8 Domains


14 Domains

With three sets there are 8 possible conditions. With four sets there are 16 possible conditions.

## The Intersection of 3 Sets

The three overlapping circles have attained an iconic status, seen in a huge range of contexts.

It is possible to devise Venn diagrams with four sets, but the simplicity of the diagram is lost.


## Exercise: Four Set Venn Diagram



Can you modify the 4 -set diagram to cover all cases.
(You will not be able to do it with circles only)

## Hint: Venn Diagrams for 5 and 7 Sets



Image from Wolfram MathWorld: Venn Diagram

## Solution: Next Week (if you are lucky)



We will find a surprising connection with a Cube

## Outline

## Introduction <br> The Nippur Tablet <br> Georg Cantor <br> Set Theory

Greek 1

## Topology

The Unary System

## 5amax

$\square$
回 $\square$
Topology

## The Greek Alphabet, Part 1

## Е入入ŋขıкó $\alpha \lambda \varphi \alpha ́ \beta \eta \tau о$

## The Greek Alphabet, Part 1

## Е $\lambda \lambda \eta \nu \imath \kappa o ́ \alpha \lambda \varphi \alpha ́ \beta \eta \tau о$

## Some Motivation

- Greek letters are used extensively in maths.
- Greek alphabet is the basis of the Roman one.
- Also the basis of the Cyrillic and others.


## The Greek Alphabet, Part 1

## E $\lambda \lambda \eta \nu \imath \kappa o ́ \alpha \lambda \varphi \alpha ́ \beta \eta \tau о$

## Some Motivation

- Greek letters are used extensively in maths.
- Greek alphabet is the basis of the Roman one.
- Also the basis of the Cyrillic and others.
- A great advantage for touring in Greece.
- You already know several of the letters.
- It is simple to learn in small sections.

| Letter | Name | Sound |  | Letter | Name | Sound |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Ancient ${ }^{[5]}$ | Modern ${ }^{[6]}$ |  |  | Ancient ${ }^{[5]}$ | Modern ${ }^{[6]}$ |
| A | alpha，${ }^{\text {a }} \lambda \underline{\text { c }}$ | ［a］［a：］ | ［a］ | N v | nu，vu | ［ n$]$ | ［ n ］ |
| B $\beta$ | beta，$\beta$ ¢́т $\alpha$ | ［b］ | ［v］ | 三 $¢$ | xi，¢ı | ［ks］ | ［ks］ |
| $\Gamma Y$ | gamma，үá ${ }^{\text {a }}$ ， | ［g］，［n］${ }^{[7]}$ | $\begin{gathered} {[8] \sim[j],} \\ {[n]^{[8]} \sim[n]^{[9]}} \end{gathered}$ | Oo | omicron，ópıкрог | ［0］ | ［0］ |
|  |  |  |  | $П \Pi$ | pi，mı | ［p］ | ［p］ |
| $\Delta$ ठ |  | ［d］ | ［ð］ | P $\rho$ | rho，$\rho \dot{\omega}$ | ［r］ | ［r］ |
| E \＆ | epsilon，$\dot{\varepsilon} \varphi \boldsymbol{\psi}$ \ov | ［e］ | ［e］ |  |  |  |  |
| Z こ | zeta，乙ֹ̇Ta | $[z d]^{\text {A }}$ | ［z］ | $\Sigma \sigma / \varsigma^{[13]}$ | sigma，oíyua | ［s］ | ［s］ |
|  |  |  |  | T ${ }_{\text {t }}$ | tau，tau | ［t］ | ［t］ |
| H $\eta$ | eta，¢́тa | ［ $\varepsilon$ ：］ | ［i］ | Y u | upsilon，ú | ［y］［y：］ | ［i］ |
| $\Theta \theta$ | theta，Өŋ́та | ［ ${ }^{\text {n }}$ ］ | ［ $\theta$ ］ |  |  |  |  |
| 1. | iota，ıш́та | ［i］［i：］ | ［i］，［i］${ }^{[10]}[n]{ }^{[11]}$ | $Ф \varphi$ | phi，$\varphi$ ו | ［ $\mathrm{p}^{\mathrm{h}}$ ］ | ［f］ |
|  |  |  |  | X X | chi，XI | ［ ${ }^{\dagger}$ ］ | $[x] \sim[c]$ |
| K K | kappa，кárma | ［k］ | $[\mathrm{k}] \sim[\mathrm{c}]$ | $\Psi \psi$ | psi，$\psi$ ו | ［ps］ | ［ps］ |
| $\wedge \lambda$ | lambda，$\lambda$ á ${ }^{\text {cosa }}$ | ［1］ | ［I］ |  |  |  |  |
| M $\mu$ | $\mathrm{mu}, \mu \mathrm{u}$ | ［m］ | ［m］ | $\Omega \omega$ | omega，$\omega \mu$ ¢́y ${ }^{\text {a }}$ | ［ว］ | ［ $]$ |

Figure ：The Greek Alphabet（from Wikipedia）
Alpha

Figure : 24 beautiful letters

## The First Six Letters

We will take the alphabet in groups of six letters.

$$
\begin{array}{cccccc}
\alpha & \beta & \gamma & \delta & \epsilon & \zeta \\
A & B & \Gamma & \Delta & E & Z
\end{array}
$$

Let us focus first on the small letters and come back to the big ones later.

## You know $\alpha$ and $\beta$ from the word Alphabet: $\alpha \beta$

## You know $\alpha$ and $\beta$ from the word Alphabet: $\alpha \beta$

## You have heard of gamma-rays, or $\gamma$-rays

You know $\alpha$ and $\beta$ from the word Alphabet: $\alpha \beta$
You have heard of gamma-rays, or $\gamma$-rays
Both $\delta$ and $\epsilon$ are widely used in maths. For example, the definition of continuity of function $f(x)$ at $x=a$ is

$$
\forall \epsilon>0 \exists \delta>0:|x-a|<\delta \Rightarrow|f(x)-f(a)|<\epsilon
$$

You know $\alpha$ and $\beta$ from the word Alphabet: $\alpha \beta$
You have heard of gamma-rays, or $\gamma$-rays
Both $\delta$ and $\epsilon$ are widely used in maths. For example, the definition of continuity of function $f(x)$ at $x=a$ is

$$
\forall \epsilon>0 \exists \delta>0:|x-a|<\delta \Rightarrow|f(x)-f(a)|<\epsilon
$$

A famous unsolved maths problem, Riemann's Hypothesis,
is concerned with zeros of the Riemann zeta-function:

$$
\zeta(z)=\sum_{n=1}^{\infty} \frac{1}{n^{z}}
$$

You know $\alpha$ and $\beta$ from the word Alphabet: $\alpha \beta$
You have heard of gamma-rays, or $\gamma$-rays
Both $\delta$ and $\epsilon$ are widely used in maths. For example, the definition of continuity of function $f(x)$ at $x=a$ is

$$
\forall \epsilon>0 \exists \delta>0:|x-a|<\delta \Rightarrow|f(x)-f(a)|<\epsilon
$$

A famous unsolved maths problem, Riemann's Hypothesis,
is concerned with zeros of the Riemann zeta-function:

$$
\zeta(z)=\sum_{n=1}^{\infty} \frac{1}{n^{z}}
$$

Now we already know the first six letters!

## End of Greek 101

## Outline

## Introduction

The Nippur Tablet

Georg Cantor
Set Theory
Greek 1

## Topology

The Unary System

## Topology: a Major Branch of Mathematics

Topology is all about continuity and connectivity, but the meaning of that will appear later.

We will look at a few aspects of Topology.

- The Bridges of Königsberg
> Doughnuts and Coffee-cups
- Knots and Links
- Nodes and Edges: Graphs
> The Möbius Band

In this lecture, we study The Bridges of Königsberg.

## The Bridges of Königsberg

One of the earliest topological puzzles was studied by the renowned Swiss mathematician Leonard Euler.

It is called 'The Seven Bridges of Königsberg'.
The goal is to find a route through that city, crossing each of seven bridges exactly once.

## The Bridges of Königsberg



## The Bridges of Königsberg



Euler reduced the problem to its essentials, removing all extraneous details.

He replaced the map above by the graph on the right.
A simple argument showed that no journey that crosses each bridge exactly once is possible.

Except at the termini of the route, each path arriving at a vertex must have a corresponding path leaving it.

Only two vertices with an odd number of edges are possible for a solution to exist.

## The Bridges of Königsberg



Exercize: Draw the diagram with $A, B, C$ and $D$ arranged clockwise at the corners of a square.

## The Bridges of Königsberg



## Königsberg Today



## The Bridges of St Petersburg




## The Bridges of St Petersburg

Euler spend much of his life in St Petersburg, a city with many rivers, canals and bridges.

Did he think about another problem like the Königsberg Bridges problem while there?

The map of central St Petersburg has twelve bridges.
An Euler cycle is a route that crosses all bridges exactly once and returns to the starting point?

Is there an Euler cycle starting at the Hermitage (marked "H" on the map)?

## The Bridges of Paris

Cue romantic music


## The Bridges of Paris

In central Paris, two small islands, île de la Cité and Île Saint-Louis, are linked to the Left and Right Banks of the Seine and to each other.

The number of bridges for each land-mass are:

- Left Bank: 7 bridges
- Right Bank: 7 bridges
- Île de la Cité: 10 bridges
- Île Saint-Louis: 6 bridges

The total is 30 . How many bridges are there?

## The Bridges of Paris

## RIGHT BANK

LEFT
BANK

## The Bridges of Paris

1. Starting from Saint-Michel on the Left Bank, walk continuously so as to cross each bridge once.
2. Start at Saint-Michel but find a closed route that ends back at the starting point.
3. Start at Notre-Dame Cathedral, on Île de la Cité, and cross each bridge exactly once.
4. Find a closed route that crosses each bridge once and arrives back at Notre-Dame.

Try these puzzles yourself. Use logic, not brute force!

## The Bridges of Paris



## The Bridges of Amsterdam



## Wikipedia Article

## WikipediA <br> The Free Encyclopedia

## Main page

Contents
Featured content
Current events
Random article
Donate to Wikipedia
Wikipedia store
Interaction
Help
About Wikipedia
Community portal
Recent changes
Contact page
Tools
What links here Related changes Upload file Special pages Permanent link Page information Wikidata item
Cite this page

## Seven Bridges of Königsberg

From Wikipedia, the free encyclopedia
This article is about an abstract problem. For the historical group of bridges in the city once known as Königsberg, and those of them that still exist, see § Present state of the bridges.


This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. (July 2015) (Learn how and when to remove this template message)

The Seven Bridges of Königsberg is a historically notable problem in mathematics. Its negative resolution by Leonhard Euler in 1736 laid the foundations of graph theory and prefigured the idea of topology. ${ }^{[1]}$

The city of Königsberg in Prussia (now Kaliningrad, Russia) was set on both sides of the Pregel River, and included two large islands which were connected to each other, or to the two mainland portions of the city, by seven bridges. The problem was to devise a walk through the city that would cross each of those bridges once and only once.
By way of specifying the logical task unambiguously, solutions involving either

1. reaching an island or mainland bank other than via one of the bridges, or
2. accessing any bridge without crossing to its other end
are explicitly unacceptable.
Euler proved that the problem has no solution. The difficulty he faced was the development of a suitable technique of analysis, and of subsequent tests that established this assertion with mathematical rigor.


Map of Königsberg in Euler's time showing the actual layout of the seven bridges, highlighting the river Pregel and the bridges

## Outline

## Introduction <br> The Nippur Tablet <br> Georg Cantor <br> Set Theory I <br> Greek 1 <br> Topology

The Unary System

## The Unary System

The simplest numeral system is the unary system.
Each natural number is represented by a corresponding number of symbols.

If the symbol is " |", the number seven would be represented by |||||||.

## The Unary System

The simplest numeral system is the unary system.
Each natural number is represented by a corresponding number of symbols.

If the symbol is " |", the number seven would be represented by |||||||.

Tally marks represent one such system, which is still in common use.

The unary system is only useful for small numbers.
The unary notation can be abbreviated, with new symbols for certain values.

## Sign-Value Notation

The five-bar gate system groups 5 strokes together.
Normally, distinct symbols are used for powers of 10.
If " |" stands for one, " $\wedge$ " for ten and " $\uparrow$ " for 100, then the number 123 becomes $\uparrow \wedge \wedge$ |||

## Sign-Value Notation

The five-bar gate system groups 5 strokes together.
Normally, distinct symbols are used for powers of 10.
If " |" stands for one, " $\Lambda$ " for ten and " $\uparrow$ " for 100, then the number 123 becomes $\Upsilon \wedge \wedge||\mid$

There is no need for a symbol for zero.
This is called sign-value notation.
Ancient Egyptian numerals were of this type.
Roman numerals were a modification of this idea.

## Egypyian Numerals

| Value | 1 | 10 | 100 | 1,000 | 10,000 | 100,000 | 1 million, or many |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hieroglyph |  | ก | $\bigcirc$ | $\varepsilon$ | $\int$ |  | N1 |
| Description | Single stroke | Heel bone | Coil of rope | Water lily (also called Lotus) | Bent <br> Finger | Tadpole or Frog | Man with both hands raised, perhaps Heh. ${ }^{[3]}$ |

Figure : From Wikipedia page https:
//en.wikipedia.org/wiki/Egyptian_numerals

## Egypyian Numerals

##  <br> 

## Egypyian Numerals



UCD


# The arrangement of symbols is not important. 

## What number is this?

## sisk

# The arrangement of symbols is not important. 

## What number is this?

This pattern represents the number 4622.

## Hebrew Numerals



> The 22 letters of the Hebrew alphabet were used also as numerals.

Each letter corresponded to a numerical value.

## Greek Numerals

|  | Units | Tens | Hundreds |
| :---: | :---: | :---: | :---: |
| 1 | $\alpha$ alpha | $\begin{gathered} 1 \\ \text { iota } \end{gathered}$ | $\underset{\text { no }}{\rho}$ |
| 2 | $\underset{\text { beta }}{\beta}$ | $\begin{gathered} \kappa \\ \text { kappa } \\ \hline \end{gathered}$ | $\sigma$ sigma |
| 3 | $\underset{\text { gamma }}{\gamma}$ | $\underset{\text { lambda }}{\lambda}$ | $\tau$ |
| 4 | $\underset{\text { delta }}{\delta}$ | $\underset{\text { mu }}{\mu}$ | $v$ upsilon |
| 5 | $\underset{\text { epsilon }}{\varepsilon}$ | $v$ | $\phi$ |
| 6 | $\underset{\text { digamma }}{\mathcal{F}}$ | $\begin{array}{r} \xi \\ \underset{x i}{ } \end{array}$ | $\underset{\text { chi }}{\chi}$ |
| 7 | $\zeta$ | $\underset{\text { omicron }}{\mathrm{O}}$ | $\underset{\text { psi }}{\Psi}$ |
| 8 | $\eta_{\text {eta }}$ | $\pi$ | $\omega$ <br> omega |
| 9 | $\begin{gathered} \theta \\ \text { theta } \end{gathered}$ | $\underset{\text { koppa }}{9}$ | $\underset{\text { sampi }}{\boldsymbol{\lambda}}$ |

The 24 letters of the Greek alphabet had corresponding numerical values.

They were supplemented by three additional letters, which are now archaic.

$$
243=\sigma \mu \gamma
$$

## Greek Numerals

| Arabic number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Greek number | $O$ | $\beta$ | $\gamma$ | § | $\mathcal{E}$ | $\Gamma$ | 5 | $\bigcap$ | $\theta$ |
| Greek name | alpha | beta | gamma | delta | epsilon | digamma | zeta | eta | theta |
| Sound | a | b | g | d | short e |  | Z | long e | th |
| Arabic number | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 |
| Greek number | $L$ | $К$ | $\lambda$ | $\mu$ | $V$ | $\zeta$ | 0 | TC | 0 |
| Greek name | iota | kappa | lambda | mu | nu | xi | omicron | pi | koppa |
| Sound | i | k/c | I | m | n | x | short 0 | p |  |
| Arabic number | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 |
| Greek number | $O$ | $\bigcirc$ | T | $\mathbf{U}$ |  | $X$ | $\psi$ | (1) | 70 |
| Greek name | rho | sigma | tau | upsilon | phi | chi | psi | omega | sampi |
| Sound | r | S | t | U | f/ph | ch | ps | long o |  |

## Thank you

