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AweSums: The Majesty of Maths

Bernhard Riemann (1826-66)
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AweSums: The Majesty of Maths

We aim to get a flavour of the Riemann Hypothesis.

It involves the zeros of the “Zeta function”:

ζ(s) =
∞∑

n=1

1
ns

So, we need to talk about several new topics.

In this lecture, we will look at complex numbers.
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Polynomials

Many functions can be approximated by polynomials.

What is a polynomial? A simple algebraic function,
a combination of integral powers of the variable x .

Examples of polynomials:

Linear: 5x − 7
Quadratic: x2 + 3x + 4

Cubic: x3 + 3x2 + 4x − 5
n-th order: a0 + a1x + a2x2 + · · ·+ anxn

Cubic with roots: 6(x − 3)(x − 5)(x + 2)
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Describe Polynomials on BB

Outline the properties and graphs of simple polynomials on the blackboard.
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Basis Functions for Approximation

Many functions can
be approximated by a
series of polynomial
functions.

Here we plot the
functions

1 x x2 x3 x4

which are used as ba-
sis functions.
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Polynomial Approximation. Taylor Series

Any “reasonable function” f (x) can usually be
approximated by a simple polynomial function

p(x) = a0 + a1x + a2x2 + · · ·+ anxn

Sometimes we can find the roots of the polynomial;
that is, the values of x for which it is zero.

Then we are able to write the polynomial as

p(x) = an(x − x1)(x − x2)(x − x3) · · · (x − xn)

It is simple to sketch the graph of this function.
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Real and Complex Roots

Explain on blackboard, with graphs, how the roots of polynomials of various degrees appear.

A quadratic may have two distinct roots, a single (repeated) root, or no (real) root at all.
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Taylor Series for Sine Wave

The Taylor series for sin x is

sin x = x − x3

3!
+

x5

5!
− x7

7!
+ · · ·

We truncate to get a sequence of polynomials:

p1(x) = x

p3(x) = x − x3

3!

p5(x) = x − x3

3! +
x5

5!

p7(x) = x − x3

3! +
x5

5! −
x7

7!

They approximate sin x better with increasing order.
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Polynomial Approximation to Sine Wave

p1(x) is a good fit only near x = 0.
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Polynomial Approximation to Sine Wave

p3(x) fits to about x = π/3.
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Polynomial Approximation to Sine Wave

p5(x) gets “over the first hump”.

Intro Taylor DIST08 Basel Complex Eul Form Fractals



Polynomial Approximation to Sine Wave

p7(x) is a good fit over a full wavelength.
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Polynomial Approximation to Sine Wave

First four approximations over a full wavelength.
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Polynomial Approximation to Sine Wave

First four approximations over a full wavelength.
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Polynomial Approximation to Sine Wave

p39(x) fits well over five wavelengths.
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Taylor Series for Cosine Wave

The Taylor series for cos x is

cos x = 1− x2

2!
+

x4

4!
− x6

6!
+ · · ·

We truncate to get a sequence of polynomials:

p0(x) = 1

p2(x) = 1− x2

2!

p4(x) = 1− x2

2! +
x4

4!

p6(x) = 1− x2

2! +
x4

4! −
x6

6!

They approximate cos x better with increasing order.
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Approximations to Cosine Wave

Four approximations to cos x .
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The Exponential Function

We have defined the exponential function as
I The inverse of the logarithmic function
I The limit of the sequence sn where

sn =
(

1 +
x
n

)n

as n −→∞

Now we will define it by an infinite series.
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The Binomial Expansion

If you have never heard of the binomial theorem please ignore this slide

If sn = (1 + x/n)n is expanded using the binomial
theorem, we get the following expression:

sn = 1 + n
(x

n

)
+

n(n − 1)
2!

(
x2

n2

)
+

n(n − 1)(n − 2)
3!

(
x3

n3

)
+ · · ·+

(
xn

n!

)

Letting n become large, this tends to the series

sn ≈ 1 + x +
x2

2!
+

x3

3!
+ · · ·
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The Exponential Function

Exponential function on four ranges.
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Taylor Series for Exponential Function

The Taylor series for exp x is

exp x = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · ·

We truncate to get a sequence of polynomials:

p0(x) = 1
p1(x) = 1 + x

p2(x) = 1 + x + x2

2!

p3(x) = 1 + x + x2

2! +
x3

3!

They approximate exp x better with increasing order.
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Approximations to Exponential Function

Four approximations to exp x .
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Distraction 8: Sum by Inspection

We will find the shaded area without calculation

Intro Taylor DIST08 Basel Complex Eul Form Fractals



Proof by Inspection
Look at the figure in two different ways

At each scale, we have three squares the same size,
and we keep one of them (black) and omit the others.

So, the area of the shaded squares is 1
3 .

However, it is also given by the series(
1
2

)2

+

(
1
4

)2

+

(
1
8

)2

+

(
1
16

)2

+ · · ·

Therefore we can sum the series:

1
4
+

1
16

+
1

64
+

1
256

+ · · · =
1
3
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The Basel Problem

Many mathematicians tried and failed to find
the sum of the series of inverse squares:

∞∑
n=1

1
n2 =

(
1
12 +

1
22 +

1
32 + · · ·

)
Leibniz and the Bernoullis were unsuccessful.

In 1734 Leonhard Euler found the sum
by a virtuoso performance.

We will now look at how he did it.
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Taylor Series for Sine Wave

The Taylor series for sin x is

sin x = x − x3

3!
+

x5

5!
− x7

7!
+ · · ·

The coefficient of x3 is −1
6 .

We will express sin x in another way and find an
alternative expression for the coeficient of x3.

Equating the two expressions will give
a solution of the Basel Problem.
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The zeros of the function sin x are at the points

· · · − 3π − 2π − π 0 π 2π 3π · · ·

Euler expressed sin x in terms of the roots:

sin x = B x
(

1− x
π

)(
1 +

x
π

)(
1− x

2π

)(
1 +

x
2π

)
· · ·

where B is a constant (limx→0
sin x

x = 1 implies B = 1).

We can alternatively write this as

sin x = Bx
[
1−

(x
π

)2
] [

1−
( x

2π

)2
] [

1−
( x

3π

)2
]
· · ·
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sin x = x
[
1−

(x
π

)2
] [

1−
( x

2π

)2
] [

1−
( x

3π

)2
]
· · ·

Multiplying out, the coefficient of x3 is

−
(

1
π

)2

−
(

1
2π

)2

−
(

1
3π

)2

− · · ·

But this must equate to the coefficient −1
6 from the

Taylor series:

−
(

1
π

)2

−
(

1
2π

)2

−
(

1
3π

)2

− · · · = −1
6

Therefore
∞∑

n=1

1
n2 =

(
1
12 +

1
22 +

1
32 + · · ·

)
=
π2

6
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Euler’s bravura solution of the Basel Problem is:
∞∑

n=1

1
n2 =

(
1
12 +

1
22 +

1
32 + · · ·

)
=
π2

6

The rate of convergence is surprisingly slow:
One million terms give only six digits of accuracy.

Table : Convergence of Basel Problem Series

10 terms Sum = 1.549768
100 terms Sum = 1.634984
1 000 terms Sum = 1.643935
10 000 terms Sum = 1.644834
100 000 terms Sum = 1.644924
1 000 000 terms Sum = 1.644933

π2/6 Sum = 1.644934
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The result is
∞∑

n=1

1
n2 =

(
1
12 +

1
22 +

1
32 + · · ·

)
=
π2

6

This is our first value of Riemann’s ζ-function.

ζ(s) =
∞∑

n=1

1
ns so ζ(2) =

π2

6

We found that when s = 1, the series is the divergent
harmonic series, so no value of ζ(1) is defined.
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Positive and Negative Integers

The natural numbers arose at an early stage:

Around 1550, negative numbers came into use.

This suggests that the concept of negative numbers
was difficult for mathematicians to grasp.
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The Real Number Line

Gradually, new types of number were recognised.
The gaps in the number line were “filled in”.

Still, all the numbers could be arranged on a line.

In the fifteenth century, the numbers “broke out”
and spread all over the plane.
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Extending Numbers to Solve Equations

A simple linear equation, ax = b, with a and b
positive, is easy to solve: just divide by a.

However, an equation like ax + b = 0 (a > 0 and b > 0)
can be solved only if negative quantities are admitted.

Mathematicians of the Italian Renaissance were the
first to solve equations with negative quantities.

Del Ferro, Tartaglia, Cardano, Ferrari and Bombelli
were foremost amongst these.

They found solutions to cubic and quartic equations.
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The Need for New Numbers

Quadratic equations like ax2 + bx + c = 0
could be solved in some circumstances.

In other cases, there was no solution:

It is clear that y = x2 +1 does not vanish on the x-axis.

Intro Taylor DIST08 Basel Complex Eul Form Fractals



The Need for New Numbers
Cubic equations like ax3 + bx2 + cx + d = 0 always
have a root: the graph always crosses the x-axis.

But the Cardano formula for the solution sometimes
involves square roots of negative quantities.

This forced mathematicians to consider
“imaginary” quantities.
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Numbers as Operators
We can interpret the product of two numbers

a× b

as the number a operating on the number b.

For example, 2× b corresponds to the operation
of doubling the number b.

It is remarkable that “a operating on b” gives
the same result as “b operating on a”

a× b = b × a

We see that a and b are both operators and numbers.
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From Number Line to Complex Plane

The positive number x is
marked to the right of the
origin on the number line.

1× x = x

We can regard 1 as an operator acting on x

It is noteworthy that 1× x = x × 1.
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From Number Line to Complex Plane

The number -1 operates on
x by rotating it through
180◦.

(−1)× x = −x

Multiplying by -1 means a rotation through π radians.

Positive numbers become negative and vice versa.
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From Number Line to Complex Plane

Multiplying twice by -1
gives a rotation through
360◦.

(−1)× (−1)× x = x

Multiplying twice by -1 means rotation through 2π.

Both positive and negative numbers unchanged.
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From Number Line to Complex Plane

Now imagine rotating
through 90◦ or π/2 radians.

This brings us away from
the real line.

We write the operator that rotates through π/2 as i .

What if we do this twice? We go through π radians!

Intro Taylor DIST08 Basel Complex Eul Form Fractals



From Number Line to Complex Plane

Multiply twice by i

This means a rotation
of 90◦ followed by another
rotation of 90◦.

So operating twice with i equals once with −1.

Therefore i × i = −1 which means i =
√
−1.
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Rotations about the Origin

i =
√
−1

i 2 = −1
i 3 = −i
i 4 = 1

i 0 = 1 =⇒ Rotate 0◦

i 1 = i =⇒ Rotate 90◦

i 2 = −1 =⇒ Rotate 180◦

i 3 = −i =⇒ Rotate 270◦

i 4 = 1 =⇒ Rotate 360◦
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Imaginary Numbers

We can get to any place on the vertical axis
by multiplying a real number y by i , written iy .

Numbers on the vertical axis are called
imaginary numbers.

This is unfortunate. They are every bit
as real as “real numbers”.
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Complex Numbers

We can combine a real number
x and an imaginary number iy
to give a complex number

z = x + iy

The complex number z = x + iy
is represented in the complex
plane by the point (x , y).

Every point in the plane gives a complex number.
Every complex number gives a point in the plane.
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The Complex Plane

This is the complex plane or Gaussian plane.

It is occasionally called the Argand diagram.

Intro Taylor DIST08 Basel Complex Eul Form Fractals



Calculating with Complex Numbers
Addition of complex numbers is very simple: let
z1 = x1 + iy1 and z2 = x2 + iy2. Then

z1 + z2 = (x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 + y2)

Multiplication is also simple: we just apply the rule
for multiplying i by itself:

z1 z2 = (x1 + iy1)× (x2 + iy2)

= x1x2 + x1iy2 + iy1x2 + iy1iy2

= (x1x2 − y1y2) + i(x1y2 + y1x2)

Now we have extended the number system:

N ⊂ Z ⊂ Q ⊂ R ⊂ C .
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Euler’s Fabulous Formula
Several surveys have been carried out to determine
the most beautiful mathematical formula.

The consistent winner has been the formula

eiπ + 1 = 0

First derived by Leonhard Euler.

This is a remarkable result. It combines in one
simple formula the five most important numbers

0 1 π e i

We will now show where the result comes from.
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Taylor Series for Sin, Cos and Exp

Recall the Taylor series for sin x , cos x and exp x:

sin x = x − x3

3!
+

x5

5!
− x7

7!
+ · · ·

cos x = 1− x2

2!
+

x4

4!
− x6

6!
+ · · ·

exp x = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · ·

These series are valid for complex arguments.
For example,

exp z = 1 + z +
z2

2!
+

z3

3!
+

z4

4!
+ · · ·
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We now substitute the value z = iθ into the series

exp z = 1 + z +
z2

2!
+

z3

3!
+

z4

4!
+ · · ·

exp(iθ) = 1 + iθ +
(iθ)2

2!
+

(iθ)3

3!
+

(iθ)4

4!
+

(iθ)5

5!
+ · · ·

= 1 + iθ − θ2

2!
− i

θ3

3!
+
θ4

4!
+ i

θ5

5!
+ · · ·

=

(
1− θ2

2!
+
θ4

4!
+ · · ·

)
+i
(
θ − θ3

3!
+
θ5

5!
+ · · ·

)
= cos(θ) + i sin(θ)
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Again,
exp(iθ) = cos(θ) + i sin(θ)

For θ = π this is

exp(iπ) = cos(π) + i sin(π)

But cos(π) = −1 and sin(π) = 0:

Therefore, we have exp(iπ) = −1 or

exp(iπ) + 1 = 0
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First point : 1

Second point : 1 + iπ

Third point :
(

1− π2

2!

)
+ iπ

Fourth point :
(

1− π2

2!

)
+ i
(
π − π3

3!

)
Fifth point :

(
1− π2

2! +
π4

4!

)
+ i
(
π − π3

3!

)
Sixth point :

(
1− π2

2! +
π4

4!

)
+ i
(
π − π3

3! +
π5

5!

)
Seventh point :

(
1− pi2

2! +
π4

4! −
π6

6!

)
+ i
(
π − π3

3! +
π5

5!

)
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Defining an Iterative Function

We define a sequence of complex numbers

z0 = 0 , zn+1 = z2
n + c

where c is a (constant) complex parameter.

This gives the sequence{
0, c, c2 + c, c4 + 2c3 + c2 + c, . . .

}
Does this sequence converge or diverge?

It depends on the value of the parameter c.
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Simple Example of Escape Region

We define a geometric series by an iterative process:

z0 = c
zn+1 = c zn

For |c| < 1 the sequence
{zn} converges to zero.

For |c| > 1 the sequence {zn}
diverges [escapes] to infinity.

We can colour-code the escape region to
indicate how fast the sequence diverges.
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“Is Minic Freagra ar Imeall”

All this AweSum Majesty comes from the simple
iterative process in the complex plane:

zn+1 = z2
n + c

We plot the “escape time” as a function of the
complex valued parameter c.

In the black region, {zn} remains bounded.
Outside this region, it diverges to infinity.

The rate of divergence depends on c. The plots
are colour-coded according to this rate.
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Thank you
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