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AweSums: The Majesty of Maths

We aim to get a flavour of the Riemann Hypothesis.

It involves the zeros of the “Zeta function”:

ζ(s) =
∞∑

n=1

1
ns

So, we need to talk about several new topics.

In this lecture, we will look at trigonometric functions.
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Infinite Series

A series is an infinite sum of numbers
indexed by the natural numbers:

S = a1 + a2 + a3 + · · ·+ an + . . .

We write this using sigma-notation:

S =
∞∑

n=1

an

The convergence of S depends on the terms an.

There is a wide range of convergence tests.
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A Geometric Series

We looked at the geometric series

1 + 1
2 + 1

4 + 1
8 + 1

16 + . . .

where each term is half the previous one.

The sum gets closer and closer to 2
as n becomes larger and larger.

The series converges to 2.
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A Geometric Series
More generally, we write the geometric series

S = 1 + x + x2 + x3 + x4 + · · ·

Clearly, if |x | < 1 the terms are getting smaller
whereas if |x | > 1 the terms are getting larger.

We can show that for |x | < 1 the sum S is
1

(1− x)

To demonstrate this, subtract x S from S:

S = 1 + x + x2 + x3 + x4 + x5 + · · ·
−x S = − x − x2 − x3 − x4 − x5 − · · ·

− − −−−− −−− −−−−−−−−−−−−−−−
(1− x)S = 1 So S = 1

1−x
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f (x) = 1
1−x

This function “blows up” at x = 1 but y = 1
2 at x = −1.
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Analytical Continuation
We define a function f (x) by the geometric series

f (x) = 1 + x + x2 + x3 + x4 + · · ·

which converges for |x | < 1 and diverges for |x | ≥ 1.

We showed that for |x | < 1 the sum is 1
1−x . Therefore

f (x) = 1
1−x , |x | < 1

This function also has a meaning for |x | > 1.
We have effectively extended the function
beyond the range −1 < x < +1.

This process is called analytic continuation.
It is used to extend Riemann’s zeta-function.
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Special Cases of the Geometric Series

S = 1 + x + x2 + x3 + x4 + · · ·

If x = 1
2 we get the familiar series converging to 2:

1 + 1
2 + 1

4 + 1
8 + 1

16 + . . .

If x = 1 we get a divergent sum of ones

1 + 1 + 1 + 1 + 1 + 1 + · · ·

If x = −1 we get the alternating sum

1− 1 + 1− 1 + 1 · · ·

The partial sums alternate between 1 and 0.
The series does not converge.
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f (x) = 1
1−x

This function “blows up” at x = 1 but y = 1
2 at x = −1.
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Curious Interpretation. Summation
If x = −1 we get the alternating sum

1− 1 + 1− 1 + 1 · · ·

The partial sums alternate between 1 and −1.
The series does not converge.

But let us consider the sequence of partial sums:

s1 = 1 s2 = 0 s3 = 1 s4 = 0 s5 = 1 · · ·

In a curious way, this suggests an average value of 1
2 .

This can be made rigorous: the Cesàro sum is the
limit of the mean of the partial sums of the series.
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The Harmonic Series
Let’s look at a few other interesting infinite series.

We defined the harmonic series as

H = 1 + 1
2 + 1

3 + 1
4 + 1

5 + · · ·

The sum becomes larger without limit: it diverges!

Hn ∼ log n + γ

We defined the alternating harmonic series:

1− 1
2 + 1

3 −
1
4 + 1

5 −
1
6 + · · · = log 2

which is conditionally convergent.
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The Inverse Prime Series
The sum of the inverses of the prime numbers

P =
1
2
+

1
3
+

1
5
+

1
7
+

1
11

+ · · · =
∞∑

n=1

1
pn

diverges, but very, very slowly.

It can be shown that

1 +
1
2
+

1
3
+

1
5
+ · · ·+ 1

p
∼ log log p + M

where M is known as the Mertens number.

Even for p ≈ 10100, the sum is less than 6.
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The Leibniz Series for π

1− 1
3
+

1
5
− 1

7
+

1
9
− 1

11
+ · · · = π

4

This is also called the Madhava-Leibniz series.

The following series was discovered by the (14th cen.)
Indian mathematician Madhava of Sangamagrama

arctan x = x − x3

3
+

x5

5
− x7

7
+ · · ·

The Leibniz formula follows by setting x = 1.

The series is of no practical use in evaluating π.
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Distraction 8: The Galway Girl

http://www.skibbereeneagle.ie/...
.../ireland/galway-girl/
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The Galway Girl

I want to see my girlfriend in Galway.
But I’m shy! Will I ever get there?

I I travel half-way to Galway.
I Losing my nerve, I return towards Dublin.
I But, half-way back, I regain courage.
I I travel half the distance to Galway.
I Then I travel half the distance to Dublin.
I Back and forth, hither and thither . . .

Is there any hope, or will my love remain unrequited?
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The Galway Girl
Let my distance from Dublin be x0 = 0 at the outset.
Let the distance from Dublin to Galway be 1.

After an even number of stages, the distance is x2n.

The next two stages are:

x2n+1 = 1
2(x2n + 1) and x2n+2 = 1

2x2n+1

Therefore, x2n+2 = 1
4x2n +

1
4

Suppose that this sequence converges to X . Then

X = 1
4X + 1

4 which means X = 1
3

Does this mean that the sequence {xn} converges?
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The Galway Girl
We found that x2n+1 = 1

2(x2n + 1) and x2n+2 = 1
4x2n +

1
4 .

But this sequence does not converge. It oscillates,
in a limit cycle, between x = 1

3 and x = 2
3 .

I am doomed to spend my life travelling back
and forth between Kinnegad and Ballinasloe.
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The Galway Girl: Plan B

I get more courageous. I have a new plan.

Each time I travel half-way to Galway,
I return half the distance I have just travelled.

Will I ever get to see the Galway Girl?
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The Galway Girl: Plan B

Let my distance from Dublin be x0 = 0 at the outset.
Let the distance from Dublin to Galway be 1.

The next two stages are:

x2n+1 = 1
2(x2n + 1) and x2n+2 = 1

2(x2n + x2n+1)

Therefore, x2n+2 = 3
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1
4

Suppose that this sequence converges to X . Then

X = 3
4X + 1

4 which means X = 1

The sequence {xn} converges to 1?
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The Galway Girl: Plan B
So, do I get to see the girl?

How far do I travel? Assuming constant speed,
How long does it take to reach Galway?

Remember Zeno.
Total distance 3 units.
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Angular Measure: Degrees

The Babylonians divided the circle into 360 degrees.

I Their number system
used the base 60.

I It is easy to draw a
hexagon in a circle.

I There are about 360
days in a year.

We still use the 360◦ division of the circle today.
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Angular Measure: Radians

A radian is an angle in
a circle with arc length
equal to its radius.

1 rad ≈ 57.3◦

There are 2π radians
in a full circle.

A right angle is both
90◦ and π/2 radians.

Radian measure is the standard method
of measuring angles in mathematics.
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Sides of a Right Triangle

The side opposite the right angle is the hypotenuse.

We choose another angle θ.
The side close to θ is the adjacent side.

The side farthest from θ is the opposite side.
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Sine, Cosine and Tangent

The trigonometric functions are ratios of sides
of a right-angled triangle.

sin(θ) =
opposite

hypotenuse

cos(θ) =
adjacent

hypotenuse

tan(θ) =
opposite
adjacent

The usual mnemonic is SohCahToa or SOH CAH TOA
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Unit Circle

By Pythagoras’ Theorem,

x2 + y2 = 1
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Unit Circle

On the unit circle we have

x = cos(θ)
y = sin(θ)

By Pythagoras’ Theorem,

x2 + y2 = 1

Therefore

(cos θ)2 + (sin θ)2 = 1
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Unit Circle

Now let us denote
the angle by t .

This is to suggest time.

How do x and y vary
as the time passes?
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Animation of a Sine Wave

https://en.wikipedia.org/wiki/Sine/
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Sine Waves over One Period
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Sine Waves over One Period
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Introduce Polynomials on BB

Outline the properties and graphs of
simple polynomials on the blackboard.
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Basis Functions for Approximation
Many functions can be
approximated by a series
of polynomial functions.

Here we plot the functions

1 x x2 x3 x4

used as basis functions.

Most functions f (x) can be approximated
by a simple polynomial function of the form

p(x) = a0 + a1x + a2x2 + · · ·+ anxn
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Polynomial Approximation. Taylor Series

Any “reasonable function” f (x) can usually be
approximated by a simple polynomial function

p(x) = a0 + a1x + a2x2 + · · ·+ anxn

Sometimes we can find the roots of the polynomial;
that is, the values of x for which it is zero.

Then we are able to write the polynomial as

p(x) = an(x − x1)(x − x2)(x − x3) · · · (x − xn)

It is simple to sketch the graph of this function.
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Taylor Series for Sine Wave

The Taylor series for sin x is

sin x = x − x3

3!
+

x5

5!
− x7

7!
+ · · ·

We truncate to get a sequence of polynomials:

p1(x) = x

p3(x) = x − x3

3!

p5(x) = x − x3

3! +
x5

5!

p7(x) = x − x3

3! +
x5

5! −
x7

7!

They approximate sin x better with increasing order.
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Polynomial Approximation to Sine Wave

p7(x) is a good fit over a full wavelength.
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Polynomial Approximation to Sine Wave

p39(x) fits well over five wavelengths.
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Thank you
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