AweSums:

The Majesty of Mathematics

Peter Lynch School of Mathematics & Statistics University College Dublin

Evening Course, UCD, Autumn 2016

Outline

Introduction 8

Series Again

Galway Girl

Trigonometry

Taylor Series

ntro

Outline

Introduction 8

Series Again

Galway Girl

Trigonometry

Taylor Series

(曰〉《曰〉《曰〉《曰〉《

AweSums: The Majesty of Maths

Bernhard Riemann (1826-66)

Intro

GG

Trig

AweSums: The Majesty of Maths

We aim to get a flavour of the Riemann Hypothesis.

It involves the zeros of the "Zeta function":

 $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$

So, we need to talk about several new topics.

Trig

AweSums: The Majesty of Maths

We aim to get a flavour of the Riemann Hypothesis.

It involves the zeros of the "Zeta function":

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

So, we need to talk about several new topics.

In this lecture, we will look at trigonometric functions.

Outline

Introduction 8

Series Again

Galway Girl

Trigonometry

Taylor Series

Intro

Infinite Series

A series is an infinite sum of numbers indexed by the natural numbers:

 $S = a_1 + a_2 + a_3 + \cdots + a_n + \ldots$

We write this using sigma-notation:

$$S = \sum_{n=1}^{\infty} a_n$$

Tavlor

Trig

Infinite Series

A series is an infinite sum of numbers indexed by the natural numbers:

 $S = a_1 + a_2 + a_3 + \cdots + \overline{a_n + \ldots}$

We write this using sigma-notation:

$$S = \sum_{n=1}^{\infty} a_n$$

The convergence of S depends on the terms a_n .

There is a wide range of convergence tests.

Trig

A Geometric Series

We looked at the geometric series

$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots$$

where each term is half the previous one.

The sum gets closer and closer to 2 as *n* becomes larger and larger.

The series converges to 2.

Tavlor

A Geometric Series More generally, we write the geometric series

 $S = 1 + x + x^2 + x^3 + x^4 + \cdots$

Clearly, if |x| < 1 the terms are getting smaller whereas if |x| > 1 the terms are getting larger.

Trig

A Geometric Series More generally, we write the geometric series

 $S=1+x+x^2+x^3+x^4+\cdots$

Clearly, if |x| < 1 the terms are getting smaller whereas if |x| > 1 the terms are getting larger.

We can show that for |x| < 1 the sum *S* is $\frac{1}{(1-x)}$

Series

Intro

GG

Trig

A Geometric Series More generally, we write the geometric series

 $S = 1 + x + x^2 + x^3 + x^4 + \cdots$

Clearly, if |x| < 1 the terms are getting smaller whereas if |x| > 1 the terms are getting larger.

We can show that for |x| < 1 the sum *S* is $\frac{1}{(1-x)}$

To demonstrate this, subtract *x S* from *S*:

Intro

$$S = 1 + x + x^{2} + x^{3} + x^{4} + x^{5} + \cdots$$

-x S = -x - x^{2} - x^{3} - x^{4} - x^{5} - \cdots
(1 - x) S = 1 So $S = \frac{1}{1 - x}$
Series GG Tig Taylor

$f(x) = \frac{1}{1-x}$

Analytical Continuation We define a function f(x) by the geometric series

$$f(x) = 1 + x + x^2 + x^3 + x^4 + \cdots$$

which converges for |x| < 1 and diverges for $|x| \ge 1$.

Trig

Analytical Continuation We define a function f(x) by the geometric series $f(x) = 1 + x + x^2 + x^3 + x^4 + \cdots$

which converges for |x| < 1 and diverges for $|x| \ge 1$. We showed that for |x| < 1 the sum is $\frac{1}{1-x}$. Therefore

$$f(x)=\tfrac{1}{1-x}, \qquad |x|<1$$

Tavlor

Trig

Analytical Continuation We define a function f(x) by the geometric series $f(x) = 1 + x + x^2 + x^3 + x^4 + \cdots$

which converges for |x| < 1 and diverges for $|x| \ge 1$.

We showed that for |x| < 1 the sum is $\frac{1}{1-x}$. Therefore

$$f(x)=\tfrac{1}{1-x}, \qquad |x|<1$$

This function also has a meaning for |x| > 1. We have effectively extended the function beyond the range -1 < x < +1.

This process is called analytic continuation. It is used to extend Riemann's zeta-function.

 $S = 1 + x + x^2 + x^3 + \overline{x^4 + \cdots}$

(ㅁ`ヾ@``ヾ゠ヽヾ゠

Intro

Trig

 $S=1+x+x^2+x^3+x^4+\cdots$

If $x = \frac{1}{2}$ we get the familiar series converging to 2:

 $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots$

Trig

 $S=1+x+x^2+x^3+x^4+\cdots$

If $x = \frac{1}{2}$ we get the familiar series converging to 2:

 $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots$

If x = 1 we get a divergent sum of ones

 $1 + 1 + 1 + 1 + 1 + 1 + \cdots$

Tavlor

GG

Trig

 $S = 1 + x + x^2 + x^3 + x^4 + \cdots$ If $x = \frac{1}{2}$ we get the familiar series converging to 2: $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots$ If x = 1 we get a divergent sum of ones $1 + 1 + 1 + 1 + 1 + 1 + \dots$ If x = -1 we get the alternating sum $1 - 1 + 1 - 1 + 1 \cdots$

The partial sums alternate between 1 and 0. The series does not converge.

Intro

GG

Trig

$f(x) = \frac{1}{1-x}$

Curious Interpretation. Summation

If x = -1 we get the alternating sum

 $1-1+1-1+1\cdots$

The partial sums alternate between 1 and -1. The series does not converge.

Tavlor

Trig

Curious Interpretation. Summation

If x = -1 we get the alternating sum

 $1-1+1-1+1\cdots$

The partial sums alternate between 1 and -1. The series does not converge.

But let us consider the sequence of partial sums:

$$s_1 = 1$$
 $s_2 = 0$ $s_3 = 1$ $s_4 = 0$ $s_5 = 1 \cdots$

In a curious way, this suggests an average value of $\frac{1}{2}$.

Trig

Curious Interpretation. Summation

If x = -1 we get the alternating sum

 $1-1+1-1+1\cdots$

The partial sums alternate between 1 and -1. The series does not converge.

But let us consider the sequence of partial sums:

 $s_1 = 1$ $s_2 = 0$ $s_3 = 1$ $s_4 = 0$ $s_5 = 1 \cdots$

In a curious way, this suggests an average value of $\frac{1}{2}$.

This can be made rigorous: the Cesàro sum is the limit of the mean of the partial sums of the series.

The Harmonic Series

Let's look at a few other interesting infinite series.

We defined the harmonic series as

$$H = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \cdots$$

The sum becomes larger without limit: it diverges!

 $H_n \sim \log n + \gamma$

Taylor

Trig

The Harmonic Series

Let's look at a few other interesting infinite series. We defined the harmonic series as

$$H = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \cdots$$

The sum becomes larger without limit: it diverges!

 $H_n \sim \log n + \gamma$

We defined the alternating harmonic series:

 $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots = \log 2$

which is conditionally convergent.

GG

The Inverse Prime Series

The sum of the inverses of the prime numbers

$$P = \frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \frac{1}{11} + \dots = \sum_{n=1}^{\infty} \frac{1}{p_n}$$

diverges, but very, very slowly.

Trig

The Inverse Prime Series

The sum of the inverses of the prime numbers

$$P = \frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \frac{1}{11} + \dots = \sum_{n=1}^{\infty} \frac{1}{p_n}$$

diverges, but very, very slowly.

It can be shown that

$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{p} \sim \log \log p + M$$

where *M* is known as the Mertens number.

Tavlor

The Inverse Prime Series

The sum of the inverses of the prime numbers

$$P = \frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \frac{1}{11} + \dots = \sum_{n=1}^{\infty} \frac{1}{p_n}$$

diverges, but very, very slowly.

It can be shown that

$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{p} \sim \log \log p + M$$

where *M* is known as the Mertens number.

Even for $p \approx 10^{100}$, the sum is less than 6.

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \dots = \frac{\pi}{4}$$

니머 에 에 빠 에 운 에 운 에 운

Intro

GG

Trig

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \dots = \frac{\pi}{4}$$

This is also called the Madhava-Leibniz series.

Trig

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \dots = \frac{\pi}{4}$$

This is also called the Madhava-Leibniz series.

The following series was discovered by the (14th cen.) Indian mathematician Madhava of Sangamagrama

arctan
$$x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$$

The Leibniz formula follows by setting x = 1.

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \dots = \frac{\pi}{4}$$

This is also called the Madhava-Leibniz series.

The following series was discovered by the (14th cen.) Indian mathematician Madhava of Sangamagrama

arctan
$$x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$$

The Leibniz formula follows by setting x = 1.

The series is of no practical use in evaluating π .

Tavlor

Trig

Outline

Introduction 8

Series Again

Galway Girl

Trigonometry

Taylor Series

(ㅁ▷◀醯▷◀롣▷◀

Intro

Distraction 8: The Galway Girl

http://www.skibbereeneagle.ie/... .../ireland/galway-girl/

GG
I want to see my girlfriend in Galway. But I'm shy! Will I ever get there?

Trig

I want to see my girlfriend in Galway. But I'm shy! Will I ever get there?

- I travel half-way to Galway.
- Losing my nerve, I return towards Dublin.
- But, half-way back, I regain courage.
- I travel half the distance to Galway.
- Then I travel half the distance to Dublin.
- Back and forth, hither and thither ...

Tavlor

I want to see my girlfriend in Galway. But I'm shy! Will I ever get there?

- I travel half-way to Galway.
- Losing my nerve, I return towards Dublin.
- But, half-way back, I regain courage.
- I travel half the distance to Galway.
- Then I travel half the distance to Dublin.
- Back and forth, hither and thither ...

Is there any hope, or will my love remain unrequited?

Trig

Let my distance from Dublin be $x_0 = 0$ at the outset. Let the distance from Dublin to Galway be 1.

After an even number of stages, the distance is x_{2n} .

Let my distance from Dublin be $x_0 = 0$ at the outset. Let the distance from Dublin to Galway be 1.

After an even number of stages, the distance is x_{2n} .

The next two stages are:

 $x_{2n+1} = \frac{1}{2}(x_{2n}+1)$ and $x_{2n+2} = \frac{1}{2}x_{2n+1}$ Therefore, $x_{2n+2} = \frac{1}{4}x_{2n} + \frac{1}{4}$

Tavlor

Trig

Let my distance from Dublin be $x_0 = 0$ at the outset. Let the distance from Dublin to Galway be 1.

After an even number of stages, the distance is x_{2n} .

The next two stages are:

 $x_{2n+1} = \frac{1}{2}(x_{2n}+1)$ and $x_{2n+2} = \frac{1}{2}x_{2n+1}$ Therefore, $x_{2n+2} = \frac{1}{4}x_{2n} + \frac{1}{4}$

Suppose that this sequence converges to X. Then

We found that $x_{2n+1} = \frac{1}{2}(x_{2n}+1)$ and $x_{2n+2} = \frac{1}{4}x_{2n} + \frac{1}{4}$.

(ㅁ▷◀醯▷◄롣▷◀봄

Intro

Trig

We found that $x_{2n+1} = \frac{1}{2}(x_{2n}+1)$ and $x_{2n+2} = \frac{1}{4}x_{2n} + \frac{1}{4}$.

But this sequence does not converge. It oscillates, in a limit cycle, between $x = \frac{1}{3}$ and $x = \frac{2}{3}$.

Series

Intro

Trig

We found that $x_{2n+1} = \frac{1}{2}(x_{2n}+1)$ and $x_{2n+2} = \frac{1}{4}x_{2n} + \frac{1}{4}$.

But this sequence does not converge. It oscillates, in a limit cycle, between $x = \frac{1}{3}$ and $x = \frac{2}{3}$.

I am doomed to spend my life travelling back and forth between Kinnegad and Ballinasloe.

Intro

GG

Trig

I get more courageous. I have a new plan.

Each time I travel half-way to Galway, I return half the distance I have just travelled.

Will I ever get to see the Galway Girl?

Let my distance from Dublin be $x_0 = 0$ at the outset. Let the distance from Dublin to Galway be 1.

Intro

Trig

Let my distance from Dublin be $x_0 = 0$ at the outset. Let the distance from Dublin to Galway be 1.

The next two stages are:

 $x_{2n+1} = \frac{1}{2}(x_{2n} + 1)$ and

$$X_{2n+2} = \frac{1}{2}(X_{2n} + X_{2n+1})$$

Therefore, $x_{2n+2} = \frac{3}{4}x_{2n} + \frac{1}{4}$

Tavlor

Trig

Let my distance from Dublin be $x_0 = 0$ at the outset. Let the distance from Dublin to Galway be 1.

The next two stages are:

 $x_{2n+1} = \frac{1}{2}(x_{2n}+1)$ and $x_{2n+2} = \frac{1}{2}(x_{2n}+x_{2n+1})$

Therefore, $x_{2n+2} = \frac{3}{4}x_{2n} + \frac{1}{4}$

Suppose that this sequence converges to X. Then

 $X = \frac{3}{4}X + \frac{1}{4}$ which means X = 1

The sequence $\{x_n\}$ converges to 1?

The Galway Girl: Plan B So, do I get to see the girl?

Intro

GG

Trig

The Galway Girl: Plan B So, do I get to see the girl?

How far do I travel? Assuming constant speed, How long does it take to reach Galway?

Intro

GG

Trig

1

The Galway Girl: Plan B So, do I get to see the girl?

How far do I travel? Assuming constant speed, How long does it take to reach Galway?

Remember Zeno.

Total distance 3 units.

Intro

GG

Trig

g

Outline

Introduction 8

Series Again

Galway Girl

Trigonometry

Taylor Series

- ㅁ ▷ ◀ 븝 ▷ ◀ 튼 ▷ ◀ 튼

Intro

Trig

Angular Measure: Degrees

The Babylonians divided the circle into 360 degrees.

- Their number system used the base 60.
- It is easy to draw a hexagon in a circle.
- There are about 360 days in a year.

We still use the 360° division of the circle today.

Intro

GG

Angular Measure: Radians

A radian is an angle in a circle with arc length equal to its radius.

 $1 \,\mathrm{r}ad \approx 57.3^\circ$

There are 2π radians in a full circle.

A right angle is both 90° and $\pi/2$ radians.

Radian measure is the standard method of measuring angles in mathematics.

Trig

Sides of a Right Triangle

The side opposite the right angle is the hypotenuse.

We choose another angle θ . The side close to θ is the adjacent side.

The side farthest from θ is the opposite side.

GG

Sine, Cosine and Tangent

Series

The trigonometric functions are ratios of sides of a right-angled triangle.

The usual mnemonic is SohCahToa or SOH CAH TOA

Trig

Unit Circle

By Pythagoras' Theorem,

$$x^2 + y^2 = 1$$

Intro

GG

Trig

Unit Circle

On the unit circle we have

$$\begin{array}{rcl} x & = & \cos(\theta) \\ y & = & \sin(\theta) \end{array}$$

By Pythagoras' Theorem,

$$x^2 + y^2 = 1$$

Therefore

 $(\cos\theta)^2 + (\sin\theta)^2 = 1$

Intro

Unit Circle

Now let us denote the angle by *t*.

This is to suggest time.

How do *x* and *y* vary as the time passes?

Animation of a Sine Wave

https://en.wikipedia.org/wiki/Sine/

Taylor

Intro

Trig

Sine Waves over One Period

Trig

Sine Waves over One Period

《曰》《卽》《岂》《��

Intro

GG

Trig

Outline

Introduction 8

Series Again

Galway Girl

Trigonometry

Taylor Series

Intro

Trig

Introduce Polynomials on BB

Outline the properties and graphs of simple polynomials on the blackboard.

Intro

Trig

Basis Functions for Approximation

Many functions can be approximated by a series of polynomial functions.

Here we plot the functions

used as basis functions.

Intro

GG

Trig

Basis Functions for Approximation

Many functions can be approximated by a series of polynomial functions.

Here we plot the functions

used as basis functions.

Most functions f(x) can be approximated by a simple polynomial function of the form

$$p(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$$

Polynomial Approximation. Taylor Series

Any "reasonable function" f(x) can usually be approximated by a simple polynomial function

$$p(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_n x'$$

Intr

Trig

Polynomial Approximation. Taylor Series

Any "reasonable function" f(x) can usually be approximated by a simple polynomial function

$$p(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$$

Sometimes we can find the roots of the polynomial; that is, the values of *x* for which it is zero.

Then we are able to write the polynomial as

$$p(x) = a_n(x - x_1)(x - x_2)(x - x_3) \cdots (x - x_n)$$

It is simple to sketch the graph of this function.

Trig

Taylor Series for Sine Wave

The Taylor series for sin x is

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

Series

GG

Trig

Taylor Series for Sine Wave

The Taylor series for sin x is

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

We truncate to get a sequence of polynomials:

$$p_{1}(x) = x$$

$$p_{3}(x) = x - \frac{x^{3}}{3!}$$

$$p_{5}(x) = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!}$$

$$p_{7}(x) = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!}$$

They approximate sin x better with increasing order.

Intro

Tria

Tavlor

Polynomial Approximation to Sine Wave

Intro
Polynomial Approximation to Sine Wave

Taylor

Series

Thank you

Intro

Taylor