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AweSums: The Majesty of Maths

We aim to get a flavour of the Riemann Hypothesis.

It involves the zeros of the “Zeta function”:

ζ(s) =
∞∑

n=1

1
ns

So, we need to talk about several new topics:
I What is a function?
I What is an infinite series?
I What is a complex variable?

In this lecture, we will look at infinite series.
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A Little Puzzle: Solution
Which is bigger: A Googol or 100!

1 googol = 10100 100! = 1× 2× 3× · · · × 100

Let us follow the example of Gauss:

100! = 1 × 2 × 3 × · · · × 99 × 100
1 googol = 10 × 10 × 10 × · · · × 10 × 10

1× 100 = 100
2× 99 = 198 > 100
3× 98 = 294 > 100

· · ·
50× 51 = 2550 > 100

So factorial 100 is bigger than a googol. Much bigger!
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A Little Puzzle

More technically, we have 50 products of the form

[50 1
2 − (n − 1

2 )]× [50 1
2 + (n − 1

2 )] , n ∈ {1, 2, . . . , 50}

But this is equal to
(50 1

2 )
2 − (n − 1

2 )
2

The smallest value occurs for n = 50:

(50 + 1
2 )

2 − (50− 1
2 )

2 = (502 + 50 + 1
4 )− (502 − 50 + 1

4 ) = 100

So all products are greater than or equal to 100.
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Definition of Natural Logarithm
The natural log is the area shown in this graph:

For example, log 2.5 is the area is between 1 and 2.5.
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Loge x for 0 < x < 10
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Key Properties
We have found that

For x > 1 log x > 0
For x = 1 log x = 0

For 0 < x < 1 log x < 0
log A + log B = log A B

More properties:

log A− log B = log A/B
log 1/A = − log A

log A2 = 2 log A
log Ar = r log A
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Crucial Property of Logs
We found the important property of logarithms:

It turns multiplication into addition.
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Crucial Property of Logs

log A + log B = log A B

Suppose we wish to multiply A by B.

We add the logarithms, log A and log B.

This gives us log AB.

Then we invert the logarithm to get A B.
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What Number has Natural Logarithm 1?
There is a number that makes the area equal to one:

This is Euler’s number e.
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Euler’s Number e
Euler’s number e may be defined in many ways.
For example, it may be defined as a limit:

e = lim
n→∞

(
1 +

1
n

)n

It is often described in terms of compound interest.

Suppose we invest 1 Euro at interest rate X%.
We write x = X/100. After one year, we have:(

1 +
X

100

)
= (1 + x) Euros

after a year.

Intro Euler’s e Exp&Log Euler Sequences & Series



If the interest is calculated every six months,
then two payments are made in a year so we get(

1 +
x
2

)2

If the interest is calculated every three months,
then four payments are made in a year so we get(

1 +
x
4

)4

If the interest is calculated n times per year,
then n payments are made and we get(

1 +
x
n

)n

Ultimately, with continuous computation of interest,

e x = lim
n−→∞

(
1 +

x
n

)n
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Euler’s Number e

Let’s calculate this for a few values of n:

For n = 1 (1 + 1/1)1 = 2.0
For n = 2 (1 + 1/2)2 = 2.25
For n = 3 (1 + 1/3)3 = 2.37
For n = 4 (1 + 1/4)4 = 2.44

. . .

For n = 100 (1 + 1/100)100 = 2.705
For n = 1000 (1 + 1/1000)1000 = 2.717
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Euler’s Number e

We find that

For n = 1,000,000
(

1 +
1

106

)106

= 2.71828046932 . . .

Continuing to ever-bigger values of n, we get

e = 2.7182818284590452354 · · ·

This is the base of the natural logarithms.

It is generally called Euler’s number.
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Exponential Growth & Decay

The exponential function is written

y = exp(x) or y = ex

It is the inverse function of the logarithm:

y = exp(x) ⇐⇒ x = log(y)

Therefore we have:

y = exp(log(y)) and x = log(exp(x))

or
y = elog(y) and x = log(ex)
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We can get the graph of exp x from that
of ln x by rotating about the line x = y .
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Exponential Growth

Exponential Growth is very common in nature.
If the rate of growth is proportional to the size
of the population, the growth is exponential.

For example, in a larger human population, with more
potential for growth, the rate of increase is greater.

A bacteria colony growing exponentially can increase
explosively and catastrophically within a few days.

Intro Euler’s e Exp&Log Euler Sequences & Series



Polynomial and Exponential Growth

Let’s compare two functions, f (n) = n2 and g(n) = 2n:

n = 0 1 2 3 4 5 · · · 10

n2 = 0 1 4 9 16 25 · · · 100

2n = 1 2 4 8 16 32 · · · 1024
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Polynomial versus Exponential Growth

At x = 1, 2x = 1 and x2 = 0. At x = 2 they are equal.
Between x = 2 and x = 4, the exponential is smaller than the quadratic.

Above x = 4, the exponential soars into the stratosphere.
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Polynomial versus Exponential Growth

As x becomes larger, the exponential function y = 2x

becomes completely dominant. Even when x = 10, it is

an order of magnitude greater than y = x2.
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Grababundel and the Maharaja

Long ago in the Gupta Empire, a great-but-greedy
mathematician, Grababundel, presented to the
Maharaja a new game that he had devised.

He called it Chaturanga. We call it Chess.

The Maharaja, Branier Thanilux, was so pleased
that he asked Grababundel to name his reward.

Grabundel said simply: “Give me one grain of rice
for the first square on the board, two for the second,
four for the third, and so on, doubling each time,
until the 64th square. That is all I ask!”
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The Great-but-Greedy Mathematician
Grababundel and his Chessboard
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The number of grains of rice comes to

N = 1 + 2 + 4 + 8 + · · ·+ 263

How many is that?

It is a geometric series. It can be summed.

But there is crafty and simple way to get N:

Just add 1 to the sum and watch the cascade.
(computation on blackboard).
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The Maharaja Outsmarts
Greedy Grababundel

Branier Thanilux saw through the ruse. He said to
Grababundel: “You are too modest; if you wish, I will
give you a boundless fortune, riches without limit."

For the thrilling story of how the Maharaja
got the better of Grabundel, read my blog-post
“Chess Harmony” at thatsmaths.com.

The moral of the story:
Don’t mess with the Maharaja —
He might be Branier Thanilux.
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Leonhard Euler (1707–1783)

Leonhard Euler was the
most prolific mathemati-
cian and one of the great-
est of all time.

Contributed to every area
of mathematics, both pure
and applied.

His collected works fill
some 80 volumes.
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Outline of Euler’s Life

Born in 1707 in Basel, Euler studied for
a time under Johann Bernoulli.

Took up a position in St. Peterburg in 1727,
at the Academy established by Peter the Great.

Married Katharina Gsell in 1734. Of their thirteen
children, just five survived beyond infancy.
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Outline of Euler’s Life

In 1741, Euler moved to the Academy in Berlin,
where Frederick the Great of Prussia had offered
him a position. Euler stayed 25 years in Berlin.

Catherine the Great came to power in 1762.
In 1766, Euler returned to St. Petersburg.

Around that time he lost his sight almost completely.
However, his mathematical output did not diminish;
in fact, he became even more productive!

Euler remained in Russia until his death in 1783.
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Russian stamp for 250th birthday
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Notation invented or popularised by Euler

e i π f (x)
∑

sin cos tan csc sec cot

Mathematical formula voted the most beautiful:

eiπ + 1 = 0

Intro Euler’s e Exp&Log Euler Sequences & Series



Some Key Accomplishments

Euler’s mathematical accomplichments were
profound and frequently breath-taking.

We will focus here on just two results:

1. The Basel Problem
2. The Product-Sum Formula
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The Basel Problem
Recall the definition of Riemann’s “Zeta function”:

ζ(s) =
∞∑

n=1

1
ns

For s = 2 this is the series

ζ(2) = 1 +
1
22 +

1
32 +

1
42 +

1
52 +

1
62 + . . .

In 1734, Euler found the precise value of this series:

ζ(2) =
π2

6

This result brought him great fame.
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The Product-Sum Formula

Leonhard Euler proved the amazing result:

ζ(s) =
∑
n∈N

1
ns =

∏
p∈P

(
1

1− p−s

)
This was an utterly unexpected result:

It connects ζ(s) with the prime numbers.

It was the beginning of analytical number theory,
and is central to the Riemann hypothesis.
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An Aweful Limerick by W. C. Willig

Exp(iπ) + 1 = 0
Made the great Leonhard Euler a hero

From real to complex
With our brains in great flex

He led us with zest but no fearo!

[Credited to W. C. Willig]
Challenge:

Write a better one. You can hardly do worse!
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An Ode to e

To inspire you, here is an ode, to be sung
to the air of “Only God can make a tree”

I think that I shall never see
A number lovelier than e,
Whose digits are too great to state
They’re 2.71828 . . .

. . .

[Credited to Arthur Benjamin]
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SOURCES:

I Wikipedia page on Leonhard Euler
I MacTutor:
http://www-history.mcs.st-and.ac.uk/

(J. J. O’Connor & E. F. Robertson)
I eulerarchive.maa.org
I William Dunham’s book Journey through Genius.
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Distraction 7: Plus Magazine

PLUS: The Mathematics e-zine
https://plus.maths.org/
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Sequences & Series
A sequence is a set of numbers, s1, s2, s3, · · ·
indexed by the natural numbers:

S = {s1, s2, s3, . . . sn, . . . }

For example, the sequence of squares is

S = {12,22,32,42,52,62,72 . . . }
= {1,4,9,16,25,36,49 . . . }

Another example is the sequence of prime numbers

S = {2,3,5,7,11,13,17,19,23 . . . }
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Infinite Series
A series is a sum of numbers a1 + a2 + a3 + . . .
indexed by the natural numbers:

A = a1 + a2 + a3 + · · ·+ an + . . .

For example, the sum of the natural numbers

A = 1 + 2 + 3 + 4 + 5 + 6 + . . . .

This clearly gets bigger without limit: A→∞.
How do we handle this?

We consider the sequence of partial sums:

s1 = a1, s2 = a1 + a2, s3 = a1 + a2 + a3, . . .
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Again, the sequence of partial sums of the series

A = a1 + a2 + a3 + · · ·+ an + . . .

is

s1 = a1

s2 = a1 + a2

s3 = a1 + a2 + a3

s4 = a1 + a2 + a3 + a4

s5 = a1 + a2 + a3 + a4 + a5

. . .

If the sequence {sn} tends to a limit,
we say the series A is convergent.

Otherwise, we say the series is divergent.
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For the series of natural numbers

A = 1 + 2 + 3 + 4 + 5 + 6 + . . . .

the sequence of partial sums is

s1 = 1 = 1
s2 = 1 + 2 = 3
s3 = 1 + 2 + 3 = 6
s4 = 1 + 2 + 3 + 4 = 10
s5 = 1 + 2 + 3 + 4 + 5 = 15

. . .

Clearly, this sequence does not converge.
We say that it diverges: A→∞. No Surprise!
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Convergence & Divergence
Definition: A series converges if its

sequence of partial sums converges.

Definition: A series diverges if its
sequence of partial sums diverges.

But when does a sequence converge?

A sequence converges to S if its terms
get closer and closer to S.

This is hardly a rigorous definition.

The true definition is an ε-δ definition.
We will not give that definition here.
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A Geometric Series
We look at the series

1 +
1
2
+

1
4
+

1
8
+

1
16

+ . . .

where each term is half the previous one.

The partial sums of this series are

s1 = 1 = 1
s2 = 1 + 1

2 = 11
2

s3 = 1 + 1
2 + 1

4 = 13
4

s4 = 1 + 1
2 + 1

4 + 1
8 = 17

8

. . .

This sequence appears to be convergent.
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Convergence of the Geometric Series
We look at the partial sum

sn = 1 + 1
2 + 1

4 + 1
8 + · · ·+ 1

2n−1 .

1
2sn = 1

2 + 1
4 + 1

8 + · · ·+ 1
2n−1 +

1
2n .

Subtract the second equation from the first:

sn − 1
2sn = 1

2sn = 1− 1
2n .

As n gets larger , this gets closer to 1:
1
2sn ≈ 1 or sn ≈ 2 .

We say that the limit of sn as n→∞ is 2:

lim
n→∞

sn = 2
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Convergence of the Geometric Series

Again, sn gets closer and closer to 2
as n becomes larger and larger.

We conclude that the sum of the series is 2:

1 +
1
2
+

1
4
+

1
8
+

1
16

+ · · · −→ 2

The geometric series is convergent.

Let us demonstrate this with a picture.
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We divide a unit square into ever-smaller rectangles:

Area =
1
2
+

1
4
+

1
8
+

1
16

+
1
32

+
1
64
· · · = 1

Intro Euler’s e Exp&Log Euler Sequences & Series



Convergence in General

If the terms of a series do not tend to zero,
it cannot possible converge: the partial sums
are not getting closer to each other.

If the terms of a series do tend to zero, as
with the geometric series, there is a chance
that it may converge. But this is not guaranteed.

We now consider a series for which the terms
become smaller without limit, but which does
not converge.

We examine the Harmonic Series.

Intro Euler’s e Exp&Log Euler Sequences & Series



Harmonic Numbers & Musical Harmony

The connection with music goes back to Pythagoras.
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The Harmonic Series
We define the harmonic series as

H = 1 + 1
2 + 1

3 + 1
4 + 1

5 + · · ·

The partial sums are called the harmonic numbers

H1 = 1 = 1
H2 = 1 + 1

2 = 11
2

H3 = 1 + 1
2 + 1

3 = 15
6

H4 = 1 + 1
2 + 1

3 + 1
4 = 2 1

12

H5 = 1 + 1
2 + 1

3 + 1
4 + 1

5 = 217
60

. . .

The sums are getting bigger. What will happen?
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Harmonic numbers from 1 to 20
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Harmonic numbers from 1 to 200
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Harmonic numbers from 1 to 2000
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Harmonic numbers from 1 to 20000
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Harmonic Numbers and Logs
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Divergence of the Harmonic Series
We rearrange the terms of the harmonic series

H = 1
1 + 1

2 + 1
3 + 1

4 + 1
5 + · · ·

into groups of terms.

H =
(

1
1

)
= 1

+
(

1
2

)
= 1

2

+
(

1
3 + 1

4

)
> 1

2

+
(

1
5 + 1

6 + 1
7 + 1

8

)
> 1

2

+
(

1
9 + 1

10 + 1
11 + 1

12 + 1
13 + 1

14 + 1
15 + 1

16

)
> 1

2

. . .

Each group is equal to or greater than 1
2 .

The sum becomes larger without limit: it diverges!
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Convergence & Divergence of Series

The geometric series converges

G = 1
1 + 1

2 + 1
4 + 1

8 + 1
16 + · · · = 2

The harmonic series diverges

H = 1
1 + 1

2 + 1
3 + 1

4 + 1
5 + · · · =∞

For both series, the terms get smaller
and smaller and tend towards zero.

Clearly, this is not enough to ensure convergence.
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We have [
Series

converges

]
⇒
[
Terms become

smaller

]

We do not have[
Terms become

smaller

]
⇒
[

Series
converges

]
and certainly not[

Terms become
smaller

]
⇔
[

Series
converges

]
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Splitting up the Harmonic Series

We write alternate terms as two separate series:

HODD = 1
1 + 1

3 + 1
5 + 1

7 + 1
9 + · · ·

HEVEN = 1
2 + 1

4 + 1
6 + 1

8 + 1
10 + · · ·

Question: Do these series converge or diverge?
Does one converge and one diverge?

Take a few minutes to develop an argument.

Talk to the person beside you if you like;
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Splitting up the Harmonic Series

2× HEVEN = 2×
(

1
2 + 1

4 + 1
6 + 1

8 + 1
10 + · · ·

)
= 1

1 + 1
2 + 1

3 + 1
4 + 1

5 + 1
6 + · · ·

= H

So the sum of even terms diverges since H diverges.

Since

HEVEN = 1
2H and H = HODD + HEVEN

we could argue that HODD = 1
2H.

It is better to use a ‘dominance argument’ for HODD.
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The Alternating Harmonic Series

We define the alternating harmonic series:

A = 1− 1
2 + 1

3 −
1
4 + 1

5 −
1
6 + · · ·

This is a modified form of the harmonic series
in which the signs of the terms alternate.

Does this series converge? Yes!

”It can be shown” that A = log 2:

1− 1
2 + 1

3 −
1
4 + 1

5 −
1
6 + · · · = log 2
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Riemann’s Rearrangement Theorem

1− 1
2 + 1

3 −
1
4 + 1

5 −
1
6 + · · · = log 2

We can rearrange the terms to get any value we like.

Weird! This follows from a theorem of Riemann.

The algorithm is simply described:
I Suppose we wish the sum to be S = 2π.
I Add positive terms until the sum exceeds S
I Now add negative terms until it is less than S
I Continue this procedure indefinitely.

The result is that the sum tends towards S.
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Puzzle: The Galway Girl

I want to see my girlfriend in Galway.
But I’m shy! Will I ever get there?

I I travel half-way to Galway.
I Losing my nerve, I return towards Dublin.
I But, half-way back, I regain courage.
I I travel half the distance to Galway.
I Then I travel half the distance to Dublin.
I Back and forth, hither and thither . . .

Is there any hope or will my love remain unrequited?
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Thank you
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