AweSums:

The Majesty of Mathematics

Peter Lynch School of Mathematics & Statistics University College Dublin

Evening Course, UCD, Autumn 2016

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

Introduction 6

Functions and Graphs

Archimedes of Syracuse

Logarithms: Whys & Wherefores

Natural Logarithms

Intro

Functions

Archimedes

LogsW&W

・ロット (母) ・ ヨ) ・ コ)

Loge

-

Outline

Introduction 6

Functions and Graphs

Archimedes of Syracuse

Logarithms: Whys & Wherefores

Natural Logarithms

Intro

Functions

Archimedes

LogsW&W

・ロト ・ 四ト ・ ヨト ・ ヨト

Log_e

AweSums: The Majesty of Maths

Bernhard Riemann (1826-66)

Loge

Intro

Functions

Archimedes

LogsW&W

(日)

AweSums: The Majesty of Maths

We aim to get a flavour of the Riemann Hypothesis.

It involves the zeros of the "Zeta function":

$$\zeta(\boldsymbol{s}) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

So, we need to talk about several new topics:

- What is a function?
- What is an infinite series?
- What is a complex variable?

In this lecture, we will look at functions.

Log

3

Functions

Archimedes

LogsW&W

周 ト イ ヨ ト イ ヨ ト

Outline

Introduction 6

Functions and Graphs

Archimedes of Syracuse

Logarithms: Whys & Wherefores

Natural Logarithms

Loge

3

Intro

Functions

Archimedes

LogsW&W

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

A First Look at Functions

The concept of a function is amongst the most fundamental and important ideas in mathematics.

A function is a relation between input values and and output values.

Functions are of central importance because they describe connections between sets.

For each input, there is precisely one output.

Functions

Archimedes

LogsW&W

4 **A** N A **B** N A **B** N

Notation for Functions

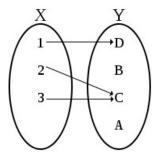
We use the following notation

- x is the input
- y is the output
- f is the function

Then we write the function as

y = f(x)

We call *x* the independent variable. We call *y* the dependent variable.


The set of values taken by x is the domain. The set of values taken by y is the codomain.

3

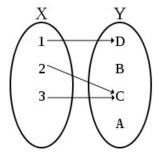
Archimedes

Example of a Function

Domain: $X = \{1, 2, 3\}$ Codomain: $Y = \{A, B, C, D\}$ Range: $\{C, D\}$ Graph: $\{(1, D), (2, C), (3, C)\}$

Intro

Functions


Archimedes

LogsW&W

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Example of a Function

X is the domain. Y is the codomain.

D is the image of 1.

1 is the preimage of D.

- $\{2,3\}$ is preimage of C.
- A, B have no preimages.

LoasW&W

4 E 5

Functions

Archimedes

Example of a Function

Square function: Output is square of the input.

We suppose that *x* can take any real value.

We write this function as

$$y = x^2, \qquad x \in \mathbb{R}$$

Note that different inputs may give the same output:

$$3^2 = 9$$
 and $(-3)^2 = 9$

So, in general, a function is not a one-to-one correspondence.

Log

-

Functions

Archimedes

A (a) < A (b) < A (b) </p>

Specifying Functions

A function may be defined in several ways:

- As a Table of Values
- As a Formula
- As a Graph
- As an Algorithm
- As a Solution of an Equation
- Implicitly (e.g. inverse function)

Log

Archimedes

LogsW&W

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Function Defined by a Table

Input: MONTH Output: RAINFALL

Table : Average Monthly Rainfall in Dublin

January	78 mm
February	76 mm
March	69 mm
December	72 mm

Annual precipitation in Dublin: 750 mm.

Loge

3

Intro

Archimedes

LogsW&W

周レイモレイモレ

Function Defined by a Formula

We have already seen the square function:

$$y=x^2, \qquad x\in\mathbb{R}$$

Here are some others:

$$y(x) = 4x + 6$$

$$y(x) = ax^{2} + bx + c$$

$$y(x) = (x^{2} + 5)/(3x^{3} + 7)$$

$$y(x) = A \sin \alpha x + B \cos \beta x$$

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^{s}}$$

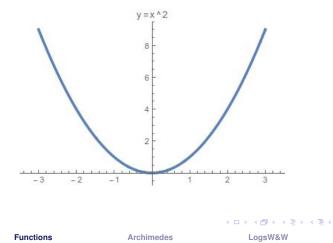
$$\Gamma(s) = \int_{0}^{\infty} e^{-x} x^{s-1} dx$$

Functions

Intro

Archimedes

LogsW&W


< □ > < □ > < □ > < □ > < □ > < □ > < □ >

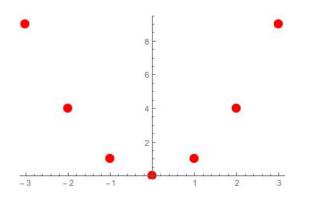
Log_e

Function Defined by a Graph

The set of all (input, output) pairs is called the graph:

$$G=\left\{\left(x,x^2\right):x\in\left[-3,+3\right]\right\}$$

Loge


3

Intro

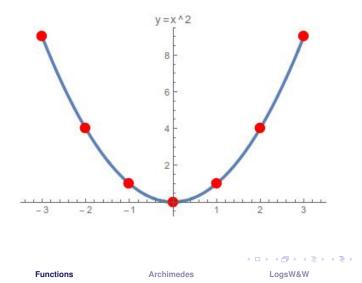
Function of a Discrete Variable

We may restrict the definition to a discrete domain:

$$G = \left\{ (n, n^2) : n \in \{-3, -2, -1, 0, 1, 2, 3\}
ight\}$$

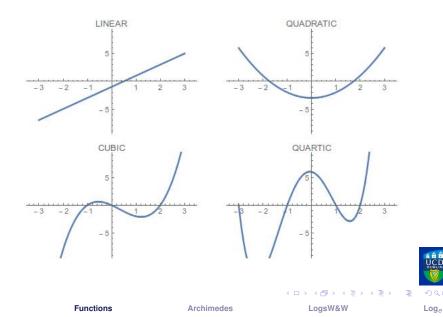
3

Intro

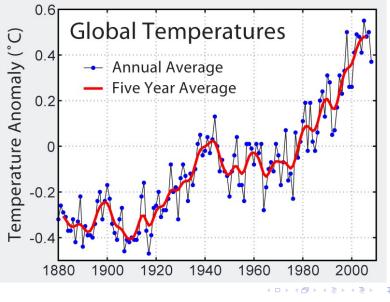

Archimedes

LogsW&W

< 匣 >


Discrete & Continuous Domains

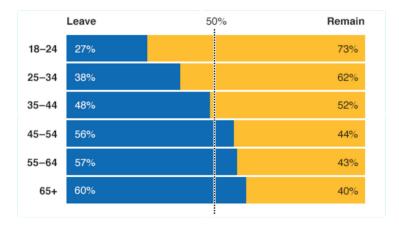
Plot of discrete and continuous functions together:



Polynomial Function Graphs

Intro

Global Mean Surface Temperature


Functions

Archimedes

LogsW&W

Loge

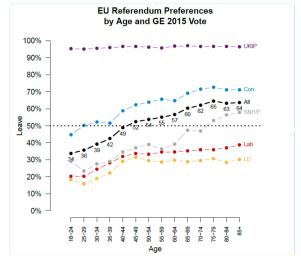
Graphs of Brexit Results: June 2016

Question: What is the independent variable here?

Loge

Intro

Functions


Archimedes

LogsW&W

・ コット 今日 マ キャット・ キャット

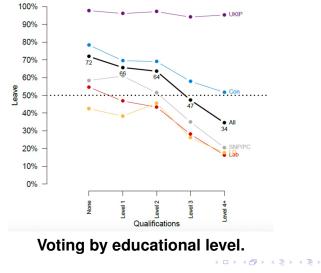
王

Graphs of Brexit Results: June 2016

Voting by age group and party affiliation.

Intro

Functions


Archimedes

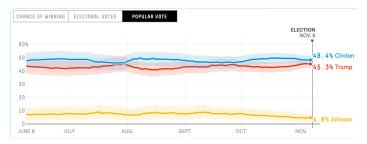
LogsW&W

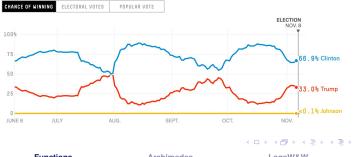
Loge

Graphs of Brexit Results: June 2016

EU Referendum Preferences by Qualifications and GE 2015 Vote

Intro


Functions


Archimedes

LogsW&W

Log_e

American Presidential Election Trends

Intro

Functions

Archimedes

LogsW&W

Loge

Introduction 6

Functions and Graphs

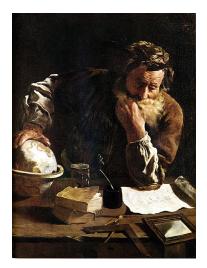
Archimedes of Syracuse

Logarithms: Whys & Wherefores

Natural Logarithms

Intro

Functions


Archimedes

LogsW&W

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Loge

Αρχιμηδης

Archimedes Thoughtful by Domenico Fetti (1620)

Intro

Functions

Archimedes

LogsW&W

イロト イポト イヨト イヨト 二日

Log_e

Archimedes of Syracuse (287-212)

Archimedes was a brilliant physicist, engineer and astronomer, the greatest mathematician of antiquity.

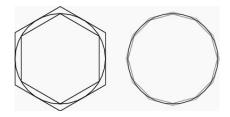
He is famed for:

- Founding hydrostatics
- Formulating the law of the lever
- Inventing a helical pump
- Designing engines of war
- Many more things.

But his mathematical discoveries were his greatest achievements.

Log

3


Archimedes

LogsW&W

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Estimation of π

Archimedes determined π by considering polygons inscribed within a circle and polygons around it.

A regular hexagon within a unit circle has length 3.

This is less than the circumference of the circle. So π is greater than 3.

Intro

Archimedes

LogsW&W

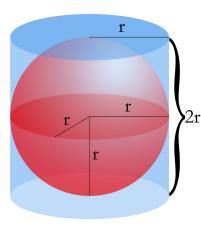
A less obvious derivation shows that a hexagon drawn around the circle has length $2\sqrt{3}$.

So π is less than $2\sqrt{3} \approx 3.46$. Therefore

 $3 < \pi < 3.46$

Archimedes approximated the circle by inscribed and circumscribed 96-sided polygons. He found:

 $3\frac{10}{71} < \pi < 3\frac{10}{70}$ or $3.140845 < \pi < 3.142857$


Intro

Archimedes

LogsW&W

A D > A B > A B > A B > B

Archimedes Great Discovery

Volume of Cylinder:

$$V_C = \pi r^2 \times 2r$$

Volume of Sphere:

$$V_S = \frac{2}{3}V_C$$

Therefore

$$V_S = \frac{4}{3}\pi r^3$$

Loge

3

Intro

Archimedes

LogsW&W

イロト イヨト イヨト

Cylinder and Sphere

Archimedes showed that a sphere inscribed in a cylinder has two-thirds the volume of the cylinder.

He asked for a sphere within a cylinder to be inscribed on his tombstone.

Centuries later, the Roman orator Cicero found such a carving on a grave in Syracuse.

[2,300 years later, I did not.]

Log

3

Intro

Archimedes

Distraction 6: Slicing a Pizza

Cut the pizza using three straight cuts.

There should be exactly one piece of pepperoni on each slice of pizza.

Intro

Functions

Archimedes

LogsW&W

(4 間 ト 4 ヨ ト 4 ヨ)

Log_e

Outline

Introduction 6

Functions and Graphs

Archimedes of Syracuse

Logarithms: Whys & Wherefores

Natural Logarithms

Intro

Functions

Archimedes

LogsW&W

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Loge

э.

What's the Point of Logs?

What's so interesting about logs?

Why should we bother about them?

We will take a look at some applications of logarithms in 'real-world' situations.

Log

3

Intro

Archimedes

LogsW&W

周 ト イ ヨ ト イ ヨ ト

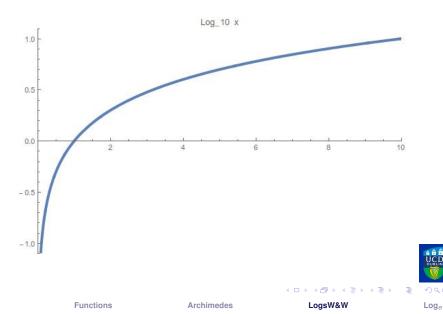
Recall the Definition of Log₁₀ x

DEFINITION: The logarithm of x is the power to which 10 must be raised to give x:

$$\log_{10} y = x \quad \Longleftrightarrow \quad 10^x = y$$

Logs compress large values and stretch small ones.

This is clear from the character of the graph.


ヨト イヨト イヨト

LoasW&W

Functions

Archimedes

$Log_{10} x for 0 < x < 10$

Intro

Our Logarithmic World

Log tables have been consigned to the scrap heap.

But logarithms remain at the core of science.

A wide range of physical phenomena follow logarithmic laws. *We live in a logarithmic world.*

3

Intro

Archimedes

LogsW&W

Our Logarithmic World

Many physical variables can take values covering several orders of magnitude.

Smaller values can be swamped or masked by larger values. A log scale compresses them to a more manageable range.

Graphs of quantities that vary exponentially can be converted to linear graphs.

3

Archimedes

Log Scale of Apparent Magnitude

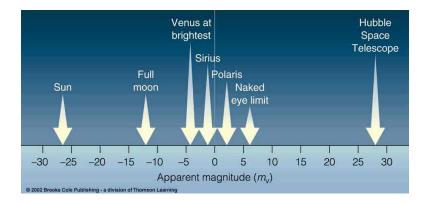
Log laws are used to model human perception. Visual perception of brightness is logarithmic.

The brightness of stars varies over a huge range. Astronomers use a log scale for magnitude:

$$m_V = -2.5 \log_{10}(F/F_0)$$

With the star *Vega* as a zero reference, the dimmest star visible to the naked eye is of magnitude 5.

The Full Moon has magnitude -12 and the Sun is of magnitude -26.



э.

Archimedes

・ロット (母) ・ ヨ) ・ コ)

Log Scale for Apparent Magnitude

Intro

Functions

Archimedes

LogsW&W

Loge

э.

Log Scale in Acoustics

The intensity of audible sounds can vary by a factor of over a trillion (12 orders).

Sound intensity is measured in decibels:

$$L = 10 \log_{10} \left(\frac{P}{P_0} \right)$$

where P_0 is the threshold of hearing.

- A whisper is 20 dB,
- Normal speech is about 60 dB
- Rock concert over 110 dB.

Archimedes

LogsW&W

Loge

Log Scale for Noise Levels

Source	Pressure	Sound Intensity level	Intensity
	rms (Pa)	SIL (dB)	(W/m^2)
Jet engine at 10 m		150	10^{3}
Jet engine	200	140	100
Jack hammer	60	130	10
Car horn	20	120 (pain threshold)	1
Rock band	6	110	0.1
Machine shop	2	100	0.01
Train	0.6	90	10-3
Vacuum cleaner	0.2	80	10-4
TV	0.06	70	10-5
Conversation	0.02	60	10-6
Office	0.006	50	10-7
Library	0.002	40	10 ⁻⁸
Hospital	0.0006	30	10-9
Broadcast studio	0.0002	20	10-10
Rustle of leaves	0.00006	10	10-11
Threshold of	0.00002	0	10-12
hearing			

Intro

Archimedes

LogsW&W

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Log_e

The Richter Scale

The scale named for the American seismologist Charles Richter measures the energy of a quake.

$$R = \log_{10}\left(rac{A}{A_0}
ight)$$

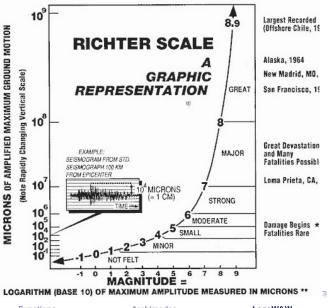
Where A_0 is a barely perceptible tremor. An increase of 1 implies factor of 10 for amplitude.

A quake of magnitude 6 releases 32 times more *energy* than one of magnitude 5, and a quake of magnitude 7 releases 1000 times more energy.

[Empirically, energy goes as 3/2 power of amplitude.

Increase of R by 2 means 1000 times more energy.]

3

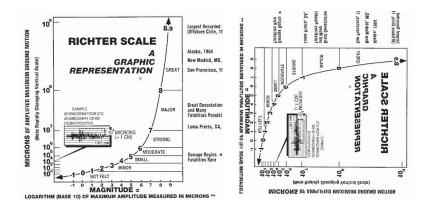

Functions

Archimedes

LogsW&W

・ロット (母) ・ ヨ) ・ コ)

Richter Scale for Earthquakes



Archimedes

LogsW&W

Log_e

Flipping the Richter Scale

Intro

Archimedes

LogsW&W

(日)

Log_e

The pH Scale of Acidity

The concentration of hydrogen ions in an aqueous solution determines whether it is acidic or alkaline.

Concentration can vary by ten or more orders.

To cover the whole range of possibilities, the acidity of the solution is expressed in logarithmic form.

- Acidic: pH below 7
- Neutral: pH equal to 7
- Basic: pH above 7



Log

3

Archimedes

Log Scale for Acidity/Alkalinity

3

Intro

Functions

Archimedes

LogsW&W

Log_e

The Prime Number Theorem

THE REAL REASON WE ARE STUDYING LOGS.

The log function is intimately connected with the distribution of prime numbers.

PNT: The number of primes less than *n* **is**

$$\pi(n) \sim \frac{n}{\log_e n}$$

This is intimately connected with the *Riemann Hypothesis*.

Log

Intro

Archimedes

A Little Exercise

Note: All logs are to the base 10.

- What is the log of a googol?
- What is log-log of a googol?
- What is the log of a googolplex?
- What is log-log of a googolplex?
- What is log-log-log of a googolplex?
- What is log-log-log-log of a googolplex?

Remember:

$$1 \text{ googol} = 10^{100} \qquad 1 \text{ googolplex} = 10^{\text{googol}}$$

Loge

3

Functions

Archimedes

LogsW&W

A D N A B N A B N A B N

Outline

Introduction 6

Functions and Graphs

Archimedes of Syracuse

Logarithms: Whys & Wherefores

Natural Logarithms

Intro

Functions

Archimedes

LogsW&W

・ロット (母) ・ ヨ) ・ コ)

Loge

э.

Definition of Logarithms

Recall how we defined a logarithm:

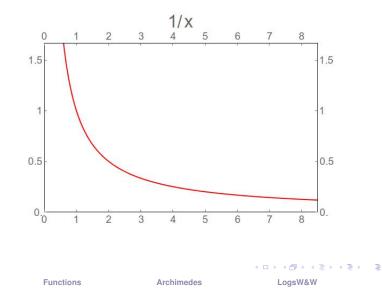
$$y = \log_b x \quad \iff \quad x = b^y = b^{\log_b x}$$

Here y is the log of x to the base b.

For example, common logs have base 10:

$$10^3 = 1000 \implies 3 = \log_{10} 1000 = \log_{10} 10^3$$

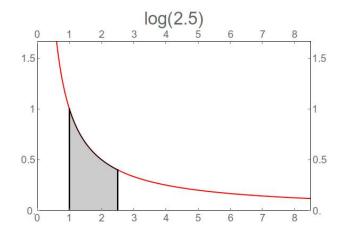
We now consider natural logs, having base *e*. (We will define *e* shortly.)



Intro

Archimedes

We will look at the area under the hyperbola y = 1/x:



Loge

Intro

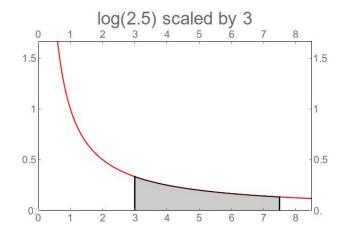
Definition of Natural Logarithm

The natural log is the area shown in this graph:

For example, *log 2.5* is the area is between 1 and 2.5.

Intro

Archimedes


LogsW&W

イヨト イモト イモト

Loge

Scaling Property of Logarithm

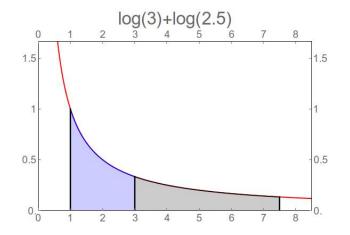
If x is scaled up by 3, then y is scaled down by 3:

Log 2.5 is also the area is between 3 and 7.5.

Log

Intro

Functions


Archimedes

LogsW&W

A (B) > A (B) > A (B) >

The area between 1 and 7.5

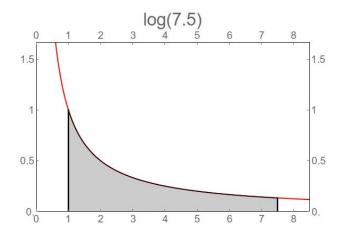
The area between 1 and 3 is just log 3.

The total area is log 3 + log 2.5

Intro

Functions

Archimedes


LogsW&W

通 ト イ ヨ ト イ ヨ ト

Loge

The Area between 1 and 7.5

But it is also log 7.5

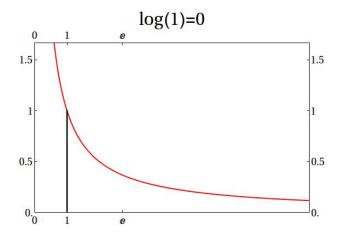
Therefore $\log 3 + \log 2.5 = \log 7.5$.

Intro

Functions

Archimedes

LogsW&W


< □ > < □ >

Log_e

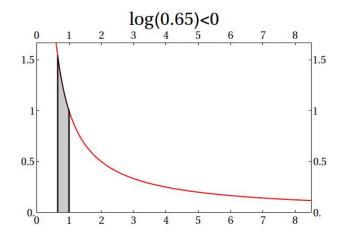
∃ >

What happens if x = 1?

For x = 1, the area between x and 1 is zero:

Therefore $\log 1 = 0$.

Intro


Archimedes

LogsW&W

Loge

What about $\log x$ if x < 1?

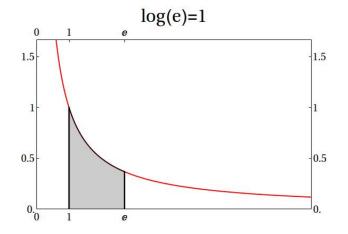
For x < 1, we need the area between x and 1.

We count this area as negative. So $\log x < 0$.

Loge

Intro

Functions


Archimedes

LogsW&W

伺 ト イ ヨ ト イ ヨ ト

What Number has Natural Logarithm 1?

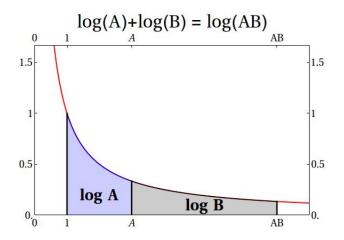
There is a number that makes the area equal to one:

This is Euler's number e. We will return to it later.

Loge

Intro

Functions


Archimedes

LogsW&W

A B b 4 B b

Crucial Property of logs

We found the important property of logarithms:

It turns multiplication into addition.

Log

Intro

Functions

Archimedes

LogsW&W

イロト イヨト イヨト イヨト

Crucial Property of logs

We found that

 $\log 3 + \log 2.5 = \log 7.5$

More generally,

$$\log A + \log B = \log A B$$

This is the most important property of logarithms:

It turns multiplication into addition.

(We will return to this important property.)

Functions

Archimedes

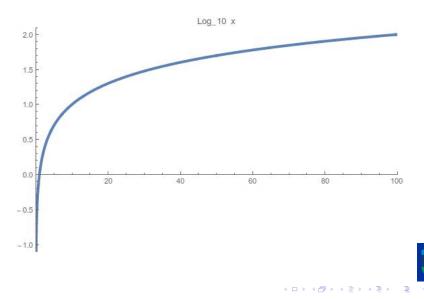
The Graph of Log x

Since 1/x decreases as x grows, the area under the curve y = 1/x grows very more slowly with x.

Therefore, $\log x$ grows ever more slowly with x.

Let's look at a graph of log x.

Log

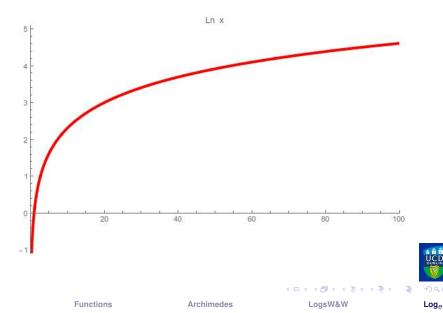

Intro

Archimedes

LogsW&W

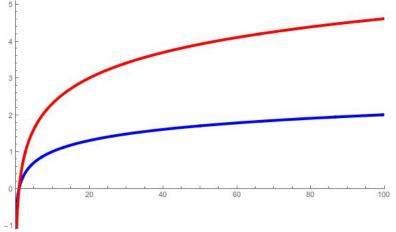
A D > A D > A D > A D > D

Log₁₀ **x** for 0 < **x** < 100


Functions

Archimedes

LogsW&W


Log_e

$Log_e x$ for 0 < x < 100

$Log_e x$ and $Log_10 x$ for 0 < x < 100

Note that $\log_e x$ is a multiple of $\log_{10} x$.

Intro

Functions

Archimedes

LogsW&W

Log_e

э

A Little Puzzle

Which is bigger:

A Googol or 100! Remember:

$$1 \text{ googol} = 10^{100} \qquad 100! = 1 \times 2 \times 3 \times \cdots \times 100$$

Answer to follow, but try it yourself.

Intro

Functions

Archimedes

LogsW&W

イロト イヨト イヨト

Thank you

Intro

Functions

Archimedes

LogsW&W

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Log_e

æ