AweSums:

The Majesty of Mathematics

Peter Lynch School of Mathematics & Statistics University College Dublin

Evening Course, UCD, Autumn 2016

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

Outline

Introduction

- **Georg Cantor**
- Set Theory I
- **A Ton of Wonders**
- Greek 2
- **Set Theory II**

Lateral Thinking 2

Ξ.

Intro

Greek 2

Sets 2

イロト イポト イヨト イヨト

Outline

Introduction

- **Georg Cantor**
- **Set Theory I**
- **A Ton of Wonders**
- Greek 2
- **Set Theory II**

Lateral Thinking 2

э.

Intro

Cantor

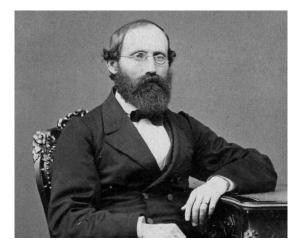
Sets 1

100

Greek 2

Sets 2

AweSums: The Majesty of Maths



Bernhard Riemann (1826-66)

Intro

Sets 1

100

Greek 2

Sets 2

ヘロト 人間 トイヨト 人間 トー

LT2

æ

AweSums: The Majesty of Maths

Bernhard Riemann (1826-66)

3

Intro

Cantor

Sets 1

100

Greek 2

Sets 2

ヘロト 人間 トイヨト イヨト

AweSums: The Majesty of Maths

We aim to get a flavour of the Riemann Hypothesis.

It involves the zeros of the "Zeta function":

$$\zeta(\boldsymbol{s}) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

So, we need to talk about several new topics:

- What is a function?
- What is an infinite series?
- What about convergence of a series?
- What is a complex variable?

One by one, we will look at all these questions.

э

100

Greek 2

Sets 2

(日)

Outline

Introduction

Georg Cantor

Set Theory I

A Ton of Wonders

Greek 2

Set Theory II

Lateral Thinking 2

Intro

Cantor

Sets 1

100

Greek 2

Sets 2

LT2

э.

Georg Cantor

Inventor of Set Theory

Born in St. Petersburg, Russia in 1845.

Moved to Germany in 1856 at the age of 11.

His main career was at the University of Halle.

Intro

Sets 1

100

Greek 2

Sets 2

(日)

Georg Cantor (1845–1918)

- Invented Set Theory.
- One-to-one Correspondence.
- Infinite and Well-ordered Sets.
- Cardinal and Ordinal Numbers.
- Proved: $\#(\mathbb{R}) > \#(\mathbb{N})$.
- Infinite Hierarchy of Infinities.

3

100

Greek 2

(日)

Set Theory: Controversy

Cantor was strongly criticized by

- Leopold Kronecker.
- Henri Poincaré.
- Ludwig Wittgenstein.

Set theory is a "grave disease" (HP). Cantor is a "corrupter of youth" (LK). Set Theory is "nonsense; laughable; wrong!" (LW).

Adverse criticism like this may well have contributed to Cantor's mental breakdown.

э.

100

Greek 2

Sets 2

< 日 > < 同 > < 回 > < 回 > .

Set Theory: A Difficult Birth

Set Theory brought into prominence several *paradoxical results*.

Many mathematicians had great difficulty accepting some of the stranger results.

Some of these are still the subject of discussions and disagreement today.

To illustrate the difficulty of accepting new ideas, let's consider the problem of a river flowing uphill.

Set Theory: A Difficult Birth

Cantor's Set Theory was of profound philosophical interest.

It was so innovative that many mathematicians could not appreciate its fundamental value and importance.

Gösta Mittag-Leffler was reluctant to publish it in his *Acta Mathematica*. He said the work was "100 years ahead of its time".

David Hilbert said: "We shall not be expelled from the paradise that Cantor has created for us."

Intro

Greek 2

3

イロト イボト イヨト イヨト

A Passionate Mathematician

In 1874, Cantor married Vally Guttmann.

They had six children. The last one, a son named Rudolph, was born in 1886.

According to Wikipedia:

"During his honeymoon in the Harz mountains, Cantor spent much time in mathematical discussions with Richard Dedekind."

[Cantor had met the renowned mathematician Dedekind two years earlier while he was on holiday in Switzerland.]

Intro

100

Greek 2

Sets 2

3

イロト イヨト イヨト

Distraction: The Simpsons

Several writers of the Simpsons scripts have advanced mathematical training.

They "sneak" jokes into the programmes.

Intro

Sets 1

100

Greek 2

Sets 2

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

Books on a Shelf

Ten books are arranged on a shelf. They include an Almanac (A) and a Bible (B).

Suppose A must be to the left of B (not necssarily beside it).

How many possible arrangements are there?

The total number of arrangements is 10!. For half of these, A is to the left of B.

So, answer is $\frac{1}{2}(10 \times 9 \times \cdots \times 1) = \frac{1}{2} \times 10!$

Sets 2

```
100
```

Greek 2

Outline

Introduction

Georg Cantor

Set Theory I

A Ton of Wonders

Greek 2

Set Theory II

Lateral Thinking 2

э.

Intro

Cantor

Sets 1

100

Greek 2

Sets 2

イロト イヨト イヨト イヨト

Set Theory I

The concept of *set* is very general.

Sets are the basic building-blocks of mathematics.

Definition: A set is a collection of objects.

The objects in a set are called the elements.

Examples:

Cantor

- All the prime numbers, $\mathbb P$
- All even numbers: $\mathbb{E} = \{2, 4, 6, 8...\}$
- All the people in Ireland: See Census returns.
- The colours of the rainbow: {Red, ..., Violet}.
- Light waves with wavelength $\lambda \in [390 700 \text{nm}]$

IT2

100

Greek 2

Sets 2

3

イロト イヨト イヨト

Do You Remember Venn?

John Venn was a logician and philosopher, born in Hull, Yorkshire in 1834.

He studied at Cambridge University, graduating in 1857 as sixth Wrangler.

Venn introduced his diagrams in *Symbolic Logic*, a book published in 1881.

Intro

Sets 1

100

Greek 2

Sets 2

・ロン ・雪と ・ヨン

Intro

Cantor

100

Greek 2 Sets 2

Venn Diagrams

Venn diagrams are very valuable for showing elementary properties of sets.

They comprise a number of overlapping circles.

The interior of a circle represents a collection of numbers or objects or perhaps a more abstract set.

100

Greek 2

The Universe of Discourse

We often draw a rectangle to represent the *universe*, the set of all objects under current consideration.

For example, suppose we consider all species of animals as the universe.

A rectangle represents this universe.

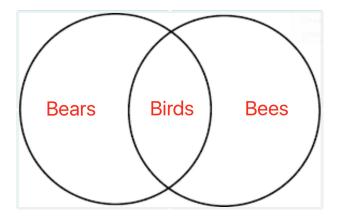
Two circles indicate subsets of animals of two different types.

シュで
リュで

Greek 2

< ≣ > < ≣ > Sets 2

The Birds and the Bees



Two-legged Animals Flying Animals Where do we fit in this diagram?

æ

Intro

Sets 1

100

Greek 2

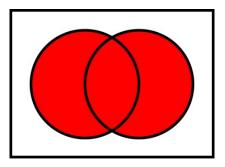
Sets 2

・ロット 御マ トルビン

The Union of Two Sets

The aggregate of two sets is called their union.

Let one set contain all two-legged animals and the other contain all flying animals.



Bears, birds and bees (and we) are in the union.

Intro

100

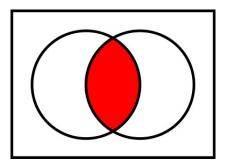
Greek 2

Sets 2

The Intersection of Two Sets

The elements in both sets make up the intersection.

Let one set contain all two-legged animals and the other contain all flying animals.



Birds are in the intersection. Bears and bees are not.

IT2

ntro

Sets 1

100

Greek 2

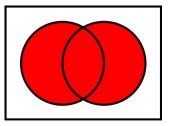
(日)

The Notation for Union and Intersection

Let A and B be two sets

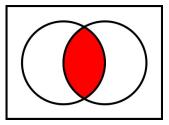
The union of the sets is

 $A \cup B$



The intersection is

 $A \cap B$



Intro

Cantor

Sets 1

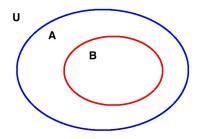
100

Greek 2

Sets 2

イロト イポト イヨト イヨト

Subset of a Set



For two sets A and B we write

 $B \subset A$ or $B \subseteq A$

to denote that B is a subset of A.

Sets 1

For more on set theory, see website of Claire Wladis http://www.cwladis.com/math100/Lecture4Sets.htm

100

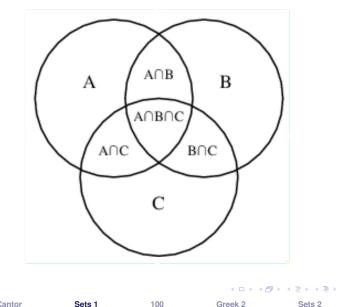
Intro

Cantor

Greek 2

Sets 2

Intersections between 3 Sets



3

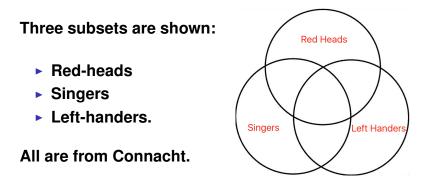
Intro

Greek 2

Sets 2

Example: Intersection of 3 Sets

In the diagram the elements of the universe are all the people from Connacht.



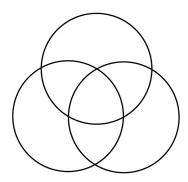
These sets overlap and, indeed, there are some copper-topped, crooning cithogues in Connacht.

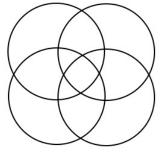
100

Greek 2

(日)

Three and Four Sets





8 Domains

14 Domains

Intro

Sets 1

100

Greek 2

How Many Possibilities?

With just one set *A*, there are 2 possibilities:

 $x \in A$ or $x \notin A$

With two sets, A and B, there are 4 possibilities:

$$(x \in A) \land (x \in B)$$
 or $(x \in A) \land (x \notin B)$
 $(x \notin A) \land (x \in B)$ or $(x \notin A) \land (x \notin B)$

With three sets there are 8 possible conditions.

With four sets there are 16 possible conditions.

-

Cantor

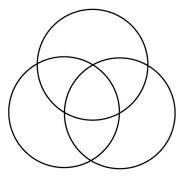
Sets 1

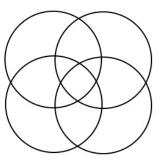
100

Greek 2

• □ ▶ • @ ▶ • E ▶ • E ▶

Three and Four Sets





8 Domains

14 Domains

With three sets there are 8 possible conditions. With four sets there are 16 possible conditions.

Intro

Greek 2

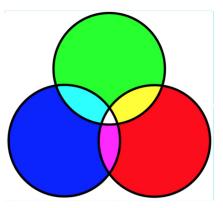
Sets 2

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

The Intersection of 3 Sets

The three overlapping circles have attained an iconic status, seen in a huge range of contexts.

It is possible to devise Venn diagrams with four sets, but the simplicity of the diagram is lost.



Intro

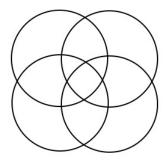
Sets 1

100

Greek 2

- 4 回 2 4 回 2 4 回 3

Exercise: Four Set Venn Diagram



Can you modify the 4-set diagram to cover all cases. (You will not be able to do it with circles only)

Intro

100

Greek 2

Sets 2

Hint: Venn Diagrams for 5 and 7 Sets

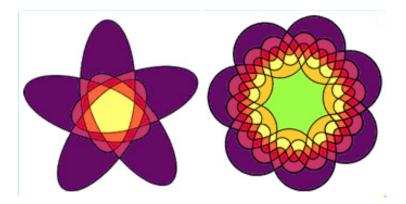


Image from Wolfram MathWorld: Venn Diagram

Cantor

Sets 1

100

Greek 2

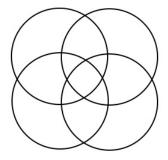
Sets 2

ヘロン 人間 とくほど 人間とし

LT2

æ

Solution: Next Week (if you are lucky)



We will find a surprising connection with a Cube

æ

Intro

Cantor

Sets 1

100

Greek 2

Outline

Introduction

- **Georg Cantor**
- **Set Theory I**

A Ton of Wonders

Greek 2

Set Theory II

Lateral Thinking 2

э.

Intro

Cantor

Sets 1

100

Greek 2

Sets 2

イロト イヨト イヨト イヨト

Interesting Numbers: Reductio ad Absurdum

Theorem: Every number is interesting.

Proof: By Reductio ad absurdum.

Give a verbal outline of the proof.

A B F A B F

Sets 2

Intro

100

Greek 2

A Ton of Wonders

Article number 100 of the That's Maths series will appear next Thursday in *The Irish Times*

To celebrate the occassion, I have written a poem

A Ton of Wonders

100

Here comes a preview, specially for you !!!

Sets 1

< □ > < □ > < □ > < □ > < □ > < □ > < □ >

Sets 2

Greek 2

Intro

Cantor

The number familiarly known as a ton Comprises two zeros appended to one. It holds, in its five score of units, great store Of marvel and mystery and magic and more.

Take 1, 2, 3, 4; add them up to make 10. Then square to one, zero and zero again. Now square 1, square 7 and double the deuce; The four squares together one hundred produce.

Pythagoras knew, with sides 6, 8 and 10, A trigon would have a right angle and then, The squares of the 6 and the 8 being paired, Make a century for the hypotenuse squared.

Intro

100

Greek 2

(日)

The cubes of the first four whole numbers combine To total one hundred, and not ninety-nine. With Goldbach to guide us, a century splits as a sum of two primes, with a half-dozen fits.

The nine smallest primes up to twenty-and-three Will sum to precisely a ton, you'll agree. Now add all odd numbers from 1 to 19: A sum of a centum again will be seen.

A number is 'Leyland' if m to the nPlus n to the m gives the number again. One hundred is such, as we easily shew, When m equals 6, and n equals 2.

Intro

100

Greek 2

Sets 2

(日)

One hundred is thrice thirty-three-and-a-third With many more forms that are much more absurd: Take a ton from its square: then the iterate root Brings you back to one hundred without any doubt.

A ton can be made from irrationals too And even the powers of transcendents will do: One hundred is e plus the fourth power of π (albeit this estimate's slightly too high).

And what of partitions? Of sums there are more than one-ninety million to make up five score. This number produces, when broken asunder, A cornucopia of wealth and of wonder.



Outline

Introduction

- **Georg Cantor**
- **Set Theory I**
- **A Ton of Wonders**
- Greek 2
- **Set Theory II**

Lateral Thinking 2

э.

Intro

Cantor

Sets 1

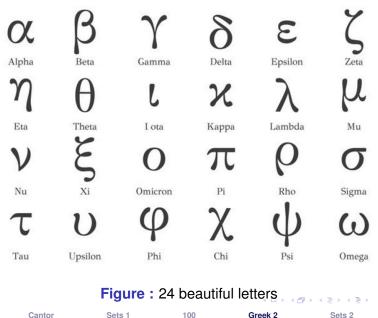
100

Greek 2

Sets 2

LT2

The Greek Alphabet, Part 2

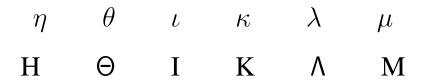


æ

Intro

The Next Six Letters

We will consider the second group of six letters.



Let us focus first on the *small letters* and come back to the big ones later.

Intro

100

Greek 2

Sets 2

イロト イポト イヨト イヨト

LT2

э

We already met the *Riemann zeta-function;* when the signs alternate, it becomes the *eta-function:*

$$\zeta(z) = \sum_{n=1}^{\infty} \frac{1}{n^z} \qquad \qquad \eta(z) = \sum_{n=1}^{\infty} \frac{(-1)^n}{n^z}$$

Angles are very often denoted θ .

We use the term *iota* for a tiny quantity. This comes from the Greek letter ι .

The three letters κ , λ , μ are like K, L, M Also, μ is used for one-millionth: 1 μ m is a micro-meter.

Now we know the next six letters. We're half way there!

100

Sets 2

Intro

Greek 2

A Few Greek Words (for practice)

 $\beta\iota\beta\lambda\iota o$

 $\iota \delta \epsilon \alpha$

κλιμαξ

Book: $\beta \iota \beta \lambda \iota o$

Idea: $\iota \delta \epsilon \alpha$

Climax: $\kappa \lambda \iota \mu \alpha \xi$

э.

Intro

Cantor

Sets 1

100

Greek 2

Sets 2

イロト イポト イヨト イヨト

End of Greek 102

æ

Intro

Cantor

Sets 1

100

Greek 2

Sets 2

▲日 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Outline

Introduction

- **Georg Cantor**
- **Set Theory I**
- **A Ton of Wonders**
- Greek 2

Set Theory II

Lateral Thinking 2

э.

Intro

Cantor

Sets 1

100

Greek 2

Sets 2

LT2

There is No Largest Number

Children often express bemusement at the idea that there is no largest number.

Given any number, 1 can be added to it to give a larger number.

But the implication that there is no limit to this process is perplexing.

The concept of infinity has exercised the greatest minds throughout the history of human thought.

Greek 2

(日)

Degrees of Infinity

Cantor

In the late 19th century, Georg Cantor showed that there are different degrees of infinity.

In fact, there is an infinite hierarchy of infinities.

Cantor brought into prominence several paradoxical results that had a profound impact on the development of logic and of mathematics.

100

Greek 2

(日)

LT2

Georg Cantor (1845–1918)

Cantor discovered many remarkable properties of infinite sets.

100

Intro

Sets 1

Greek 2

Sets 2

(日)

Cardinality

Intro

Finite Sets have a finite number of elements.

Example: The Counties of Ireland form a finite set.

Counties = {Antrim, Armagh, ..., Wexford, Wicklow}

For a finite set A, the *cardinality* of A is: The number of elements in A

One-to-one Correspondence

A particular number, say 5, is associated with all the sets having five elements.

For any two of these sets, we can find a 1-to-1 correspondence between the elements of the two sets.

The number 5 is called the cardinality of these sets.

Generalizing this:

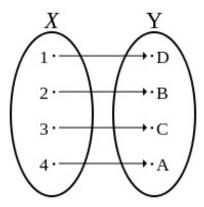
Any two sets are the same size (or cardinality) if there is a 1-to-1 correspondence between them.

100

Greek 2

< □ > < □ > < □ > < □ > < □ > < □ > < □ >

One-to-one Correspondence



Intro

Cantor

Sets 1

100

Greek 2

Sets 2

イロト イポト イヨト イヨト

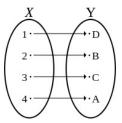
LT2

æ

Equality of Set Size: 1-1 Correspondence

How do we show that two sets are the same size?

For finite sets, this is straightforward counting.



For infinite sets, we must find a 1-1 correspondence.

100

Intro

Greek 2

Cardinality

The number of elements in a set is called the cardinality of the set.

Cardinality of a set A is written in various ways:

 $|\mathbf{A}| \|\mathbf{A}\| \operatorname{card}(\mathbf{A}) \#(\mathbf{A})$

For example

#{Irish Counties} = 32

100

Greek 2

Sets 2

э.

IT2

(日)

The Empty Set

We call the set with *no elements* the empty set.

It is denoted by a special symbol

$$\emptyset = \{ \}$$

Clearly

$$\#\{ \} = 0.$$

We could have a philosophical discussion about the empty set. Is it related to a perfect vacuum?

The Greeks regarded the vacuum as an impossibility.

100

Greek 2

Sets 2

イロト イポト イヨト イヨト

LT2

э

The Natural Numbers ℕ

The counting numbers (positive whole numbers) are

1 2 3 4 5 6 7 8

They are also called the Natural Numbers.

The set of natural numbers is denoted \mathbb{N} .

This is our first infinite set.

We use a special symbol to denote its cardinality:

 $\#(\mathbb{N}) = \aleph_0$

100

Intro

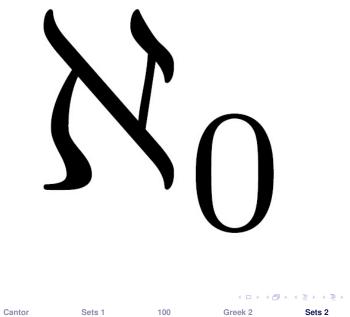
Greek 2

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Sets 2

-

IT2



æ

Intro

The Power Set

For any set, we can form a new one, the Power Set.

The Power Set is the set of all subsets of A.

Suppose the set A has just two elements:

$$A = \{a, b\}$$

Here are the subsets of A:

 $\{ \} \{a\} \{b\} \{a,b\}$

The power set is

$$P[\mathbf{A}] = \left\{ \{ \}, \{a\}, \{b\}, \{a, b\} \right\}$$

100

э

Intro

```
Greek 2
```

Sets 2

(日)

Cantor's Theorem

Cantor's theorem states that, for any set A, the power set of A has a strictly greater cardinality than A itself.

#[P(A)] > #[A]

This holds for both finite and infinite sets.

It means that, for every cardinal number, there is a greater cardinal number.

シュマ
リュマ

Greek 2

One-to-one Correspondence

Now we consider sets are infinite: take all the natural numbers,

 $\mathbb{N}=\{1,2,3,...\}$

as one set and all the even numbers

$$\mathbb{E} = \{2,4,6,\ldots\}$$

as the other.

By associating each number $n \in \mathbb{N}$ with $2n \in \mathbb{E}$, we have a perfect 1-to-1 correspondence.

By Cantor's argument, the two sets are the same size:

$$\#[\mathbb{N}] = \#[\mathbb{E}]$$

100

Intro

Greek 2

• □ ▶ • □ ▶ • □ ▶ • □ ▶

Again,

$\#[\mathbb{N}] = \#[\mathbb{E}]$

But this is *paradoxical:* The set of natural numbers contains all the even numbers

 $\mathbb{E} \subset \mathbb{N}$

and also all the odd ones.

In an intuitive sense, $\mathbb N$ is larger than $\mathbb E.$

The same paradoxical result had been deduced by *Galileo* some 250 years earlier.

э

100

Greek 2

(日)

Cantor carried these ideas much further:

The set of all the real numbers has a degree of infinity, or cardinality, greater than the counting numbers:

 $\#[\mathbb{R}] > \#[\mathbb{N}]$

Cantor showed this using an ingenious approach called the diagonal argument.

This is a fascinating technique, but we will not give details here.

Intro

100

Greek 2

(日)

Review: Infinities Without Limit

For any set A, the power set P(A) is the collection of all the subsets of A.

Cantor proved P(A) has cardinality greater than A.

For finite sets, this is obvious; for infinite ones, it was startling.

The result is now known as Cantor's Theorem, and Cantor used his diagonal argument in proving it.

He thus developed an entire hierarchy of transfinite cardinal numbers.

Intro

100

Greek 2

(日)

Outline

Introduction

- **Georg Cantor**
- **Set Theory I**
- **A Ton of Wonders**
- Greek 2
- **Set Theory II**

Lateral Thinking 2

э.

Intro

Sets 1

100

Greek 2

Sets 2

LT2

Set Theory Puzzle

In a small Canadian village, everyone speaks either English or French, or both.

80% of the people speak French

60% of the people speak English

What percentage speak both English and French?

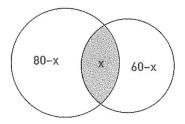
Answer next week!

э

100

Greek 2

< □ > < □ > < □ > < □ > < □ > < □ > < □ >

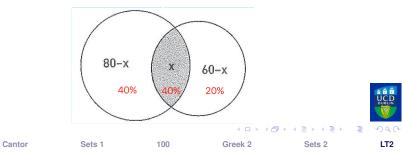


$$(80 - x) + x + (60 - x) = 100$$
.

Therefore

Intro

$$140 - x = 100$$
 or $x = 40$.



Thank you

æ

Intro

Cantor

Sets 1

100

Greek 2

Sets 2

▲□▶ ▲圖▶ ▲厘▶ ▲厘≯

LT2